Pricing Rainfall Derivatives at the CME

Matthias Ritter Martin Odening Brenda López Cabrera

Humboldt-Universität zu Berlin
SFB 649: Ökonomisches Risiko

Energy Finance Workshop, 17 April 2013
Motivation

An Anhang Matthias Ritter

Pricing Rainfall Derivatives at the CME
Motivation

Situation
- Rainfall risk affects many economic sectors.
- Rainfall risk can be insured with rainfall derivatives.
- The CME started trading rainfall derivatives in 2011.
 → Prices of exchange-traded rainfall derivatives are available for the first time.

CME monthly rainfall futures
- Index: Monthly sum of rainfall (inches)
- Tick size: $500 per index point
- Contract months: Mar, Apr, May, Jun, Jul, Aug, Sep, Oct
- Reference stations: Chicago, Dallas, Des Moines, Detroit, Jacksonville, Los Angeles, New York City, Portland, Raleigh
Motivation

Pricing rainfall derivatives

- Benth et al. (2007), Härdle/López Cabrera (2011): Pricing models for temperature futures including the Market Price of Risk (MPR)
 → But: Rainfall different from temperature
- Cao et al. (2004): Fair premium for rainfall futures, no MPR
- Leobacher/Ngare (2011): Indifference prices
Motivation

Pricing rainfall derivatives

- Benth et al. (2007), Härdle/López Cabrera (2011): Pricing models for temperature futures including the Market Price of Risk (MPR)
 - But: Rainfall different from temperature
- Cao et al. (2004): Fair premium for rainfall futures, no MPR
- Leobacher/Ngare (2011): Indifference prices

Goal

- Pricing model for CME rainfall futures including the MPR
Methods

Daily rainfall records → **Daily rainfall model** $R_t = r_t \cdot X_t$

Simulated daily rainfall

Aggregated rainfall index

Distribution of simulated index

Market price of risk $\neq 0$ → **Esscher transformation**

Price under P

Price under Q

Figure: Model for pricing rainfall derivatives
The daily rainfall amount R_t at time t is described as the product of a rainfall amount process r_t and a rainfall occurrence process X_t.

$$R_t = r_t \cdot X_t, \quad X_t = \begin{cases} 0 & \text{if day } t \text{ is dry} \\ 1 & \text{if day } t \text{ is wet} \end{cases}$$
Daily Rainfall Model

X_t is modelled as a first-order, two-state Markov process.

Transition probabilities:

$p_{t}^{01} = \Pr\{X_t = 1 | X_{t-1} = 0\}$
$p_{t}^{11} = \Pr\{X_t = 1 | X_{t-1} = 1\}$

Figure: Empirical and estimated transition probabilities for New York City

Figure: Empirical and estimated transition probabilities for Detroit
The process r_t follows a mixed exponential distribution.

$$f[r_t] = \frac{\alpha_t}{\beta_t} \exp \left[\frac{-r_t}{\beta_t} \right] + \frac{1-\alpha_t}{\gamma_t} \exp \left[\frac{-r_t}{\gamma_t} \right]$$

with $\beta_t \geq \gamma_t > 0$ and $0 < \alpha_t < 1$.

Figure: Parameters of the mixed exponential distribution for New York City

Figure: Parameters of the mixed exponential distribution for Detroit
Rainfall simulation

Occurrence process

Recursive simulation with starting value X_0 via uniform random variable $u_{1,t} \sim \mathcal{U}(0,1)$:

$$X_t^{\text{sim}} = \begin{cases} 1 & \text{if } u_{1,t} \leq p_t^{X_1}, \\ 0 & \text{otherwise}. \end{cases}$$

Amount process

Simulation via uniform random variables $u_{2,t}$ and $u_{3,t} \sim \mathcal{U}(0,1)$, independent from $u_{1,t}$:

$$r_t^{\text{sim}} = r_{\text{min}} - \delta_t \ln [u_{2,t}],$$

$$\delta_t = \begin{cases} \beta_t & \text{if } u_{3,t} \leq \alpha_t, \\ \gamma_t & \text{if } u_{3,t} > \alpha_t. \end{cases}$$
The Esscher transform allows to get an equivalent martingale measure for Lévy processes.

It corresponds to a Girsanov transform for the Brownian motion.

The density under the equivalent martingale measure is defined by

\[f_t(x; \theta) = \frac{e^{\theta x} f_t(x)}{\int_{-\infty}^{\infty} e^{\theta y} f_t(y) dy} \]

Certain distributions retain their original form under the Esscher transform, e.g., the normal-inverse Gaussian distribution.
Normal-inverse Gaussian distribution NIG($\alpha, \beta, \mu, \delta$)

- Flexible distribution with 4 parameters
- Density
 $$f_X(x) = \frac{\alpha \delta \exp(\delta \sqrt{\alpha^2 - \beta^2} + \beta (x - \mu))}{\pi \sqrt{\delta^2 + (x - \mu)^2}} \cdot K_1 \left(\alpha \sqrt{\delta^2 + (x - \mu)^2} \right)$$
 - μ location
 - α tail heaviness
 - β asymmetry parameter
 - δ scaling parameter
 - K_1 modified Bessel function of second kind
- After an Esscher transform with parameter θ, an NIG($\alpha, \beta, \mu, \delta$) distributed random number is NIG($\alpha, \beta + \theta, \mu, \delta$) distributed.
Data

Rainfall data
- Daily rainfall amount 1980–2011
- Detroit, Jacksonville, New York City
- National Climatic Data Center (NCDC)

Market data
- Daily CME prices of futures on the monthly sum of rainfall (in inches)
- All contracts 2011 (March–October)
- Detroit, Jacksonville, New York City
- From Bloomberg via the RDC of SFB649
Fig.: Histogram of the simulated rainfall index, 03.01.2011
Fig.: Histogram of the simulated rainfall index, as well as the fitted NIG distribution, 03.01.2011
Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011
Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011
Prices

New York City (03.01.2011)

<table>
<thead>
<tr>
<th>Methode</th>
<th>MPR θ</th>
<th>Mar11</th>
<th>Apr11</th>
<th>May11</th>
<th>Jun11</th>
<th>Jul11</th>
<th>Aug11</th>
<th>Sep11</th>
<th>Oct11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME</td>
<td>–</td>
<td>4.20</td>
<td>4.40</td>
<td>3.20</td>
<td>5.00</td>
<td>4.50</td>
<td>4.30</td>
<td>4.20</td>
<td>4.60</td>
</tr>
<tr>
<td>DRM</td>
<td>-2.00</td>
<td>0.92</td>
<td>0.76</td>
<td>0.83</td>
<td>0.69</td>
<td>0.42</td>
<td>0.34</td>
<td>0.42</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>-1.00</td>
<td>1.82</td>
<td>1.80</td>
<td>1.97</td>
<td>1.87</td>
<td>1.74</td>
<td>1.55</td>
<td>1.40</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>-0.50</td>
<td>2.54</td>
<td>2.62</td>
<td>2.90</td>
<td>2.87</td>
<td>2.86</td>
<td>2.64</td>
<td>2.30</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td>-0.30</td>
<td>2.97</td>
<td>3.07</td>
<td>3.46</td>
<td>3.50</td>
<td>3.50</td>
<td>3.21</td>
<td>2.84</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>-0.15</td>
<td>3.34</td>
<td>3.47</td>
<td>3.94</td>
<td>3.98</td>
<td>4.10</td>
<td>3.85</td>
<td>3.35</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>3.75</td>
<td>3.96</td>
<td>4.54</td>
<td>4.69</td>
<td>4.85</td>
<td>4.53</td>
<td>3.99</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>4.28</td>
<td>4.50</td>
<td>5.31</td>
<td>5.55</td>
<td>5.81</td>
<td>5.43</td>
<td>4.78</td>
<td>4.83</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>4.87</td>
<td>5.23</td>
<td>6.31</td>
<td>6.78</td>
<td>7.13</td>
<td>6.77</td>
<td>6.11</td>
<td>5.89</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>6.09</td>
<td>6.64</td>
<td>8.30</td>
<td>9.55</td>
<td>10.21</td>
<td>9.77</td>
<td>9.24</td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>8.71</td>
<td>9.77</td>
<td>14.55</td>
<td>21.64</td>
<td>23.20</td>
<td>24.29</td>
<td>70.04</td>
<td>35.24</td>
</tr>
</tbody>
</table>

Fig.: Theoretical Prices for New York City, calculated on 03.01.2011, as well as the CME market prices the same day.
Fig.: Histogram of the simulated rainfall index, as well as the fitted and the transformed NIG distributions, 03.01.2011
Prices

<table>
<thead>
<tr>
<th>MPR $\hat{\theta}$</th>
<th>Mar11</th>
<th>Apr11</th>
<th>May11</th>
<th>Jun11</th>
<th>Jul11</th>
<th>Aug11</th>
<th>Sep11</th>
<th>Oct11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit</td>
<td>-0.232</td>
<td>-0.216</td>
<td>0.198</td>
<td>0.014</td>
<td>-0.024</td>
<td>-0.235</td>
<td>-0.038</td>
<td>-0.282</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>-0.052</td>
<td>-0.165</td>
<td>-0.119</td>
<td>0.203</td>
<td>-0.054</td>
<td>-0.124</td>
<td>0.091</td>
<td>-0.334</td>
</tr>
<tr>
<td>New York City</td>
<td>0.138</td>
<td>0.117</td>
<td>-0.394</td>
<td>0.063</td>
<td>-0.063</td>
<td>-0.038</td>
<td>0.037</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Tab.: Estimated MPR for different cities and contracts, 03.01.2011
Problem

Fig.: CME prices 2011 for rainfall futures, New York City
Conclusion

Summary
- Flexible and practicable model for pricing rainfall futures
- Approach not limited to NIG distribution
- Fitting to actual market prices via the market price of risk

Discussion
- CME prices not (yet) real market prices
- Weather forecasts
References

Precipitation modeling and contract valuation: a frontier in weather derivatives.

Pricing Chinese rain: A multisite multi-period equilibrium pricing model for rainfall derivatives.
SFB 649 Discussion Paper 2011-055.

A multi-period equilibrium pricing model of weather derivatives.

On modelling and pricing rainfall derivatives with seasonality.

Pricing rainfall derivatives at the CME.
SFB 649 Discussion Paper 2013-005.

Analysis of rainfall derivatives using daily precipitation models: Opportunities and pitfalls.