12.4 Partial Autocorrelation

For a given stochastic process one is often interested in the connection between two random variables of a process at different points in time. One way to measure a linear relationship is with the ACF, i.e., the correlation between these two variables. Another way to measure the connection between $ X_{t}$ and $ X_{t+\tau}$ is to filter out of $ X_{t}$ and $ X_{t+\tau}$ the linear influence of the random variables that lie in between, $ X_{t+1},\ldots,X_{t+\tau-1},$ and then calculate the correlation of the transformed random variables. This is called the partial autocorrelation.

Definition 12.3 (Partial autocorrelation)  
The partial autocorrelation of $ k-$th order is defined as
$\displaystyle \phi_{kk}$ $\displaystyle =$ $\displaystyle \mathop{\text{\rm Corr}}(X_t-{\cal P}(X_t\mid X_{t+1},\ldots,X_{t+k-1}),$  
    $\displaystyle \qquad X_{t+k}-{\cal P}(X_{t+k}\mid X_{t+1},\ldots,X_{t+k-1}))$ (12.17)

where $ {\cal P}(W\mid Z)$ is the best linear projection of $ W$ on $ Z$, i.e., $ {\cal P}(W\mid Z)=\Sigma_{WZ}\Sigma_{ZZ}^{-1}Z$ with $ \Sigma_{ZZ}=\mathop{\text{\rm Var}}(Z)$ as the covariance matrix of the regressors and $ \Sigma_{WZ}=\mathop{\text{\rm Cov}}(W,Z)$ as the matrix of covariances between $ W$ and $ Z$.

The `best linear projection' is understood in the sense of minimizing the mean squared error.

An equivalent definition is the solution to the system of equations

$\displaystyle P_k \phi_k = \rho_{(k)}
$

with

\begin{displaymath}
P_k = \left(
\begin{array}{*{3}{c}cc}
1 & \rho_1 & \cdots & ...
...s \\
\rho_{k-1} & \rho_{k-2} & \cdots & 1
\end{array}\right )
\end{displaymath}

$ \phi_k = (\phi_{k1}, \ldots, \phi_{kk})^\top $ and $ \rho_{(k)} =
(\rho_{1}, \ldots, \rho_{k})^\top $. These are the Yule-Walker equations for an AR($ k$) process. The last coefficient, $ \phi_{kk}$, is the partial autocorrelation of order $ k$, as defined above. Since only this coefficient is of interest in this context, the system of equations can be solved for $ \phi_{kk}$ using the Cramer-Rule. We get

$\displaystyle \phi_{kk} = \frac{\vert P_k^*\vert}{\vert P_k\vert}
$

where $ P_k^*$ is equal to the matrix $ P_k$, in which the $ k-$th column is replaced with $ \rho_{(k)}$. Here $ \vert.\vert$ indicates the determinant. Since this can be applied for various orders $ k$, in the end we obtain a partial autocorrelation function (PACF). The PACF can be graphically displayed for a given stochastic process, similar to the ACF as a function of order $ k$. This is called the partial autocorrelogram.

From the definition of PACF it immediately follows that there is no difference between PACF and ACF of order 1:

$\displaystyle \phi_{11} = \rho_1.
$

For order 2 we have

$\displaystyle \phi_{22} = \frac{ \left\vert \begin{array}{cc} 1 & \rho_1 \\ \rh...
...\rho_1 & 1 \\ \end{array} \right \vert } = \frac{\rho_2 - \rho_1^2}{1-\rho_1^2}$ (12.18)

Example 12.3 (AR(1))  
The AR(1) process $ X_t = \alpha X_{t-1} + \varepsilon_t$ has the ACF $ \rho_{\tau}=\alpha^{\tau}$. For the PACF we have $ \phi_{11}=\rho_1=\alpha$ and

$\displaystyle \phi_{22}=\frac{\rho_2-\rho_1^2}{1-\rho_1^2}=\frac{\alpha^2-\alpha^2}{1-\alpha^2}=0,
$

and $ \phi_{kk}=0$ for all $ k>1$. This is plausible since the last coefficient of an AR($ k$) model for this process is zero for all $ k>1$. For $ k=2$ we illustrate the equivalence with Definition 11.3: From $ X_t = \alpha X_{t-1} + \varepsilon_t$ we directly obtain $ {\cal P}(X_{t+2}\vert X_{t+1})=\alpha X_{t+1}$ with

$\displaystyle \alpha=\frac{\mathop{\text{\rm Cov}}(X_{t+2},X_{t+1})}{\mathop{\text{\rm Var}}(X_{t+1})}.$

From the 'backward regression' $ X_t=\alpha^{\prime}X_{t+1}+\eta_t$ with white noise $ \eta_t$ it further follows that $ {\cal
P}(X_{t}\vert X_{t+1})=\alpha^{\prime} X_{t+1}$ with

$\displaystyle \alpha^{\prime}=\frac{\mathop{\text{\rm Cov}}(X_{t},X_{t+1})}{\mathop{\text{\rm Var}}(X_{t+1})}.$

For $ \vert\alpha\vert < 1$ the process is covariance-stationary and it holds that
$ \mathop{\text{\rm Cov}}(X_{t+2},X_{t+1})=\mathop{\text{\rm Cov}}(X_{t},X_{t+1})=\gamma_1$ and $ \alpha=\alpha^{\prime}=\rho_1$. We obtain
    $\displaystyle \mathop{\text{\rm Cov}}\{X_t-{\cal P}(X_t\vert X_{t+1}),X_{t+2}-{\cal P}(X_{t+2}\vert X_{t+1})\}$  
  $\displaystyle =$ $\displaystyle \mathop{\text{\rm Cov}}(X_t-\rho_1 X_{t+1},X_{t+2}-\rho_1 X_{t+1})$  
  $\displaystyle =$ $\displaystyle \mathop{\text{\rm\sf E}}[(X_t-\rho_1 X_{t+1})(X_{t+2}-\rho_1 X_{t+1})]$  
  $\displaystyle =$ $\displaystyle \gamma_2 - 2\rho_1 \gamma_1 + \rho_1^2 \gamma_0$  

and
$\displaystyle \mathop{\text{\rm Var}}\{X_{t+2}-{\cal P}(X_{t+2}\vert X_{t+1})\}$ $\displaystyle =$ $\displaystyle \mathop{\text{\rm\sf E}}[(X_{t+2}-\rho_1X_{t+1})^2]$  
  $\displaystyle =$ $\displaystyle \gamma_0(1+\rho_1^2)-2\rho_1\gamma_1$  
  $\displaystyle =$ $\displaystyle \mathop{\text{\rm\sf E}}[(X_{t}-\rho_1 X_{t+1})^2]$  
  $\displaystyle =$ $\displaystyle \mathop{\text{\rm Var}}[X_{t}-{\cal P}(X_{t}\vert X_{t+1})].$  

With this we get for the partial autocorrelation of 2nd order
$\displaystyle \phi_{22}$ $\displaystyle =$ $\displaystyle \mathop{\text{\rm Corr}}\{X_t-{\cal P}(X_t\vert X_{t+1}),X_{t+2}-{\cal P}(X_{t+2}\vert X_{t+1})\}$  
  $\displaystyle =$ $\displaystyle \frac{\mathop{\text{\rm Cov}}\{X_t-{\cal P}(X_t\vert X_{t+1}),X_{...
...X_{t+1})\}}
\sqrt{\mathop{\text{\rm Var}}(X_{t}-{\cal P}(X_{t}\vert X_{t+1}))}}$  
  $\displaystyle =$ $\displaystyle \frac{\gamma_2-2\rho_1\gamma_1 + \rho_1^2\gamma_0}{\gamma_0(1+\rho_1^2)-2\gamma_1\rho_1}$  
  $\displaystyle =$ $\displaystyle \frac{\rho_2 - \rho_1^2}{1-\rho_1^2}$  

which corresponds to the results in (11.18). For the AR(1) process it holds that $ \rho_2=\rho_1^2$ and thus $ \phi_{22}=0$.

It holds in general for AR($ p$) processes that $ \phi_{kk}=0$ for all $ k>p$. In Figure 11.5 the PACF of an AR(2) process is displayed using the parameters as in Figure 11.4.

Fig.: PACF of an AR(2) process with $ (\alpha_1=0.5,\alpha_2=0.4)$ (top left), $ (\alpha_1=0.9,\alpha_2=-0.4)$ (top right), $ (\alpha_1=-0.4,\alpha_2=0.5)$ (bottom left) and $ (\alpha_1=-0.5,\alpha_2=-0.9)$ (bottom right). 17650 SFEpacfar2.xpl
\includegraphics[width=0.5\defpicwidth]{pacfar21.ps} \includegraphics[width=0.5\defpicwidth]{pacfar22.ps}
\includegraphics[width=0.5\defpicwidth]{pacfar23.ps} \includegraphics[width=0.5\defpicwidth]{pacfar24.ps}

Example 12.4 (MA(1))  
For a MA(1) process $ X_t = \beta \varepsilon_{t-1}+\varepsilon_t$ with $ \mathop{\text{\rm Var}}(\varepsilon_t)=\sigma^2$ it holds that $ \gamma_0=\sigma^2(1+\beta^2)$, $ \rho_1 =
\beta/(1+\beta^2)$ and $ \rho_k=0$ for all $ k>1$. For the partial autocorrelations we obtain $ \phi_{11}=\rho_1$ and

$\displaystyle \phi_{22} = \frac{ \left\vert \begin{array}{cc} 1 & \rho_1 \\ \rh...
...o_1 \\ \rho_1 & 1 \\ \end{array} \right \vert } = - \frac{\rho_1^2}{1-\rho_1^2}$ (12.19)

For a MA(1) process it strictly holds that $ \phi_{22}<0$. If one were to continue the calculation with $ k>2$, one could determine that the partial autocorrelations will not reach zero.

Figure 11.6 shows the PACF of a MA(2) process. In general for a MA($ q$) process it holds that the PACF does not decay, in contrast to the autoregressive process. Compare the PACF to the ACF in Figure 11.2. This is thus a possible criterium for the specification of a linear model.

Fig.: PACF of a MA(2) process with $ (\beta_1=0.5,\beta_2=0.4)$ (top left), $ (\beta_1=0.5,\beta_2=-0.4)$ (top right), $ (\beta_1=-0.5,\beta_2=0.4)$ (bottom left) and $ (\beta_1=-0.5,\beta_2=-0.4)$ (bottom right). 17659 SFEpacfma2.xpl
\includegraphics[width=0.5\defpicwidth]{pacfma21.ps} \includegraphics[width=0.5\defpicwidth]{pacfma22.ps}
\includegraphics[width=0.5\defpicwidth]{pacfma23.ps} \includegraphics[width=0.5\defpicwidth]{pacfma24.ps}