FISCAL POLICY EFFECTS IN THE EUROPEAN UNION

Andreas Thams

2nd Convention of the SFB 649
Motivation

➤ **Theoretically**: (Excessive) government deficits may lead to substantial increases in the overall price level.

➤ **Empirically**: No completing evidence neither for nor against the theoretically implied mechanism between public debt and prices.

➤ As long as the relevance of public debt for the determination of the price level is not clear, the necessity of the SGP will be under question (→ credibility problem).
Aim of this paper

- Investigation of German and Spanish data
 - Example of two countries with the same monetary policy but different runs of inflation in recent years

Research questions:

1. Does the fiscal theory of the price level play a role in describing German and Spanish inflation rates?
2. Does fiscal policy behavior constitute the differences in inflation between Germany and Spain?
3. Do we need a SGP?

FTPL: In a world with price rigidities fiscal policy has an impact on the price level, if it follows an exogenous process (non-Ricardian fiscal policy).

If fiscal policy is non-Ricardian, there is a relationship between fiscal policy and private sector’s budget constraint inducing a link between fiscal policy and households’ path of consumption.
A very limited number of papers deals with the empirical relevance of the FTPL.

It is hard to test statistically for the validity of the FTPL.

Cochrane (1998): “FTPL per se has no testable implications for the time series of debt, surplus and price level” → government budget constraint must be fulfilled at any point of time.

<table>
<thead>
<tr>
<th>Author</th>
<th>Method</th>
<th>Country analyzed</th>
<th>FTPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afonso (2002)</td>
<td>Panel</td>
<td>EU-15</td>
<td>-</td>
</tr>
<tr>
<td>Bohn (1998)</td>
<td>OLS</td>
<td>USA</td>
<td>-</td>
</tr>
<tr>
<td>Canzoneri, Cumby and Diba (2000)</td>
<td>VAR</td>
<td>USA</td>
<td>-</td>
</tr>
<tr>
<td>Davig and Leeper (2005)</td>
<td>MS model</td>
<td>USA</td>
<td>+</td>
</tr>
<tr>
<td>Favero and Monacelli (2005)</td>
<td>MS model</td>
<td>USA</td>
<td>+</td>
</tr>
<tr>
<td>Janssen, Nolan and Thomas (2002)</td>
<td>VECM</td>
<td>UK</td>
<td>-</td>
</tr>
</tbody>
</table>
In this paper: two different approaches to cross-check the results.

1. **Deficit-Debt Approach**: How do government liabilities divided by GDP react to changes in the surplus-GDP ratio? (Canzoneri, Cumby and Diba, 2000)

2. **Regime-Switching Approach**: Does monetary and fiscal policy follow certain patterns? (Davig and Leeper, 2005)
The model I

Starting with the government budget constraint in nominal terms

\[B_t = (T_t - G_t) + (M_{t+1} - M_t) + \frac{B_{t+1}}{1 + i_t}, \]

where \(B_t \) denotes government debt, \(T_t \) taxes, \(G_t \) government expenditures, \(M_t \) stock of base money and \(i_t \) nominal interest rates.

\[\iff \frac{M_t + B_t}{P_t y_t} \bigg/ \frac{L_t}{Y_t} = \frac{T_t - G_t}{P_t y_t} + \frac{M_{t+1}}{P_t y_t} \frac{i_t}{1 + i_t} + \frac{y_{t+1}/y_t}{(1 + i_t)P_t/P_{t+1}} + \frac{M_{t+1} + B_{t+1}}{P_{t+1} y_{t+1}} \]

\[\rightarrow \frac{L_t}{Y_t} = \frac{S_t}{Y_t} + \beta_t \frac{L_{t+1}}{Y_{t+1}} \]
Fiscal policy is said to be...

- **Ricardian**, if surpluses follow an endogenous process s.t. the sequence of S_t is determined within the system, while the sequence of β_t and Y_t is determined outside the system.

- **non-Ricardian**, if the sequence S_t is determined by an arbitrary exogenous process s.t. β_t and Y_t adjust instead of S_t to make the government budget constraint hold.

\rightarrow VAR to model the interrelationship between surplus and liabilities
The estimation strategy

The regression equation:

\[
\begin{bmatrix}
S_t/Y_t \\
L_t/Y_t
\end{bmatrix} = const + \sum_{s=1}^{p} \begin{bmatrix}
B_{11}(s) & B_{12}(s) \\
B_{21}(s) & B_{22}(s)
\end{bmatrix} \begin{bmatrix}
S_{t-s}/Y_{t-s} \\
L_{t-s}/Y_{t-s}
\end{bmatrix} + \begin{bmatrix}
u_{1t} \\
u_{2t}
\end{bmatrix},
\]

where \(p = 2 \).

Bayesian VAR in \(S_t/Y_t \) and \(L_t/Y_t \) with flat prior and sign restrictions:

- We use sign restrictions on the impulse responses to identify those responses which generally follow a Ricardian pattern in contrast to those which exhibit non-Ricardian characteristics.
- Ricardian policy behavior implies that a shock in \(S_t/Y_t \) leads to a negative impact on \(L_{t+1}/Y_{t+1} \).
- Sign restriction is binding for only one period
The data

▶ Source: International Monetary Fund

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_t</td>
<td>Total government debt</td>
</tr>
<tr>
<td>M_t</td>
<td>Money in circulation</td>
</tr>
<tr>
<td>L_t</td>
<td>$B_t + M_t$</td>
</tr>
<tr>
<td>S_t</td>
<td>Difference between total government revenues and expenditures</td>
</tr>
<tr>
<td>Y_t</td>
<td>Nominal GDP, seasonally adjusted</td>
</tr>
<tr>
<td>i_t</td>
<td>Germany: 3-month interbank deposit rate, Spain: Bank of Spain rate</td>
</tr>
</tbody>
</table>
The results: Germany before 1990

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 70% of the impulse responses match the sign restriction.
The results: Germany before 1990 with interest rates included

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 70% of the impulse responses match the sign restriction.

At first glance: Ricardian pattern, but...
The problem of leaving interest rates unrestricted

- Following CCD liabilities are defined as the sum of monetary base and public debt.
- Interest rate increases have a negative impact on monetary base and hence on liabilities itself.
- Without sign restriction on interest rates we just see an average response of interest rates, which indeed seems to be rather unaffected by the fiscal shock.
- → Identification problem!
- Solution: Sign restriction on interest ensuring that the remaining impulse responses are Ricardian and not induced by monetary policy → negative sign on interest rates.
The results: Germany before 1990 with negative sign restriction on interest rates

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 35% of the impulse responses match the sign restriction.

Purely Ricardian pattern
The results: Germany before 1990 with positive sign restriction on interest rates

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 35% of the impulse responses match the sign restriction.

Impulse responses are induced by monetary policy shock
The results: Germany after 1990 with interest rates included

Abbildung: Germany, response to a Surplus/GDP shock for the period 1991-1998 in % with 68% error bands. 65% of the impulse responses match the sign restriction.

Again, at first glance: Ricardian pattern
The results: Germany after 1990 with negative sign restriction on interest rates

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 30% of the impulse responses match the sign restriction.

Impact on L_t/Y_t hardly persistent \rightarrow Ricardian interpretation hardly justifiable
The results: Germany after 1990 with positive sign restriction on interest rates

Abbildung: Germany, response to a Surplus/GDP shock for the period 1970-1990 in % with 68% error bands. 30% of the impulse responses match the sign restriction.

Impulse responses are induced by monetary policy shock.
The results: Spain with interest rates included

Abbildung: Spain, response to a Surplus/GDP shock for the period 1986-1998 in % with 68% error bands. 60% of the impulse responses match the sign restriction.
The results: Spain with negative sign restriction on interest rates

Abbildung: Spain, response to a Surplus/GDP shock for the period 1986-1998 in % with 68% error bands. 30% of the impulse responses match the sign restriction.
The results: Spain with positive sign restriction on interest rates

Abbildung: Spain, response to a Surplus/GDP shock for the period 1986-1998 in % with 68% error bands. 30% of the impulse responses match the sign restriction.

Impulse responses are induced by monetary policy shock → no evidence for Ricardian policy behavior
Summarizing the results

- In Germany and Spain evidence for non-Ricardian fiscal policy

<table>
<thead>
<tr>
<th></th>
<th>Ricardian</th>
<th>Non-Ricardian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany 1970-1990</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Germany 1991-1998</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Spain 1986-1998</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- CCD approach has a potential identification problem → identification of fiscal shocks by sign restriction on interest rates.
Regime-switching approach: The idea

- To uncover changes in (monetary and) fiscal policy behavior with the help of simple policy rules.
- Method: Bayesian analysis of a Markov-switching model to avoid any statements about characteristics of the data w.r.t. stationarity.
Policy rule specifications

▶ Fiscal policy:

\[\tau_t = \gamma_G(S^F_t)G_t + \gamma_Y(S^F_t)Y_t + \gamma_B(S^F_t)B_t + \sigma_\Delta \varepsilon^\Delta \]

- \(\tau_t \): government revenues
- \(G_t \): government expenditures
- \(Y_t \): real output
- \(B_t \): nominal government debt
- \(S^F_t \): state of fiscal policy at time \(t \)
- \(\sigma_\tau \): time-invariant standard error

We use the information from the deficit-debt approach for the specification of the parameters’ prior distributions, i.e. we specify the prior distribution for the parameters to be normally in general, but with changing mean for \(\gamma_B \).

\[E[\gamma_B] = \begin{cases} 0, & \text{if deficit-debt approach indicates NR policy} \\ 1, & \text{otherwise} \end{cases} \]
The data

- Source: International Monetary Fund

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_t</td>
<td>Total government debt, annual percentage changes</td>
</tr>
<tr>
<td>τ_t</td>
<td>Total government revenues, annual percentage changes</td>
</tr>
<tr>
<td>G_t</td>
<td>Total government expenditures, annual percentage changes</td>
</tr>
<tr>
<td>Y_t</td>
<td>Real GDP, annual percentage changes, seasonally adjusted</td>
</tr>
</tbody>
</table>
Results for fiscal policy: Germany before 1990

Temporal Distribution of Regime 1 (Passive Fiscal Policy)

Temporal Distribution of Regime 2 (Weakly Passive Fiscal Policy)
Results for fiscal policy: Germany after 1990

Temporal Distribution of Regime 1 (Active Fiscal Policy)

Temporal Distribution of Regime 2 (Weakly Passive Fiscal Policy)
Results for fiscal policy: Spain

Temporal Distribution of Regime 1 (Active Fiscal Policy)

Temporal Distribution of Regime 2 (Weakly Passive Fiscal Policy)
Conclusions

The FTPL does play a role in explaining the data:

1. In the case of Spain: Strong evidence for non-Ricardian policy behavior.
2. Germany shows weak passive fiscal policy behavior before its reunification, active behavior afterwards.

Explanation of the inflation rate differentials through the FTPL mechanism is not possible:

- Non-Ricardian policy behavior in both countries after 1990.

Generally, deficit-debt approach with sign restrictions is a valuable instrument.

- Should only be used when controlling for interest rates, as seemingly Ricardian pattern may be induced by monetary policy.
Policy Implications

- A limit on borrowing is needed to guarantee the success of a monetary union.
- The SGP is important and rather needs strengthening than weakening.