-
Bates, D. (1996).
-
Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,
Review of Financial Studies 9: 69-107.
- Carr, P.
and Madan, D. (1999).
-
Option valuation using the fast Fourier transform, Journal of Computational Finance 2: 61-73.
- Cízková, L. (2003).
-
Numerical Optimization Methods in Econometrics, in J.M. Rodriguez Poo (ed.) Computer-Aided Introduction to Econometrics, Springer-Verlag, Berlin.
- Cooley,
J. and Tukey, J. (1965).
-
An algorithm for the machine
calculation of complex Fourier series, Math. Comput. 19: 297-301.
- Cont, R. (
2001).
-
Empirical properties of assets returns: Stylized facts and statistical issues,
Quant. Finance 1: 1-14.
- Cont, R. and Tankov, P. (2004).
-
Financial Modelling With Jump Processes, Chapman & Hall/CRC.
- Fengler, M.,
Härdle, W. and Schmidt, P. (
2002).
-
The Analysis of Implied Volatilities, in W. Härdle, T. Kleinow, G. Stahl (eds.) Applied Quantitative Finance, Springer-Verlag, Berlin.
-
Heston, S. (1993).
-
A closed-form solution for options with stochastic volatility with applications to bond and currency options,
Review of Financial Studies 6: 327-343.
-
Hull, J. and White, A. (1987).
-
The pricing of Options on Assets with Stochastic
Volatilities, Journal of Finance 42: 281-300.
- Lee, R. (
2004).
-
Option pricing by transform methods: extensions, unification and error control,
Journal of Computational Finance 7.
-
Merton, R. (1976).
-
Option pricing when underlying stock returns are discontinuous,
J. Financial Economics 3: 125-144.
- Rudin, W. (
1991).
-
Functional Analysis, McGrawHill.
- Schoutens, W.,
Simons, E., and Tistaert, J. (
2003).
-
A Perfect Calibration! Now What? UCS Technical Report, Catholic University Leuven.
-
Stein, E. and Stein, J. (1991).
-
Stock price distribution with stochastic volatility: An analytic approach, Review of Financial Studies 4: 727-752.