-
Bouchaud, J.-P. and Potters, M. (2000).
-
Theory of Financial Risk, Cambridge University Press, Cambridge.
-
Carr, P., Geman, H., Madan, D. B., and Yor, M.
(2002).
-
The fine structure of asset returns: an empirical investigation, Journal of Business 75: 305-332.
-
Chambers, J. M., Mallows, C. L., and Stuck, B. W.
(1976).
-
A method for simulating stable random variables,
Journal of the American Statistical Association 71: 340-344.
-
D'Agostino, R. B. and Stephens, M. A. (1986).
-
Goodness-of-Fit Techniques, Marcel Dekker, New York.
-
Embrechts, P., Kluppelberg, C., and Mikosch, T. (1997).
-
Modelling Extremal Events for Insurance and Finance, Springer.
-
Fama, E. F. (1965).
-
The behavior of stock market prices, Journal of Business 38: 34-105.
-
Fama, E. F. and Roll, R. (1971).
-
Parameter estimates for symmetric stable distributions,
Journal of the American Statistical Association 66: 331-338.
-
Gopikrishnan, P., Plerou, V., Amaral, L. A. N., Meyer, M. and Stanley, H. E.
(1999).
-
Scaling of the distribution of fluctuations of financial market indices,
Physical Review E 60(5): 5305-5316.
-
Guillaume, D. M., Dacorogna, M. M., Dave, R. R., Müller, U. A., Olsen, R. B., and Pictet, O. V.
(1997).
-
From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets,
Finance & Stochastics 1: 95-129.
-
Härdle, W., Klinke, S., and Müller, M. (2000).
-
XploRe Learning Guide, Springer.
-
Hill, B. M. (1975).
-
A simple general approach to inference about the tail of a distribution,
Annals of Statistics 3: 1163-1174.
-
Janicki, A. and Weron, A. (1994).
-
Simulation and Chaotic Behavior of
-Stable Stochastic Processes, Marcel Dekker.
-
Kanter, M. (1975).
-
Stable densities under change of scale and total variation inequalities,
Annals of Probability 3: 697-707.
-
Koutrouvelis, I. A. (1980).
-
Regression-type estimation of the parameters of stable laws,
Journal of the American Statistical Association 75: 918-928.
-
Kogon, S. M. and Williams, D. B. (1998).
-
Characteristic function based estimation of stable parameters, in R. Adler, R. Feldman, M. Taqqu (eds.), A Practical Guide to Heavy Tails, Birkhauser, pp. 311-335.
-
Levy, P. (1925).
-
Calcul des Probabilites, Gauthier Villars.
-
Mandelbrot, B. B. (1963).
-
The variation of certain speculative prices,
Journal of Business 36: 394-419.
-
Mantegna, R. N. and Stanley, H. E.
(1995).
-
Scaling behavior in the dynamics of an economic index,
Nature 376: 46-49.
-
McCulloch, J. H. (1986).
-
Simple consistent estimators of stable distribution parameters,
Communications in Statistics - Simulations 15: 1109-1136.
-
McCulloch, J. H. (1996).
-
Financial applications of stable distributions, in G. S. Maddala, C. R. Rao (eds.), Handbook of Statistics, Vol. 14, Elsevier, pp. 393-425.
-
McCulloch, J. H. (1997).
-
Measuring tail thickness to estimate the stable index
: A critique,
Journal of Business & Economic Statistics 15: 74-81.
-
Mittnik, S., Doganoglu, T., and Chenyao, D.
(1999).
-
Computing the probability density function of the stable Paretian distribution,
Mathematical and Computer Modelling 29: 235-240.
-
Mittnik, S., Rachev, S. T., Doganoglu, T. and Chenyao, D.
(1999).
-
Maximum likelihood estimation of stable Paretian models,
Mathematical and Computer Modelling 29: 275-293.
-
Nolan, J. P. (1997).
-
Numerical calculation of stable densities and distribution functions,
Communications in Statistics - Stochastic Models 13: 759-774.
-
Nolan, J. P. (1999).
-
An algorithm for evaluating stable densities in Zolotarev's (M) parametrization,
Mathematical and Computer Modelling 29: 229-233.
-
Nolan, J. P. (2001).
-
Maximum likelihood estimation and diagnostics for stable distributions, in O. E. Barndorff-Nielsen, T. Mikosch, S. Resnick (eds.), Lévy Processes, Brikhäuser, Boston.
-
Press, S. J. (1972).
-
Estimation in univariate and multivariate stable distribution,
Journal of the American Statistical Association 67: 842-846.
-
Rachev, S., ed. (2003).
-
Handbook of Heavy-tailed Distributions in Finance, North Holland.
-
Rachev, S. and Mittnik, S. (2000).
-
Stable Paretian Models in Finance, Wiley.
-
Samorodnitsky, G. and Taqqu, M. S. (1994).
-
Stable Non-Gaussian Random Processes, Chapman & Hall.
-
Stoyanov, S. and Racheva-Iotova, B. (2004).
-
Univariate stable laws in the field of finance - parameter estimation,
Journal of Concrete and Applicable Mathematics 2(4), in print.
-
Weron, R. (1996).
-
On the Chambers-Mallows-Stuck method for simulating skewed stable random variables,
Statistics and Probability Letters 28: 165-171.
See also R. Weron, Correction to: On the Chambers-Mallows-Stuck method for simulating skewed stable random variables, Research Report HSC/96/1, Wroc
aw University of Technology, 1996, http://www.im.pwr.wroc.pl/
hugo/Publications.html.
-
Weron, R. (2001).
-
Levy-stable distributions revisited: Tail index
2 does not exclude the Levy-stable regime, International Journal of Modern Physics C 12: 209-223.
-
Weron, R. (2004).
-
Computationally intensive Value at Risk calculations,
in J. E. Gentle, W. Härdle, Y. Mori (eds.) Handbook of Computational Statistics, Springer, Berlin, 911-950.
-
Zolotarev, V. M. (1986).
-
One-Dimensional Stable Distributions, American Mathematical Society.