Bassett, G. W. and Koenker, R. (1982).

An empirical quantile function for linear models with iid errors, Journal of the American Statistical Association 77: 407-415.

Bofinger, E. (1975).

Estimation of a density function using order statistics, Australian Journal of Statistics 17: 1-7.

Doksum, K. (1974).

Empirical probability plots and statistical inference for nonlinear models in the two sample case, Annals of Statistics 2: 267-277.

Falk, M. (1986).

On the estimation of the quantile density function, Statistics & Probability Letters 4: 69-73.

Fitzenberger, B. (1996).

A Guide to Censored Quantile Regression, forthcoming in Handbook of Statistics 15, North-Holland, New York.

Gutenbrunner, C. and Jurecková, J. (1992).

Regression quantile and regression rank score process in the linear model and derived statistics, Annals of Statistics 20: 305-330.

Gutenbrunner, C., Jurecková, J., Koenker, R., and Portnoy, S. (1993).

Tests of linear hypotheses based on regression rank scores, Journal of Nonparametric Statistics 2: 307-333.

Hájek, J. and Šidák, Z. (1967).

Theory of rank tests, Academia, Prague.

Hall, P. and Sheather, S. (1988).

On the distribution of a studentized quantile, Journal of the Royal Statistical Society, Series B 50: 381-391.

Hušková, M. (1994).

Some sequential procedures based on regression rank scores, Journal of Nonparametric Statistics 3: 285-298.

Koenker, R. and Bassett, G. W. (1978).

Regression quantiles, Econometrica 46: 33-50.

Koenker, R. and Bassett, G. W. (1982).

Robust tests for heteroscedasticity based on regression quantiles, Econometrica 50: 43-61.

Koenker, R. and Bassett, G. W. (1982).

Tests of linear hypotheses and $ l_1$ estimation, Econometrica 50: 1577-1584.

Koenker, R. and D'Orey, V. (1987).

Computing Regression Quantiles, Applied Statistics 36: 383-393.

Koenker, R. and D'Orey, V. (1993).

A Remark on Computing Regression Quantiles, Applied Statistics 43: 410-414.

Koenker, R. and Zhao, Q. (1994).

$ L$-estimation for the linear heteroscedastic models, Journal of Nonparametric Statistics 3: 223-235.

Koenker, R. (1994).

Confidence Intervals for Regression Quantiles, in Mandl, P. and Hušková, M. (eds.) Asymptotic Statistics, Springer-Verlag, New York.

Koenker, R. and Portnoy, S. (1997).

The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-error vs. Absolute-error Estimators, with discussion, Statistical Science 12: 279-300.

Koenker, R. and Portnoy, S. (2000).

Quantile regression, manuscript.

Portnoy, S. (1989).

Asymptotic behavior of the number of regression quantile breakpoints, Journal od Scientific and Statistical Computing 12: 867-883.

Powell, J. L. (1986).

Censored regression quantiles, Journal of Econometrics 32: 143-155.

Powell, J. L. (1989).

Estimation of monotonic regression models under quantile restrictions, in Barnett, W.A., Powell, J. L., and Tauchen, G. (eds) Nonparametric and Semiparametric Methods in Econometrics, Cambridge University Press, Cambridge.

Sheather, S. J. and Maritz, J. S. (1983).

An estimate of the asymptotic standard error of the sample median, Australian Journal of Statistics 25: 109-122.

Siddiqui, M. (1960).

Distribution of Quantiles from a Bivariate Population, Journal of Research of the National Bureau of Standards 64B: 145-150.

Welsh, A. H. (1988).

Asymptotically efficient estimation of the sparsity function at a point, Statistics and Probability Letters 6: 427-432.