Bibliography

Auestad, B. and Tjøstheim, D. (1990).

Identification of nonlinear time series: first order characterisation and order determination. Biometrika, 77: 669-688.

Carroll, R.J., Fan. J., Gijbels, I. and Wand, M.P. (1997).

Generalized partially linear single-index models. J. Am. Statist. Ass., 92: 477-489.

Chen, R. and Tsay, S. (1993).

Functional-coefficient autoregressive models. J. Am. Statist. Ass., 88, 298-308.

Cheng, B. and Tong, H. (1992).

On consistent nonparametric order determination and chaos (with discussion), J. R. Statist. Soc. B. 54: 427-449.

Cook, R.D. (1998).

Principle Hessian directions revisited (with discussions). J. Am. Statist. Ass., 93: 85-100.

Fan, J. and Gibbers, I. (1996).

Local Polynomial Modeling and Its Applications. Chapman $ \&$ Hall, London.

Fan, J. and Yao, Q. (1998).

. Efficient estimation of conditional variance functions in Stochastic regression. $ Biometrika$, 85: 645-660.

Friedman, J.H. and Stuetzle, W. (1981).

Projection pursuit regression, J. Am. Statist. Ass., 76: 817-823.

Fuller, W.A. (1976).

Introduction to Statistical Time Series. New York: John Wiley & Sons.

Hall, P. (1984).

Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Mult. Anal. 14: 1-16.

Hannan, E. J. (1969).

The estimation of mixed moving average autoregressive system. Biometrika 56: 579-593.

Härdle, W., Hall, P. and Ichimura, H. (1993).

Optimal smoothing in single-index models. Ann. Statist., 21, 157-178.

Härdle, W. and Stoker, T. M. (1989).

Investigating smooth multiple regression by method of average derivatives. J. Amer. Stat. Ass. 84: 986-995.

Hastie, T. and Tibshirani, R. (1993).

Varying-coefficient models (with discussion) J. R. Statist. Soc. B. 55: 757-796.

Huber, P.J. (1985).

. Projection pursuit (with discussion). Ann. Statist., 13, 435-525.

Ichimura, H. and Lee, L. (1991).

Semiparametric least squares estimation of multiple index models: Single equation estimation. Nonparametric and Semiparametric Methods in Econometrics and Statistics, edited by Barnett, W., Powell, J. and Tauchen, G.. Cambridge University Press.

Li, K. C. (1991).

Sliced inverse regression for dimension reduction (with discussion). Amer. Statist. Ass. 86: 316-342

Li, K. C. (1992).

On principle Hessian directions for data visualization and dimension reduction: another application of Stein's Lemma. Ann. Statist. 87: 1025-1039.

Li, W. K. (1992).

On the asymptotic standard errors of residual autocorrelations in nonlinear time series modelling. Biometrika 79: 435-437.

Lin, T. C. and Pourahmadi, M. (1998).

Nonparametric and non-linear models and data mining in time series: A case-study on the Canadian lynx data. Appl. Statist. 47: 187-201.

Masry, E.(1996).

. Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis 17: 571-599.

Rao, C. R. (1973).

Linear Statistical Inference and Its Applications. John Wiely & Sons.

Schott, J. R. (1994).

Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Ass. 89: 141-148.

Smith, R. L., Davis, J. M. and Speckman, P. (1999).

Assessing the human health risk of atmospheric particles. Environmental Statistics: Analysing Data For Environmental Policy. Novartis Foundation Symposium 220. John Wiley & Sons.

Sugihara, G. and May, R. M. (1990).

Nonlinear forecasting as a way of distinguishing chaos from measurement errors. Nature, 344: 734-741.

Tong, H. (1990).

Nonlinear Time Series Analysis: a Dynamic Approach. Oxford University Press, London.

Weisberg, S. and Welsh, A. H. (1994).

Estimating the missing link functions, Ann. of Statist. 22, 1674-1700.

Xia, Y. and Li, W. K. (1999).

On single-index coefficient regression models. J. Amer. Statist. Ass. 94: 1275-1285.

Xia, Y., Tong, H., and W. K. Li (1999).

On extended partially linear single-index models. Biometrika, 86, 831-842.

Xia, Y., Tong, H., W. K. Li, and Zhu, L-X. (2002).

An adaptive method of dimension reduction. J. R. Statist. Soc. B. (to appear)

Yao, Q. and Tong, H. (1994).

On subset selection in nonparametric stochastic regression. Statistica Sinica, 4, 51-70.

Yoshihara, K. I. (1976).

Limiting behavior of $ U$-statistics for stationary, absolutely regular process. Z, Wahrsch. verw. Gebiete 35: 237-252.

Zhu, L. X. and Fang K.-T. (1996).

Asymptotics for kernel estimate of sliced inverse regression. Ann. Statist. 24: 1053-1068.