-
Aït-Sahalia, Y., Wang, Y., and Yared, F. (2001).
-
Do options markets correctly price the probabilities of movement of the underlying asset?
Journal of Econometrics 102, 67-110.
-
Black, F. and Scholes, M. (1973).
-
The Pricing of Options and Corporate Liabilities.
Journal of Political Economy 81: 637-654.
-
Cox, J. C., Ross, S. A., and Rubinstein, M. (1979).
-
Option Pricing: A Simplified Approach.
Journal of Financial Economics 7: 229-263.
-
Derman, E. and Kani, I. (1994).
-
The Volatility Smile and Its Implied Tree.
RISK 7(2): 139-145, 32-39.
-
Derman, E., Kani, I., and Chriss, N. (1996).
-
Implied Trinomial Trees of the Volatility Smile.
The Journal of Derivatives 3(4): 7-22
-
Dupire B. (1994).
-
Pricing with a smile, RISK 7(1): 18-20.
-
Fengler, M. R., Härdle, W., and Villa, C. (2003).
-
The dynamics of implied volatilities: a common principle components approach.
Review of Derivatives Research 6: 179-202.
-
Franke, J., Härdle, W., and Hafner, C. M. (2004).
-
Statistics of Financial Markets, Springer, Heidelberg, Germany.
-
Härdle, W., Kleinow, T., and Stahl, G. (2002).
-
Applied Quantitative Finance. Springer-Verlag, Berlin.
-
Hull, J. (1989).
-
Options, Futures and Other Derivatives.
Prentice-Hall, Englewood Cliffs, New Jersey.
-
Hull, J. and White, A. (1990).
-
Valuing derivative securities using the explicit finite difference
method.
The Journal of Finance and Quantitative Analysis 25: 87-100.
-
Jarrow, R. and Rudd A. (1983).
-
Option Pricing, Dow Jones-Irwin Publishing, Homewood, Illinois.
- Komorád, K. (
2002).
-
Implied Trinomial Trees and Their Implementation with XploRe.
Bachelor Thesis, HU Berlin; http://appel.rz.hu-berlin.de/Zope/ise_stat/wiwi/ise/stat/ forschung/dmbarbeiten/.
-
Ross, S., Westerfield, R., and Jaffe, J. (
2002).
-
Corporate Finance. Mc Graw-Hill.