Bibliography

Aït-Sahalia, Y., Wang, Y., and Yared, F. (2001).
Do options markets correctly price the probabilities of movement of the underlying asset? Journal of Econometrics 102, 67-110.

Black, F. and Scholes, M. (1973).

The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81: 637-654.

Cox, J. C., Ross, S. A., and Rubinstein, M. (1979).

Option Pricing: A Simplified Approach. Journal of Financial Economics 7: 229-263.

Derman, E. and Kani, I. (1994).

The Volatility Smile and Its Implied Tree. RISK 7(2): 139-145, 32-39.

Derman, E., Kani, I., and Chriss, N. (1996).

Implied Trinomial Trees of the Volatility Smile. The Journal of Derivatives 3(4): 7-22

Dupire B. (1994).
Pricing with a smile, RISK 7(1): 18-20.

Fengler, M. R., Härdle, W., and Villa, C. (2003).
The dynamics of implied volatilities: a common principle components approach. Review of Derivatives Research 6: 179-202.

Franke, J., Härdle, W., and Hafner, C. M. (2004).
Statistics of Financial Markets, Springer, Heidelberg, Germany.

Härdle, W., Kleinow, T., and Stahl, G. (2002).

Applied Quantitative Finance. Springer-Verlag, Berlin.

Hull, J. (1989).

Options, Futures and Other Derivatives. Prentice-Hall, Englewood Cliffs, New Jersey.

Hull, J. and White, A. (1990).
Valuing derivative securities using the explicit finite difference method.
The Journal of Finance and Quantitative Analysis 25: 87-100.

Jarrow, R. and Rudd A. (1983).
Option Pricing, Dow Jones-Irwin Publishing, Homewood, Illinois.

Komorád, K. ( 2002).

Implied Trinomial Trees and Their Implementation with XploRe. Bachelor Thesis, HU Berlin; http://appel.rz.hu-berlin.de/Zope/ise_stat/wiwi/ise/stat/ forschung/dmbarbeiten/.

Ross, S., Westerfield, R., and Jaffe, J. ( 2002).

Corporate Finance. Mc Graw-Hill.