- Bingham, N. H., Goldie, C. M. and
Teugels, J. L. (1987).
- Regular Variation, Cambridge University Press, Cambridge.
- Bingham,
N. H. and Kiesel, R. (2002).
-
Semi-parametric modelling in Finance: Theoretical
foundation, Quantitative Finance 2: 241-250.
- Bingham, N. H., Kiesel, R. and
Schmidt, R. (2002).
-
Semi-parametric modelling in Finance: Econometric applications,
Quantitative Finance 3 (6): 426-441.
- Cambanis, S., Huang, S. and Simons, G.
(1981).
-
On the
theory of elliptically contoured distributions, Journal of
Multivariate Analysis 11: 368-–385.
-
Draisma, G., Drees, H., Ferreira, A. and de Haan, L. (2004).
-
Bivariate tail estimation: dependence in asymptotic independence, Bernoulli 10 (2): 251-–280.
- Drees,
H. and Kaufmann, E. (1998).
-
Selecting the optimal sample fraction in univariate
extreme value estimation, Stochastic Processes and their
Applications 75: 149-–172.
- Eberlein,
E. and Keller, U. (1995).
-
Hyperbolic distributions in finance, Bernoulli 1: 281-299.
- Embrechts, P., Klüppelberg, C. and
Mikosch, T. (1997).
-
Modelling Extremal Events, Springer Verlag, Berlin.
- Embrechts,
P., Lindskog, F. and McNeil, A. (
2001).
Modelling Dependence with
Copulas and Applications to Risk Management, in S. Rachev (Ed.) Handbook of Heavy Tailed
Distributions in Finance, Elsevier: 329-384.
-
-
Embrechts, P., McNeil, A. and Straumann, D.
(
1999).
-
Correlation and Dependency in Risk Management: Properties and Pitfalls,
in M.A.H. Dempster (Ed.) Risk Management: Value at Risk and Beyond,
Cambridge University Press, Cambridge: 176-223.
-
Fang, K., Kotz, S. and Ng, K. (
1990).
-
Symmetric Multivariate and
Related Distributions, Chapman and Hall, London.
- Frahm, G., Junker, M. and Schmidt, R.
(2002).
-
Estimating
the Tail Dependence Coefficient, CAESAR Center Bonn, Technical Report 38
http://stats.lse.ac.uk/schmidt.
- Härdle, W., Kleinow, T. and Stahl, G.
(2002).
-
Applied
Quantitative Finance - Theory and Computational Tools,
Springer Verlag, Berlin.
-
Hahn, M.G., Mason, D.M. and Weiner D.C. (1991).
-
Sums, trimmed sums and extremes, Birkhäuser, Boston.
-
Hauksson, H., Dacorogna, M., Domenig, T., Mueller, U. and
Samorodnitsky, G. (2001).
-
Multivariate Extremes, Aggregation and Risk
Estimation, Quantitative Finance 1: 79-95.
-
Huang, X., (1992).
-
Statistics of Bivariate Extreme Values.
Thesis Publishers and Tinbergen Institute.
- Joe, H. (
1997).
-
Multivariate Models and
Dependence Concepts, Chapman and Hall, London.
-
Joe, H. and Xu, J. J. (1996).
-
The Estimation Method of Inference Function
for Margins for Multivariate Models, British Columbia, Dept. of Statistics,
Technical Report 166.
-
Junker, M. and May, A. (
2002).
-
Measurement of aggregate risk with copulas,
Research Center CAESAR Bonn, Dept. of Quantitative Finance,
Technical Report 2.
- Kiesel, R. and Kleinow, T.
(2002).
-
Sensitivity analysis of credit portfolio models, in
W. Härdle, T. Kleinow and G. Stahl (Eds.)
Applied Quantitative Finance., Springer Verlag, New York.
- Ledford,
A. and Tawn, J. (1996).
-
Statistics for Near Independence in Multivari- ate Extreme
Values, Biometrika 83: 169-187.
- Nelsen, R. (
1999).
-
An Introduction to Copulas, Springer Verlag, New York.
- Peng, L. (
1998).
-
Second Order Condition and Extreme Value Theory,
Tinbergen Institute Research Series 178,
Thesis Publishers and Tinbergen Institute.
-
Rousseeuw, P.J. and van Zomeren B.C. (
2002).
Unmasking
multivariate outliers and leverage points, Journal of the American
Statistical Association 85: 633-639.
-
- Schmidt, R.
(2002a).
-
Credit
Risk Modelling and Estimation via Elliptical Copulae, in
G. Bohl, G. Nakhaeizadeh, S.T. Rachev, T. Ridder and K.H. Vollmer (Eds.)
Credit Risk: Measurement, Evaluation and Management, Physica Verlag, Heidelberg.
- Schmidt, R. (
2002b).
-
Tail Dependence for
Elliptically Contoured Distributions, Math. Methods of Operations
Research 55 (2): 301-327.
- Schmidt, R. (
2003).
-
Dependencies of Extreme Events in Finance,
Dissertation, University of Ulm, http://stats.lse.ac.uk/schmidt.
-
Schmidt, R. and Stadtmüller, U. (
2002).
Nonparametric Estimation of
Tail Dependence, The London School of Economics, Department of Statistics,
Research report 101, http://stats.lse.ac.uk/schmidt.
-