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Humboldt University Berlin

Mirko Wiederholt

Humboldt University Berlin

First draft: June 2004. This draft: July 2005.

Abstract

In the data, individual prices change frequently and by large amounts. In standard

sticky price models, frequent and large price changes imply a fast response of the aggre-

gate price level to nominal shocks. This paper presents a model in which price setting

firms optimally decide what to observe, subject to a constraint on information flow.

When idiosyncratic conditions are more variable or more important than aggregate

conditions, firms pay more attention to idiosyncratic conditions than to aggregate con-

ditions. When we calibrate the model to match the large average absolute size of price

changes observed in the data, prices react fast and by large amounts to idiosyncratic

shocks, but prices react only slowly and by small amounts to nominal shocks. Nominal

shocks have persistent real effects. We use the model to investigate how the optimal

allocation of attention and the dynamics of prices depend on the firms’ environment.

JEL: E3, E5, D8.
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shocks.
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“An optimizing trader will process those prices of most importance to his de-

cision problem most frequently and carefully, those of less importance less so,

and most prices not at all. Of the many sources of risk of importance to him,

the business cycle and aggregate behavior generally is, for most agents, of no

special importance, and there is no reason for traders to specialize their own

information systems for diagnosing general movements correctly.” (Lucas, 1977,

p. 21)

1 Introduction

In the data, individual prices change frequently and by large amounts. Bils and Klenow

(2004) and Klenow and Kryvtsov (2004) study micro data on consumer prices that the U.S.

Bureau of Labor Statistics collects to compute the consumer price index. Bils and Klenow

find that half of all non-housing consumer prices last less than 4.3 months. Klenow and

Kryvtsov find that, conditional on the occurrence of a price change, the average absolute

size of the price change is over 13 percent.1

At the same time, the aggregate price level responds slowly to monetary policy shocks.

A variety of different schemes for identifying monetary policy shocks yield this result (e.g.

Christiano, Eichenbaum and Evans (1999), Leeper, Sims and Zha (1996) and Uhlig (2005)).

Uhlig (2005) finds that only about 25 percent of the long-run response of the U.S. GDP

price deflator to a monetary policy shock occurs within the first year after the shock.

This combination of empirical observations is difficult to explain with standard models

of sticky prices. The popular time-dependent model of price setting due to Calvo (1983)

can explain a slow response of the aggregate price level to a monetary shock if: (a) firms

in the model adjust prices infrequently;2 or (b) firms in the model adjust prices by small

1The finding that individual prices change frequently and by large amounts is robust to whether temporary

price changes reflecting sales are included or not. When Bils and Klenow (2004) net out the impact of sales,

the median price duration rises from 4.3 to 5.5 months. When Klenow and Kryvtsov (2004) net out the

impact of sales, the average absolute size of price changes falls from 13.3 to 8.5 percent.
2Galí and Gertler (1999) estimate the Calvo model using quarterly aggregate U.S. data. The estimated

model implies that a typical firm waits about 5-6 quarters before changing its price.
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amounts.3 However, neither (a) nor (b) seems to be true in the data.

Golosov and Lucas (2005) conduct numerical experiments with a state-dependent model

of price setting. They use the micro data on consumer prices compiled and described

by Klenow and Kryvtsov (2004) to calibrate a menu cost model with monetary shocks

and idiosyncratic productivity shocks. In the calibrated model, the aggregate price level

responds quickly to a monetary shock. The reason is that a firm setting a new price in

a menu cost model takes into account current values of all shocks. Hence, frequent price

adjustment implies a fast response of prices to all shocks, including monetary shocks.

This paper presents a model that can explain why individual prices change frequently

and by large amounts and, at the same time, the aggregate price level responds slowly to

monetary policy shocks. We study price setting by firms under “rational inattention” in

the sense of Sims (2003). Firms can change prices every period at no cost. The profit-

maximizing price depends on the aggregate price level, real aggregate demand and an idio-

syncratic state variable (reflecting consumers’ preferences or the firm’s technology). Firms

decide what to observe. Firms choose the number of signals that they receive every period

as well as the stochastic properties of these signals. Firms face the constraint that the in-

formation flow between the sequence of signals and the sequence of states of the economy is

bounded. Other properties of the signals are up to the firms. In particular, since the state

of the economy is multidimensional, firms decide which variables to observe with higher

precision. We close the model by specifying exogenous stochastic processes for nominal

aggregate demand and the idiosyncratic state variables.

The model makes the following predictions. Firms adjust prices every period and yet

impulse responses of prices to shocks are sticky — dampened and delayed relative to the

impulse responses under perfect information. The extent of dampening and delay in a

particular impulse response depends on the amount of attention allocated to that type of

shock. When idiosyncratic conditions are more variable or more important for the price

setting decision than aggregate conditions, firms pay more attention to idiosyncratic condi-

tions than to aggregate conditions. In this case, price reactions to idiosyncratic shocks are

3See Woodford (2003, Chapter 3) for reasons why firms can find it optimal to adjust prices by small

amounts in response to shocks.
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strong and quick whereas price reactions to aggregate shocks are dampened and delayed.

This can explain why individual prices change frequently and by large amounts and, at the

same time, the aggregate price level responds slowly to nominal shocks. In addition, there

is a feedback effect. When firms pay little attention to aggregate conditions, the aggregate

price level moves little and therefore firms find it optimal to pay even less attention to

aggregate conditions. This feedback effect makes the response of the aggregate price level

to a nominal shock even more sticky.

We calibrate the model to match the average absolute size of price changes reported

in Klenow and Kryvtsov (2004). We find that prices react fast and by large amounts to

idiosyncratic shocks, but prices react only slowly and by small amounts to nominal shocks.

Nominal shocks have persistent real effects. The reason is the following. To match the

large average absolute size of price changes observed in the data, idiosyncratic shocks in the

model must have a large variance or must be very important for the price setting decision.

This implies that firms allocate most of their attention to idiosyncratic conditions.

We use the model to investigate how the optimal allocation of attention and the dy-

namics of prices depend on the firms’ environment. As the variance of nominal aggregate

demand increases, the firms’ tracking problem becomes more difficult. Firms react by real-

locating attention to aggregate conditions away from idiosyncratic conditions. In the new

equilibrium, firms track both aggregate and idiosyncratic conditions less well. Their profits

are lower. These results suggest that costs of aggregate instability in the real world may be

due to the fact that aggregate instability makes the firms’ tracking problem more difficult.

As the variance of the idiosyncratic state variables increases, firms react by reallocating at-

tention to idiosyncratic conditions away from aggregate conditions. Thus the model predicts

that firms operating in more variable idiosyncratic environments track aggregate conditions

less well.

Sims (1998) argues for modeling agents’ inertial behavior as arising from agents’ inability

to pay attention to all available information. Sims (2003) derives some implications of

limited information-processing capacity by adding information flow constraints to linear-

quadratic optimization problems. The firms’ decision problem of what to observe in our

model is, after a log-quadratic approximation to the profit function, similar to the quadratic
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control problem with an information flow constraint studied in Sims (2003, Section 4). One

important difference is that firms in our model track an endogenous variable — the aggregate

price level. This introduces the feedback effect described above.4

Our work is also related to the literature on information imperfections and the real ef-

fects of monetary policy. In Lucas (1973) firms observe prices in their markets but not the

aggregate price level. Firms misinterpret unexpected inflation for a relative price increase

and react by raising output, until the monetary policy shock becomes public information.

Since information on monetary policy is published with little delay, it has been argued that

the Lucas model cannot explain persistent real effects of monetary policy shocks. However,

Sims (1998) points out that, if agents have limited information-processing capacity, then

there is a difference between publicly available information and the information of which

decisionmakers are actually aware. Woodford (2002) uses this idea to motivate a model

in which firms observe nominal aggregate demand with exogenous idiosyncratic noise. If

strategic complementarity in price setting is strong, the real effects of a nominal shock can

be large and persistent. Woodford assumes that firms pay little attention to aggregate

conditions. In contrast, we identify the conditions under which firms find it optimal to pay

little attention to aggregate conditions and we study how the optimal allocation of attention

and the dynamics of prices vary with changes in the firms’ environment.5 Mankiw and Reis

(2002) develop a different model in which information disseminates slowly. Mankiw and

Reis assume that every period an exogenous fraction of firms obtains perfect information

about all current and past disturbances, while all other firms continue to set prices based

on old information. Reis (2004) shows that a model with a fixed cost of obtaining perfect

information can provide a microfoundation for this kind of slow diffusion of information. In

Mankiw and Reis (2002) and Reis (2004), prices react with equal speed to all disturbances.

4Moscarini (2004) studies a univariate quadratic control problem with an information flow constraint.

In contrast to Sims (2003), Moscarini assumes that the decisionmaker can only meet the information flow

constraint by infrequent sampling. Moscarini analyzes the optimal sampling frequency. The information

that the decisionmaker receives once he or she samples is given exogenously. Other recent work following

Sims (2003) includes Luo (2005) and Van Nieuwerburgh and Veldkamp (2005 a,b).
5Woodford’s (2002) model has been extended in a number of directions. Hellwig (2002) studies the role of

public information. Gumbau-Brisa (2003) studies the effects of a Taylor rule. Adam (2004) studies optimal

monetary policy.
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In contrast, in our model firms optimally decide to receive more precise information concern-

ing some shocks and less precise information concerning other shocks implying that prices

react quickly to some shocks and slowly to other shocks. For this reason the model can

explain both the micro and the macro evidence on consumer prices. Note that in a model

with a fixed cost of obtaining information, the cost of obtaining information is independent

of the stochastic properties of the variables to be tracked. In contrast, in a model with an

information flow constraint, tracking a variable with a higher variance well uses up a larger

fraction of the available information flow.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

derives the firms’ price setting behavior for given information. In Section 4 we solve a special

case of the model analytically. In Sections 5 and 6 we return to the model in its general

form. In Section 5 we study the firms’ decision problem of what to observe. In Section 6 we

compute the rational expectations equilibrium for a variety of different economies. Section

7 concludes. Appendix A introduces the tools that we use to state the firms’ information

flow constraint. The remaining appendices contain the proofs of the results used in the

main text and details of how to solve the model numerically.

2 The model

2.1 Description of the economy

Consider an economy with a continuum of firms indexed by i ∈ [0, 1]. Time is discrete and
indexed by t.

Firm i sells a good also indexed by i. Every period t = 1, 2, . . ., the firm sets the price

of the good, Pit, so as to maximize

Eit

" ∞X
T=t

βT−tπ (PiT , PT , YT , ZiT )

#
, (1)

where Eit is the expectation operator conditioned on the information of firm i in period

t, β is a scalar between zero and unity and π (Pit, Pt, Yt, Zit) are real profits of firm i in

period t. Real profits depend on the price set by the firm, Pit, the aggregate price level, Pt,

real aggregate demand, Yt, and an idiosyncratic state variable, Zit. The idiosyncratic state

6



variable reflects consumers’ valuation of good i or the firm-specific state of technology. We

assume that the function π is twice continuously differentiable and homogenous of degree

zero in its first two arguments, i.e., real profits only depend on the relative price Pit/Pt. We

also assume that the function π is a single-peaked function of Pit for given Pt, Yt and Zit.6

The information of firm i in period t is given by the sequence of all signals that the firm

has received up to that point in time

sti = {s1i , si2, ..., sit}, (2)

where sit denotes the signal that firm i receives in period t. The signal can be vector valued.

We allow for the possibility that the firm receives a whole sequence of signals in period one,

denoted s1i .

Firms can change prices every period at no cost. Furthermore, firms take the stochastic

processes for the aggregate price level, {Pt}, real aggregate demand, {Yt}, and the idio-
syncratic state variables, {Zit}, as given. These assumptions imply that the price setting
problem of firm i in period t is a purely static problem

max
Pit

Eit[π (Pit, Pt, Yt, Zit)]. (3)

The aggregate environment of firms is specified by postulating an exogenous stochastic

process for nominal aggregate demand.7 Let

Qt ≡ PtYt (4)

denote nominal aggregate demand. Let qt ≡ lnQt−ln Q̄ denote the log-deviation of nominal
aggregate demand from its deterministic trend. We assume that qt follows a stationary

Gaussian process with mean zero and absolutely summable autocovariances.
6For example, in a standard model with Dixit-Stiglitz preferences and monopolistic competition

π (Pit, Pt, Yt, Zit) = Yt

µ
Pit
Pt

¶1−θ
− C

Ã
Yt

µ
Pit
Pt

¶−θ
, Yt, Zit

!
,

where Yt is the Dixit-Stiglitz consumption aggregator, Pt is the corresponding price index and Yt
³
Pit
Pt

´−θ
with θ > 1 is the demand for good i. Real production costs C depend on the firm’s output and may also

depend on real aggregate demand through factor prices. Here Zit affects productivity. If C11 ≥ 0 then the
function π is a single-peaked function of Pit for given Pt, Yt and Zit.

7This approach is common in the literature. For example, Lucas (1973), Woodford (2002), Mankiw and

Reis (2002) and Reis (2004) also postulate an exogenous stochastic process for nominal aggregate demand.
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The log of the aggregate price level is defined as

lnPt ≡
1Z
0

lnPitdi. (5)

One obtains the same equation in a standard model of monopolistic competition after a

log-linearization.8

The idiosyncratic environment of firms is specified by postulating an exogenous sto-

chastic process for the idiosyncratic state variables. Let zit ≡ lnZit − ln Z̄ denote the

log-deviation of idiosyncratic state variable i from its deterministic trend. We assume that

the processes {zit}, i ∈ [0, 1], are pairwise independent and independent of {qt}. Further-
more, we assume that the zit, i ∈ [0, 1], follow a common stationary Gaussian process with
mean zero and absolutely summable autocovariances. Since the zit, i ∈ [0, 1], for given t

are pairwise independent and identically distributed random variables with mean zero and

finite variance, we have9
1Z
0

zitdi = 0. (6)

One could close the model by making an assumption about the information that firm i

obtains in period t. This is what is typically done in the literature.10 In contrast, we want to

capture the fact that firms can decide what to observe. We follow Sims (2003) in assuming

that firms have limited information-processing ability and that firms use their information-

processing ability optimally. Formally, in period zero we let each firm i, i ∈ [0, 1], choose
the stochastic process for the signal

max
{sit}∈Γ

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
, (7)

8 In a standard model with Dixit-Stiglitz preferences and monopolistic competition, the aggregate price

level is defined as Pt ≡
³R 1

0
P 1−θ
it di

´ 1
1−θ

. Log-linearizing this equation around any point with the property

that all the Pit are equal yields equation (5).
9See Uhlig (1996), Theorem 2.
10For example, the perfect information case obtains when sit = (Pt, Yt, Zit)

0 for all i, t. In a signal-

extraction model, sit would equal the variables of interest plus exogenous noise. In an information-

delay model, sit = (Pt−n, Yt−n, Zit−n)
0 for some integer n > 0. In a sticky-information model, sit =

(P1, ..., Pt, Y1, ..., Yt, Zi1, ..., Zit)
0 with some probability ρ and sit = sit−1 with probability 1− ρ.
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subject to

P ∗it = argmax
Pit

E[π (Pit, Pt, Yt, Zit) |sti], (8)

and

I ({Pt} , {Yt} , {Zit} ; {sit}) ≤ κ. (9)

Firm i chooses the stochastic process for the signal (from the set Γ defined below) so as to

maximize the expected discounted sum of future profits (7). The firm takes into account

how the stochastic process for the signal affects its future price setting behavior (8). The

firm has to respect the information flow constraint (9). The information flow constraint

imposes an upper bound on the information flow between the sequence of signals and the

sequence of variables of interest. The information flow between stochastic processes is

defined in Appendix A. The firm cannot decide to observe all variables of interest perfectly

in every period, but the firm can decide to observe some variable with a higher precision

than another variable, as long as the total information flow does not exceed the parameter

κ. The parameter κ indexes the firm’s information-processing ability.11

The set Γ is the set of all stochastic processes for the signal that have the following

four properties. First, signals contain no information about future innovations to nominal

aggregate demand and future innovations to the idiosyncratic state variables, i.e., signals

contain no information about shocks that nature has not drawn yet. Second, the signal that

firm i receives in period t is a vector that can be partitioned into a first subvector that only

contains information about aggregate conditions and a second subvector that only contains

information about idiosyncratic conditions. Formally,

sit = (s1it, s2it)
0 , (10)

where

{s1it, Pt, Yt} and {s2it, Zit} are independent. (11)

The idea is that paying attention to aggregate conditions and paying attention to idiosyn-

11 In the model, the information-processing ability of firms is exogenous. It is straightforward to extend

the model by specifying a cost function for κ and letting each firm choose the optimal κ.
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cratic conditions are two separate activities.12 13 Third,

{s1it, s2it, pt, yt, zit} is a stationary Gaussian vector process, (12)

where pt, yt and zit denote the log-deviations of the aggregate price level, real aggregate

demand and the idiosyncratic state variable i from their respective deterministic trends.

Condition (12) can be justified as optimal. Gaussian signals in combination with Gaussian

prior uncertainty yield Gaussian posterior uncertainty. Gaussian posterior uncertainty can

be shown to be optimal when the optimization problem is linear-quadratic. We will show

that after a log-quadratic approximation to the profit function the firms’ optimization prob-

lem (7)-(9) has a linear-quadratic structure.14 15 Fourth, all noise in signals is idiosyncratic.

This assumption accords well with the idea that the critical bottleneck is not the public

availability of information but instead the inability of private agents to pay attention to all

available information.

Finally, we make a simplifying assumption. We assume that firms receive a long sequence

of signals in period one after having chosen the information system in period zero

s1i = {si−∞, . . . , si1} . (13)

This assumption implies that the price set by a firm follows a stationary process. This

simplifies the analysis.16

12Of course, condition (11) can only be satisfied when {Pt, Yt} and {Zit} are independent. We will verify
that this is true in equilibrium.
13Consider a manager who has to set a price. The manager may inform himself by paying attention to

different information sources. For example, the manager may read a financial newspaper or a marketing

report. Reading a financial newspaper typically gives a lot of information about the aggregate state of the

economy but gives very little information about whether customers like a particular good, what production

of the good would cost and whether competitors might produce the good more cheaply. Reading a marketing

report on the other hand gives a lot of information about tastes of customers but gives very little information

about the aggregate state of the economy.
14Of course, condition (12) can only be satisfied when {pt, yt, zit} is a stationary Gaussian vector process.

We will verify that this is true in equilibrium.
15Sims (2005) considers cases in which Gaussian posterior uncertainty is not optimal.
16One can show that observing a long sequence of signals in period one does not change the information

flow in (9).

10



2.2 Equilibrium

An equilibrium of the model are stochastic processes for the signals, {sit}, for the prices,
{Pit}, for the aggregate price level, {Pt}, and for real aggregate demand, {Yt}, such that:

1. Given {Pt}, {Yt} and {Zit}, each firm i ∈ [0, 1] chooses the stochastic process for the
signal optimally in period t = 0 and sets the price for its good optimally in periods

t = 1, 2, . . ..

2. In every period t = 1, 2, . . . and in every state of nature, the aggregate price level

satisfies (5) and real aggregate demand satisfies (4).

3 Price setting behavior

In this section, we look at the firms’ price setting behavior for given information.

The first-order condition for optimal price setting by firm i in period t is

E[π1 (P
∗
it, Pt, Yt, Zit) |sti] = 0, (14)

where π1 denotes the derivative of the profit function π with respect to its first argument.

In order to obtain a closed-form solution for the price set by the firm, we work with a

log-quadratic approximation to the profit function around the non-stochastic solution of

the model.

The solution of the non-stochastic version of the model is as follows. Suppose that

Qt = Q̄ for all t and Zit = Z̄ for all i, t. In this case, there is no uncertainty and all firms

solve the same price setting problem. Therefore in equilibrium

π1
¡
Pt, Pt, Yt, Z̄

¢
= 0. (15)

Multiplying by Pt > 0 yields17

π1
¡
1, 1, Yt, Z̄

¢
= 0. (16)

17Since the profit function π is homogeneous of degree zero in its first two arguments, the function π1 is

homogeneous of degree minus one in its first two arguments.
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The solution to the last equation is equilibrium real aggregate demand, denoted Ȳ .18 The

equilibrium aggregate price level, denoted P̄ , is given by

P̄ =
Q̄

Ȳ
. (17)

Next we compute the log-quadratic approximation to the profit function around the

non-stochastic solution of the model. Let xt ≡ lnXt − ln X̄ denote the log-deviation of

a variable from its value at the non-stochastic solution. Using Xt = X̄ext one can define

the function π̂ via π̂ (pit, pt, yt, zit) = π
¡
P̄ epit , P̄ ept , Ȳ eyt , Z̄ezit

¢
. Computing a second-order

Taylor approximation to the function π̂ around the point (0, 0, 0, 0) yields the log-quadratic

approximation to the profit function

π̃ (pit, pt, yt, zit) = π̂ (0, 0, 0, 0) + π̂1pit + π̂2pt + π̂3yt + π̂4zit

+
π̂11
2
p2it +

π̂22
2
p2t +

π̂33
2
y2t +

π̂44
2
z2it

+π̂12pitpt + π̂13pityt + π̂14pitzit

+π̂23ptyt + π̂24ptzit + π̂34ytzit, (18)

where π̂1, for example, denotes the derivative of the function π̂ with respect to its first

argument evaluated at the point (0, 0, 0, 0). It is straightforward to show that π̂1 = 0,

π̂11 < 0 and π̂12 = −π̂11.
After the log-quadratic approximation to the profit function, the solution to the price

setting problem of firm i in period t is19

p∗it = E[pt|sti] +
π̂13
|π̂11|E[yt|s

t
i] +

π̂14
|π̂11|E[zit|s

t
i]. (19)

The log of the price set by firm i in period t is a linear function of the conditional expectation

of the log of the aggregate price level, the conditional expectation of the log of real aggregate

demand and the conditional expectation of the log of the idiosyncratic state variable.

For comparison, the solution to the price setting problem of firm i in period t under

perfect information is

pfit = pt +
π̂13
|π̂11|yt +

π̂14
|π̂11|zit. (20)

18We assume that equation (16) has a unique solution. For the profit function given in Footnote 6, a

sufficient condition is C11 + C12 > 0.
19Set the derivative of E

£
π̃ (pit, pt, yt, zit) |sti

¤
with respect to pit equal to zero and solve for pit. Recall

that π̂1 = 0, π̂11 < 0 and π̂12 = −π̂11. This yields equation (19).
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Whenever the price (19) differs from the price (20) there is a loss in profits due to imperfect

information. More precisely, the period t loss in profits due to imperfect information is

π̃
³
pfit, pt, yt, zit

´
− π̃ (p∗it, pt, yt, zit) =

|π̂11|
2

³
pfit − p∗it

´2
. (21)

The firm can affect this loss by deciding what to observe.

Before we turn to the firm’s decision problem of what to observe, two additional obser-

vations will be helpful. First, let us define ∆t ≡ pt +
π̂13
|π̂11|yt. The imperfect information

price (19) and the perfect information price (20) can be expressed as

p∗it = E[∆t|sti] +
π̂14
|π̂11|E[zit|s

t
i], (22)

and

pfit = ∆t +
π̂14
|π̂11|zit. (23)

These equations show that the variable ∆t summarizes all that firms would like to know

about aggregate conditions.

Second, computing the integral over all i of the perfect information price (20) and using

equation (6) as well as yt = qt − pt yields the following expression for the aggregate price

level under perfect information

pft =

µ
1− π̂13

|π̂11|
¶
pt +

π̂13
|π̂11|qt. (24)

The fixed point of this mapping is the equilibrium aggregate price level under perfect infor-

mation. Assuming π̂13 6= 0, the unique fixed point is

pft = qt. (25)

Hence, the equilibrium aggregate price level under perfect information moves one for one

with nominal aggregate demand.

4 Analytical solution when exogenous processes are white

noise

In this section, we solve the model under the assumption that log-deviations of nominal

aggregate demand and log-deviations of the idiosyncratic state variables follow white noise
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processes. In this special case, the model can be solved analytically. We illustrate the main

mechanisms of the model with the help of this simple example. Afterwards, we solve the

model under more realistic assumptions concerning the exogenous processes.

In this section, we assume that qt follows a white noise process with variance σ2q > 0

and the zit, i ∈ [0, 1], follow a common white noise process with variance σ2z > 0. We guess
that in equilibrium

pt = αqt, (26)

and

yt = (1− α) qt, (27)

where α ∈ [0, 1]. The guess will be verified.
Suppose that firm i can choose among signals of the form

s1it = ∆t + εit, (28)

s2it = zit + ψit, (29)

where {εit} and {ψit} are idiosyncratic Gaussian white noise processes that are mutually
independent and independent of {∆t} and {zit}. When ∆t and zit follow white noise

processes, one can restrict the firm’s choice to signals of the form “true state plus white

noise error term” without affecting the equilibrium of the model. This is proved below. See

Proposition 3.20

By devoting more or less attention to a variable the firm can affect the variance of noise

in the respective signal. The firm has to respect the information flow constraint (9). Since

the variables ∆t, s1it, zit and s2it follow white noise processes and since the variables pt, yt

and ∆t are perfectly correlated, the information flow constraint (9) can be expressed as

1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
+
1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
≤ κ. (30)

See Appendix B. The information flow constraint places a restriction on the signal-to-noise

ratios, σ2∆/σ
2
ε and σ2z/σ

2
ψ. When the information flow constraint is binding, the firm faces

20Note that one can make the signal (28) a signal concerning qt, pt or yt by multiplying the signal with
1

α+
π13
|π11| (1−α)

, α

α+
π13
|π11| (1−α)

or 1−α
α+

π13
|π11| (1−α)

, respectively. Of course, all these signals are associated with the

same information flow and the same conditional expectation of ∆t.
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a trade-off: Increasing one signal-to-noise ratio requires reducing the other signal-to-noise

ratio.

Let κ1 = 1
2 log2

³
σ2∆
σ2ε
+ 1
´
denote the information flow allocated to aggregate conditions.

Let κ2 = 1
2 log2

µ
σ2z
σ2ψ
+ 1

¶
denote the information flow allocated to idiosyncratic conditions.

Information flows κ1 and κ2 are associated with the following signal-to-noise ratios

σ2∆
σ2ε

= 22κ1 − 1, (31)

σ2z
σ2ψ

= 22κ2 − 1. (32)

These signal-to-noise ratios imply the following price setting behavior

p∗it =
σ2∆

σ2∆ + σ2ε
s1it +

π̂14
|π̂11|

σ2z
σ2z + σ2ψ

s2it

=
¡
1− 2−2κ1¢ (∆t + εit) +

π̂14
|π̂11|

¡
1− 2−2κ2¢ (zit + ψit) , (33)

where the first equality follows from (22), (28) and (29) and the second equality follows

from (31)-(32). This price setting behavior in turn is associated with the following expected

discounted sum of losses in profits due to imperfect information

E

" ∞X
t=1

βt
n
π̃
³
pfit, pt, yt, zit

´
− π̃ (p∗it, pt, yt, zit)

o#

=
∞X
t=1

βt
|π̂11|
2

E

·³
pfit − p∗it

´2¸

=
β

1− β

|π̂11|
2

(
2−2κ1σ2∆ +

µ
π̂14
π̂11

¶2
2−2κ2σ2z

)
, (34)

where the first equality follows from (21) and the second equality follows from (23) and

(31)-(33).

The optimal allocation of attention is therefore the solution to the strictly convex min-

imization problem

min
κ1∈[0,κ]

β

1− β

|π̂11|
2

(
2−2κ1σ2∆ +

µ
π̂14
π̂11

¶2
2−2(κ−κ1)σ2z

)
. (35)

Assuming π̂14 6= 0, the unique solution to this problem is

κ∗1 =


κ if x ≥ 22κ
1
2κ+

1
4 log2 (x) if x ∈ £2−2κ, 22κ¤

0 if x ≤ 2−2κ
, (36)
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where x ≡ σ2∆/

µ³
π̂14
π̂11

´2
σ2z

¶
. Hence, the solution to the firm’s decision problem of what to

observe is given by the signals (28)-(29) with signal-to-noise ratios (31)-(32) and optimal

allocation of attention (36).

The attention allocated to aggregate conditions, κ∗1, is increasing in x — the ratio of

the variance of the perfect information price (23) due to aggregate shocks divided by the

variance of the perfect information price (23) due to idiosyncratic shocks. When idiosyn-

cratic conditions are more variable or more important for the price setting decision than

aggregate conditions, firms pay more attention to idiosyncratic conditions than to aggregate

conditions, κ∗1 < (1/2)κ < κ∗2.21 In this case, the imperfect information price (33) reacts

strongly to idiosyncratic shocks but only weakly to aggregate shocks. This can explain why

individual prices change by large amounts and, at the same time, individual prices react

little to aggregate shocks.

Computing the integral over all i of the price (33) yields the following expression for the

aggregate price level

p∗t =
³
1− 2−2κ∗1

´
∆t, (37)

where the attention allocated to aggregate conditions is given by equation (36). The equi-

librium aggregate price level is the fixed point of the mapping between the guess (26) and

the actual law of motion (37). Assuming 0 < (π̂13/ |π̂11|) ≤ 1, the unique fixed point is

p∗t =


(22κ−1) π̂13

|π̂11|
1+(22κ−1) π̂13

|π̂11|
qt if λ ≥ 2−κ + (2κ − 2−κ) π̂13

|π̂11|¡
1− 2−κλ−1¢ qt if λ ∈

h
2−κ, 2−κ + (2κ − 2−κ) π̂13

|π̂11|
i

0 if λ ≤ 2−κ
, (38)

where λ ≡
r³

π̂13
π̂14

´2 σ2q
σ2z
. The extent to which the equilibrium aggregate price level moves

with nominal aggregate demand is increasing in λ. The reason is the optimal allocation

of attention. For example, when the variance of the idiosyncratic state variables increases,

firms pay more attention to idiosyncratic conditions and less attention to aggregate condi-

tions. As a result, prices react less to innovations in nominal aggregate demand. In addition,
21More precisely, κ∗1 < (1/2)κ < κ∗2 if and only if x < 1. The reason for x < 1 can be that idiosyncratic

conditions are more variable (σ2z > σ2∆) or that idiosyncratic conditions are more important for the price

setting decision (|π̂14/π̂11| > 1) or both.
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there is a feedback effect. When prices react less to innovations in nominal aggregate de-

mand, the variance of the aggregate price level falls and therefore firms find it optimal to

pay even less attention to aggregate conditions. Formally, when the variance of pt falls, the

variance of ∆t =
³
1− π̂13

|π̂11|
´
pt +

π̂13
|π̂11|qt falls and therefore κ

∗
1 falls. This makes prices react

even less to innovations in nominal aggregate demand, and so on. The feedback effect is

stronger the smaller is (π̂13/ |π̂11|). For this reason, λ depends on π̂13.

The feedback effect involving the optimal reallocation of attention is new in the liter-

ature. To illustrate its quantitative importance, consider a simple example. Suppose that

σ2q = σ2z = 10, (π̂13/ |π̂11|) = 0.15, (π̂14/ |π̂11|) = 1 and κ = 3. If all other firms set the per-

fect information price, then pt = qt and σ2∆ = σ2q = σ2z. In this case, the optimal allocation

of attention for an individual firm would be fifty-fifty, κ1 = κ2 = (1/2)κ. In equilibrium,

the variance of pt is smaller than the variance of qt implying σ2∆ < σ2q = σ2z. Therefore, in

equilibrium, firms allocate only 20% of their attention to aggregate conditions.

Finally, if λ is very small or very large, the equilibrium allocation of attention is a

corner solution. If λ is very small, firms allocate no attention to aggregate conditions and

the aggregate price level equals its deterministic trend at each point in time. If λ is very

large, firms allocate all attention to aggregate conditions.

It is straightforward to compute equilibrium real aggregate demand from the equilibrium

aggregate price level (38) and the equation yt = qt − pt.

5 The firms’ decision of what to observe

Next we show how to solve the model in the general case when log-deviations of nominal

aggregate demand and log-deviations of the idiosyncratic state variables follow stationary

Gaussian moving average processes. In this section, we focus on the firms’ decision problem

of what to observe for given processes for the aggregate variables. In the next section, we

compute the rational expectations equilibrium. We guess that in equilibrium

{pt, yt} and {zit} are independent, ∀i ∈ [0, 1] , (39)

and

{pt, yt} is a stationary Gaussian vector process. (40)
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These guesses will be verified in the next section.

The firm chooses the stochastic process for the signal so as to maximize the expected

discounted sum of future profits (7).

Lemma 1 (Expected discounted sum of profits) Let the profit function be given by (18) and

suppose that (39)-(40) hold. Then

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
= E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#
− β

1− β

|π̂11|
2

E

·³
pfit − p∗it

´2¸
.

(41)

Proof. See Appendix C.

The expected discounted sum of profits equals the expected discounted sum of prof-

its under perfect information (the first term on the right-hand side) minus the expected

discounted sum of losses in profits due to imperfect information (the second term on the

right-hand side). The expected discounted sum of losses in profits due to imperfect infor-

mation is increasing in the mean squared difference E
·³

pfit − p∗it
´2¸

. Therefore the firm

chooses the stochastic process for the signal so as to minimize this mean squared difference.

The firm has to respect the information flow constraint (9).

Lemma 2 (Information flows) Suppose that (39)-(40) hold. Then

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) (42)

≥ I ({∆t} ; {s1it}) + I ({zit} ; {s2it}) (43)

≥ I
³
{∆t} ;

n
∆̂it

o´
+ I ({zit} ; {ẑit}) , (44)

where ∆̂it ≡ E
£
∆t|st1i

¤
and ẑit ≡ E[zit|st2i]. If s1it = ∆t + εit, where {εit} is a stochastic

process independent of {pt}, then inequality (43) holds with equality. If {s1it} and {s2it}
are univariate processes, then inequality (44) holds with equality.

Proof. See Appendix D.

Equality (42) says that the information flow between the signals and the variables of

interest equals the information flow between the signals concerning aggregate conditions

and aggregate conditions plus the information flow between the signals concerning idiosyn-

cratic conditions and idiosyncratic conditions. This result follows from the independence
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assumption (11) and implies that one can make statements of the sort: “The firm allocates

X percent of the information flow to aggregate conditions and 1-X percent of the infor-

mation flow to idiosyncratic conditions.” Inequality (43) states that the signals concerning

aggregate conditions contain weakly more information about the aggregate price level and

real aggregate demand than they contain about the variable ∆t alone. The relationship

holds with equality when the signals concerning aggregate conditions contain information

about the variable ∆t only. Inequality (44) states that the signals contain weakly more in-

formation than the conditional expectations computed from these signals. The relationship

holds with equality when the signals are scalars.

Lemma 1, Lemma 2 and the price setting equations (22)-(23) imply that the firm’s

decision problem of what to observe can be stated as follows.

Proposition 1 (The decision problem) Let the profit function be given by (18) and suppose

that (39)-(40) hold. Then the firm’s decision problem of what to observe can be stated as

min
{(s1it,s2it)0}∈Γ

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

, (45)

subject to

I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) ≤ κ. (46)

Proof. See Appendix E.

After a log-quadratic approximation to the profit function, the firm’s decision problem

of what to observe looks similar to the quadratic control problem with an information flow

constraint studied in Sims (2003, Section 4). However, there are differences between the

two problems. In Sims (2003, Section 4) the decisionmaker chooses a process for Yt to track

Xt with loss E
h
(Xt − Yt)

2
i
subject to a constraint on the information flow between the two

processes. Thus the same variables appear in the objective function and in the information

flow constraint. In contrast, the firm’s objective function (45) depends on conditional expec-

tations, ∆̂it = E
£
∆t|st1i

¤
and ẑit = E[zit|st2i], whereas the firm’s information flow constraint

(46) applies to the underlying signal processes, {s1it} and {s2it}. Furthermore, the problem
of the firm is a collection of two quadratic control problems with a single information flow

constraint. The firm has to decide how to allocate the total information flow across the
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problem of tracking aggregate conditions and the problem of tracking idiosyncratic condi-

tions.22 Finally, the firm tracks an endogenous variable, ∆t. This introduces a feedback

effect.

The following proposition presents a procedure for solving the firm’s decision problem

of what to observe.

Proposition 2 (Solving the decision problem) Let the profit function be given by (18) and

suppose that (39)-(40) hold. Then a stochastic process for the signal obtained by the follow-

ing two-step procedure solves the firm’s decision problem of what to observe.

1. Derive stochastic processes
n
∆̂∗it
o
and {ẑ∗it} that solve

min
{∆̂it},{ẑit}

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

, (47)

subject to

I
³
{∆t} ;

n
∆̂it

o´
+ I ({zit} ; {ẑit}) ≤ κ, (48)n

∆t, ∆̂it

o
and {zit, ẑit} are independent, (49)n

∆t, ∆̂it, zit, ẑit

o
is a stationary Gaussian vector process. (50)

2. Show that there exist signals of the form

s1it = ∆t + εit, (51)

s2it = zit + ψit, (52)

that have the property

∆̂∗it = E
£
∆t|st1i

¤
, (53)

ẑ∗it = E[zit|st2i], (54)

where {εit} and {ψit} are idiosyncratic stationary Gaussian moving average processes
that are mutually independent and independent of {pt}, {yt} and {zit}.

22Sims (2003) considers multivariate tracking problems but only within the simplified recursive framework

of Section 5 of his paper.
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Proof. See Appendix F.

The first step consists of solving a standard constrained minimization problem. This is

explained in Appendix H. The second step amounts to inverting a signal extraction problem.

Instead of computing conditional expectations for given signals, we search for signals that

generate certain processes as conditional expectations.

The processes
n
∆̂it

o
and {ẑit} that solve the program (47)-(50) have standard properties

of a linear projection.

Proposition 3 (Properties of a solution) A solution to the program (47)-(50) satisfies

E
h
∆t − ∆̂∗it

i
= 0, (55)

E [zit − ẑ∗it] = 0, (56)

and, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0, (57)

E
£
(zit − ẑ∗it) ẑ

∗
it−k

¤
= 0. (58)

Proof. See Appendix G.

This suggests that there exist signals that have the property (53)-(54). We will always

verify numerically that such signals exist. In addition, Proposition 3 implies that, when

∆t and zit follow white noise processes, then ∆̂∗it and ẑ∗it also follow white noise processes.

In this case, one can restrict the firm’s choice to signals of the form “true state plus white

noise error term” without affecting the equilibrium of the model. We used this result in

Section 4.

6 Numerical solutions when exogenous processes are serially

correlated

In this section we show numerical solutions of the model. We compute the solutions as

follows. First, we make a guess concerning the stochastic process for the aggregate price

level. Second, we solve the firms’ decision problem of what to observe. Namely, we derive

the stochastic processes
n
∆̂∗it
o
and {ẑ∗it} and we show that there exist signals of the form
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(51)-(52) that have the property (53)-(54). See Proposition 2 and Appendix H. Third,

we compute the individual prices from equation (22) and the aggregate price level from

equation (5). Fourth, we compare the stochastic process for the aggregate price level that

we obtain to our guess. We update the guess until a fixed point is reached.

6.1 The benchmark economy

See Table 1 for the parameter values of the benchmark economy. The ratio (π̂13/ |π̂11|)
determines the sensitivity of individual prices to real aggregate demand, yt. This is a stan-

dard parameter in models with monopolistic competition. Woodford (2003) recommends a

value between 0.1 and 0.15. In the benchmark economy we set (π̂13/ |π̂11|) = 0.15. Later
we show how changes in (π̂13/ |π̂11|) affect the solution.

The ratio (π̂14/ |π̂11|) determines the sensitivity of individual prices to the idiosyncratic
state variable, zit. Since changes in the value of (π̂14/ |π̂11|) have the same effects on
equilibrium as changes in the variance of the idiosyncratic state variable, we normalize

(π̂14/ |π̂11|) to one and we only calibrate the variance of zit.
We calibrate the stochastic process for qt using quarterly U.S. nominal GNP data from

1959:1 to 2004:1.23 We take the natural log of the data and detrend the data by fitting a

second-order polynomial in time. We then estimate the equation qt = ρqt−1 + νt, where qt

is 100 times the deviation of the natural log of nominal GNP from its fitted trend. The

estimate of ρ that we obtain is, after rounding off, 0.95 and the standard deviation of the

error term is 1. This implies the moving average representation qt =
P∞

l=0 ρ
lνt−l. Since

with geometric decay shocks die out after a very large number of periods and computing

time is fast increasing with the number of lags, we approximate the estimated process by a

process that dies out after twenty periods: qt =
P20

l=0 alνt−l, a0 = 1 and al = al−1 − 0.05,
for all l = 1, ..., 20.24

We calibrate the stochastic process for zit so as to make the model match the average

absolute size of price changes in the data. Recall that Bils and Klenow (2004) find that the

median firm changes its price every 4.3 months. Furthermore, Klenow and Kryvtsov (2004)

23The source are the National Income and Product Accounts of the United States.
24For the benchmark parameter values, we also solved the model without applying the approximation.

We set qt =
P80

l=0 ρ
lνt−l. While computing time was many times larger, the results were affected little.
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find that, conditional on the occurrence of a price change, the average absolute size of the

price change is 13.3% or 8.5% (depending on whether sales are included or excluded). We

know from the analytical solution that a larger variance of the idiosyncratic state variables

makes the aggregate price level more sticky. We also know that under rational inattention

compared to perfect information a larger variance of the idiosyncratic state variables is

required to generate a given average absolute size of price changes. We take a conservative

approach and choose the standard deviation of zit such that the average absolute size of price

changes under perfect information is 8.5% per period.25 This yields a standard deviation

of zit that is ten times the standard deviation of qt.26

We set the parameter that bounds the information flow to κ = 3 bits. Our choice is

motivated by two considerations. First, κ = 3 is sizable compared to the amount of uncer-

tainty in the model. If firms in the model wanted to, they could track aggregate conditions

extremely well.27 Second, with this value of κ the model predicts a negligible difference

between the price set by a firm under rational inattention and the profit-maximizing price.

We find this prediction realistic.

Table 1 and Figures 1-2 summarize the results for the benchmark economy. The average

absolute size of price changes is 8.2% per period. Firms allocate 94% of their attention to

idiosyncratic conditions. This optimal allocation of attention implies the following price

setting behavior. Figure 1 shows the impulse response of the price set by firm i to an

innovation in the idiosyncratic state variable i. Comparing the price reaction under rational

inattention (the line with squares) to the price reaction under perfect information (the line

with points), we see that under rational inattention the price reaction to idiosyncratic

shocks is almost as strong and fast as under perfect information. The line with crosses is

the impulse response of the price set by firm i to noise in the signal concerning idiosyncratic

conditions.

Figure 2 shows the impulse response of the price set by firm i to an innovation in nominal

25Recall that one period in the model is one quarter.
26We assume the same rate of decay in the zit process as in the qt process.
27To illustrate this point, consider a simple example. Suppose that qt was a white noise process with

variance 10, which is the variance of qt in the data. Then allocating 3 bits of information flow to tracking

qt implies that the variance of qt conditional on the signal is 0.15. Thus the variance is reduced by 98.5%.
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aggregate demand. Comparing the price reaction under rational inattention (the line with

squares) to the price reaction under perfect information (the line with points), we see that

under rational inattention the price reaction to nominal shocks is dampened and delayed.

Note that, since all firms choose the same stochastic process for the signal, the line with

squares is also the impulse response of the aggregate price level to an innovation in nominal

aggregate demand. The aggregate price level responds weakly and slowly to innovations

in nominal aggregate demand. The reasons are the following. Since idiosyncratic condi-

tions are more variable than aggregate conditions, firms allocate most of their attention to

idiosyncratic conditions. In addition, there is the feedback effect. When firms pay little

attention to aggregate conditions, the aggregate price level moves little and therefore firms

find it optimal to pay even less attention to aggregate conditions. As a result, the equilib-

rium aggregate price level under rational inattention differs markedly from the equilibrium

aggregate price level under perfect information. Finally, the line with crosses in Figure 2 is

the impulse response of the price set by an individual firm to noise in the signal concerning

aggregate conditions.28

The effect of an innovation in nominal aggregate demand on real aggregate demand

equals the difference between the perfect-information impulse response in Figure 2 and the

rational-inattention impulse response in Figure 2. It is apparent that the real effect of an

innovation in nominal aggregate demand is persistent.

Figures 3-4 show simulated price series. Figure 3 shows a sequence of prices set by

an individual firm under rational inattention (diamonds) and the sequence of prices that

the firm would have set if it had had perfect information (crosses). Firms in the bench-

mark economy track the profit-maximizing price extremely well. Figure 4 shows sequences

28The reader interested in the impulse response of inflation to an innovation in nominal aggregate demand

should note the following. In the benchmark economy, the peak response of inflation occurs on impact. Below

we conduct experiments in which the impulse response of the aggregate price level becomes more dampened

and delayed than in the benchmark economy. In these experiments, the impulse response of inflation becomes

hump-shaped. See the experiment with a larger variance of the idiosyncratic state variables (section 6.3) and

the experiment with more strategic complementarity in price setting (section 6.4). We read the evidence

from structural VARs as indicating clearly that the aggregate price level responds slowly to a monetary

policy shock. We read the evidence as less conclusive regarding whether the impulse response of inflation to

a monetary policy shock is hump-shaped (see Uhlig (2005)).
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of aggregate price levels. The equilibrium aggregate price level under rational inattention

(diamonds) differs markedly from the equilibrium aggregate price level under perfect infor-

mation (crosses). The reason is the optimal allocation of attention in combination with the

feedback effect.

In the benchmark economy, prices react fast and by large amounts to idiosyncratic

shocks, but prices react only slowly and by small amounts to nominal shocks. Thus the

model can explain why individual prices change frequently and by large amounts and, at

the same time, the aggregate price level responds slowly to monetary shocks. To match

the large average absolute size of price changes observed in the data, idiosyncratic shocks

in the model must have a large variance or must be very important for pricing decisions.

This in turn implies that firms in the model allocate most of their attention to idiosyncratic

conditions.

We turn to examining how changes in parameter values affect the optimal allocation of

attention and the dynamics of the economy.

6.2 Increasing the variance of nominal aggregate demand

In Table 2 and Figure 5 we show what happens when the variance of nominal aggregate de-

mand increases. Firms reallocate attention to aggregate conditions away from idiosyncratic

conditions (κ∗1 increases). Firms track both aggregate and idiosyncratic conditions less well.

Profits decrease. The real effects of changes in nominal aggregate demand increase. The

fall in profits suggests that costs of aggregate instability in the real world may be due to

the fact that aggregate instability makes the firms’ tracking problem more difficult.

These predictions differ from the Lucas (1973) model. In the Lucas model, an increase

in the variance of nominal aggregate demand implies that prices that firms observe in their

markets become more precise signals of nominal aggregate demand and less precise signals

of idiosyncratic conditions. Therefore firms in the Lucas model track nominal aggregate

demand better and idiosyncratic conditions worse. The real effects of changes in nominal

aggregate demand become smaller.
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6.3 Increasing the variance of the idiosyncratic state variables

In Table 2 and Figure 6 we show what happens when the variance of the idiosyncratic state

variables increases. Firms reallocate attention to idiosyncratic conditions away from aggre-

gate conditions (κ∗1 decreases). Firms track both idiosyncratic and aggregate conditions less

well. The reaction of the aggregate price level to a nominal shock becomes more dampened

and delayed.

The model predicts that firms operating in more variable idiosyncratic environments al-

locate less attention to aggregate conditions, and therefore respond more slowly to aggregate

shocks. This result is consistent with the empirical finding of Bils, Klenow and Kryvtsov

(2003) according to which firms that change prices relatively frequently react more slowly

to monetary policy shocks than firms that change prices relatively infrequently. The finding

of Bils, Klenow and Kryvtsov is difficult to reconcile with other models of sticky prices.

The reader may wonder whether these predictions continue to hold in a model with an

endogenous κ. Suppose that firms can choose the information flow, κ, facing an increasing,

strictly convex cost function, C (κ). Now consider again the effects of increasing the variance

of the idiosyncratic state variables. The marginal value of information about idiosyncratic

conditions increases. Therefore firms choose a higher κ and the marginal cost of information

increases. This implies that the marginal value of information about aggregate conditions

has to increase as well — the information flow allocated to aggregate conditions has to fall.

Hence, both idiosyncratic and aggregate conditions get tracked less well.

6.4 Changing the degree of strategic complementarity in price setting

The third and fourth example in Table 2 and Figure 7 show what happens when the ratio

(π̂13/ |π̂11|) changes.29 As (π̂13/ |π̂11|) decreases, the impulse response of the aggregate price
level becomes more dampened and delayed. The reason is the following. Under rational

inattention, the aggregate price level is less variable than nominal aggregate demand. Thus

decreasing (π̂13/ |π̂11|) lowers the variance of ∆t =
³
1− π̂13

|π̂11|
´
pt +

π̂13
|π̂11|qt. Firms react by

29 It is common in the literature to refer to the ratio (π̂13/ |π̂11|) as a measure of the degree of strategic
complementarity in price setting, where a smaller value of (π̂13/ |π̂11|) corresponds to a larger degree of
strategic complementarity in price setting.

26



reallocating attention to idiosyncratic conditions away from aggregate conditions.

6.5 The effects of serial correlation

Decreasing the serial correlation of nominal aggregate demand (holding constant its vari-

ance) leads to a fall in profits, because the firms’ tracking problem becomes more difficult.

This suggests that there is a payoff from “interest rate smoothing” by central banks. We

obtained ambiguous predictions concerning the effect of a decrease in the serial correlation

of nominal aggregate demand (holding constant its variance) on the allocation of attention.

We found that the marginal return from allocating attention to aggregate conditions may

go up or down. The reason is that decreasing the serial correlation of nominal aggregate de-

mand makes firms track aggregate conditions less well (for a given allocation of attention),

but also lowers the improvement in tracking that can be achieved by reallocating attention

to aggregate conditions.30

6.6 Optimal signals

We always verify numerically that there exist signals of the form (51)-(52) that have the

property (53)-(54). Figures 8 and 9 present optimal signals for the benchmark economy,

by plotting the parameters of the moving average representations of ∆t, εit, zit and ψit. A

common assumption in the literature is that signals have the form “true state plus i.i.d.

noise”. We always find optimal signals that have the structure “true state plus a moving

average noise process”. However, only in some cases we find optimal signals that have

the structure “true state plus i.i.d. noise”. For example, the optimal idiosyncratic signal

depicted in Figure 9 has the form “true state plus i.i.d. noise”, but the optimal aggregate

signal shown in Figure 8 does not.31

30We obtained the same results when we changed the serial correlation of the idiosyncratic state variables.
31Note that optimal signals are not unique. For example, applying any one-sided linear filter to the signals

depicted in Figures 8 and 9 yields new optimal signals. The reason is that applying a one-sided linear filter

changes neither the conditional expectations computed from the signals nor the information flow.
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7 Conclusions and further research

That individual prices move frequently and by large amounts in the data does not imply

that the aggregate price level must react fast to monetary policy shocks. When idiosyncratic

conditions are more variable or more important than aggregate conditions, rationally inat-

tentive firms optimally allocate more attention to idiosyncratic conditions than to aggregate

conditions. As a result, prices react fast and by large amounts to idiosyncratic shocks, but

prices react only slowly and by small amounts to nominal shocks. Innovations in nominal

aggregate demand have persistent real effects.

In standard sticky price models, frequent and large price changes imply a fast response

of the aggregate price level to nominal shocks. In our model, frequent and large price

changes imply a slow response of the aggregate price level to nominal shocks. The same

empirical observation on the frequency and size of individual price changes leads to the

opposite aggregate prediction. Therefore our model can simultaneously explain the micro

and the macro evidence on consumer prices.

Our model makes several testable predictions that we plan to compare to data. For ex-

ample, according to the model, firms operating in more variable idiosyncratic environments

react more slowly to nominal shocks.

The model can be extended in a variety of directions. For example, the model in its

current form abstracts from physical costs of repricing. This implies that prices in the model

change every period. It would be interesting to add menu costs. This is likely to increase

the real effects of nominal disturbances even further.32

Furthermore, it will be interesting to develop a richer general equilibrium model with

rational inattention and compare its predictions to, for example, Christiano, Eichenbaum

and Evans (2005), Altig, Christiano, Eichenbaum and Linde (2005) and Smets and Wouters

(2003).

32See Dotsey, King and Wolman (1999) and Golosov and Lucas (2005) for general equilibrium models with

menu costs.
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A Quantifying information flows

This appendix introduces the tools that we use to quantify information flows. We borrow

the tools from Shannon’s (1948) information theory. For a textbook on information theory,

see Cover and Thomas (1991). For an application in economics, see Sims (2003).

In economics the payoff of a decisionmaker often depends on the realization of a random

variable. One can quantify the uncertainty by using the concept of entropy. The entropy of a

random variable is a measure of the uncertainty of the random variable. The entropy H (X)

of a random variable X with density function p(X) is defined by H (X) = −E[log2 p(X)].
Entropy is measured in bits. For example, the entropy of a normally distributed random

variable X with variance σ2 is

H (X) =
1

2
log2

¡
2πeσ2

¢
.

In this simple example, entropy is a strictly increasing function of the variance.33

The definition of entropy extends to random vectors. In the definition of entropy, sim-

ply replace the density function by the joint density function. For example, applying the

definition of entropy to a set of random variables X1, ...,XT that have a multivariate normal

distribution with covariance matrix ΩXX yields

H (X1, ...,XT ) =
1

2
log2[(2πe)

T detΩXX ]. (59)

The entropy of the random vector depends on the number of random variables and on their

covariance matrix. A larger determinant of the covariance matrix implies a larger entropy.

For given variances, the entropy is largest when the random variables are uncorrelated.

In economics a decisionmaker often observes a random vector that is correlated with

the random vector of interest. One can quantify the conditional uncertainty by using the

concept of conditional entropy. For example, suppose that a decisionmaker is interested

in X1, ...,XT and observes Y1, ..., YT , where X1, ...,XT and Y1, ..., YT have a multivariate

normal distribution with covariance matrix Ω. Then the entropy of X1, ...,XT conditional

33The definition of entropy can be derived from axioms — requirements that a “reasonable” measure of

uncertainty should satisfy (see e.g. Ash (1990)). Moreover, entropy arises as the answer to a number of

natural questions in communication theory and statistics (see e.g. Cover and Thomas (1991)).
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on Y1, ..., YT is

H (X1, ...,XT | Y1, ..., YT ) = 1

2
log2{(2πe)T det[ΩXX −ΩXYΩ

−1
Y YΩY X ]}. (60)

The expression in square brackets is the covariance matrix of X1, ...,XT conditional on

Y1, ..., YT .

Now one can quantify the amount of information that one random vector contains

about another random vector. Mutual information is the reduction in the uncertainty of

one random vector due to the knowledge of another random vector. The mutual information

between X1, ...,XT and Y1, ..., YT is

I (X1, ...,XT ;Y1, ..., YT ) = H (X1, ...,XT )−H (X1, ...,XT | Y1, ..., YT ) . (61)

It is also straightforward to quantify the information flow between stochastic processes.

Let X1, ...,XT denote the first T elements of the stochastic process {Xt}. Let Y1, ..., YT
denote the first T elements of the stochastic process {Yt}. The processes {Xt} and {Yt}
can be vector processes. The information flow between the processes {Xt} and {Yt} can be
defined by

I ({Xt} ; {Yt}) = lim
T→∞

1

T
I (X1, ...,XT ;Y1, ..., YT ) . (62)

The information flow between stochastic processes is the average amount of information

per unit of time that one stochastic process contains about another stochastic process. The

limit in (62) exists when the processes {Xt} and {Yt} are jointly stationary.
In the Gaussian case, an analytical expression exists for the information flow. If {Xt} and

{Yt} are univariate, jointly stationary, jointly Gaussian processes with absolutely summable
autocovariance matrices then

I ({Xt} ; {Yt}) = − 1
4π

πZ
−π
log2 [1− CX,Y (ω)] dω, (63)

where CX,Y (ω) is the coherence between the processes {Xt} and {Yt} at frequency ω. This
follows from equations (59)-(62) and the asymptotic properties of determinants of Toeplitz

matrices. See Cover and Thomas (1991, pp. 273-274), Gray (2002, pp. 62-63) or Sims

(2003). Note that the coherence lies between zero and one, 0 ≤ CX,Y (ω) ≤ 1 for all ω. It
follows that the information flow in (63) is bounded below by zero and is unbounded above.
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B Information flow constraint in the white noise case

Assumptions (10)-(11) imply

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) .

This general result is proved below. See Lemma 2. Furthermore, equations (26)-(27) imply

that {pt} and {yt} can be calculated from {∆t} and vice versa. It follows that

I ({pt} , {yt} ; {s1it}) = I ({∆t} ; {s1it}) .

The signal concerning aggregate conditions is given by equation (28). Equation (63) implies

that

I ({∆t} ; {s1it}) = − 1
4π

πZ
−π
log2 [1− C∆,s1i (ω)] dω,

where C∆,s1i (ω) is the coherence between the processes {∆t} and {s1it} at frequency ω.

The processes {∆t} and {s1it} are white noise processes. Therefore the coherence simply
equals the squared correlation coefficient and

I ({∆t} ; {s1it}) = −1
2
log2

¡
1− ρ2∆,s1i

¢
.

Using (28) yields

I ({∆t} ; {s1it}) = 1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
.

The same arguments yield

I ({zit} ; {s2it}) = 1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
.

The information flow constraint becomes

1

2
log2

µ
σ2∆
σ2ε
+ 1

¶
+
1

2
log2

Ã
σ2z
σ2ψ

+ 1

!
≤ κ.
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C Proof of lemma 1

When the profit function is given by equation (18), the expected discounted sum of profits

equals

E

" ∞X
t=1

βtπ (P ∗it, Pt, Yt, Zit)

#
= E

" ∞X
t=1

βtπ̃ (p∗it, pt, yt, zit)

#

= E

" ∞X
t=1

βtπ̃
³
pfit, pt, yt, zit

´#
−E

" ∞X
t=1

βt
|π̂11|
2

³
pfit − p∗it

´2#
,

where the second equality follows from equation (21). The difference between the perfect

information price (20) and the imperfect information price (19) equals

pfit − p∗it = pfit −E
h
pfit|sti

i
.

The joint normality of pfit and sti = {s1i , si2, ..., sit} implies that the conditional expectation
equals the linear projection. Furthermore, the joint stationarity of

n
pfit

o
and {sit} in combi-

nation with assumption (13) implies that the linear projection coefficients are independent

of t

pfit − p∗it = pfit − [µ+ α (L) sit] ,

where µ is a constant and α (L) is an infinite order vector lag polynomial. Hence, pfit − p∗it
follows a stationary process and E

·³
pfit − p∗it

´2¸
is independent of t. Equation (41) follows.

D Proof of lemma 2

First, since {Pt} , {Yt} , {Zit} can be calculated from {pt} , {yt} , {zit} and vice versa, we
have

I ({Pt} , {Yt} , {Zit} ; {sit}) = I ({pt} , {yt} , {zit} ; {sit}) .

Applying the definition of information flow (62) yields

I ({pt} , {yt} , {zit} ; {sit}) = lim
T→∞

1

T
I
¡
pT , yT , zTi ; s

T
i

¢
,

where pT ≡ (p1, . . . , pT ), yT ≡ (y1, . . . , yT ), zTi ≡ (zi1, . . . , ziT ) and sTi ≡
¡
s1i , si2, . . . , siT

¢
.

Mutual information equals the difference between entropy and conditional entropy

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT , zTi

¢−H
¡
pT , yT , zTi |sTi

¢
.
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See equation (61). Conditional entropy equals

H
¡
pT , yT , zTi |sTi

¢
= H

¡
pT , yT , zTi , s

T
i

¢−H
¡
sTi
¢
.

See, for example, Cover and Thomas (1991), p. 230, equation (9.33). We arrive at

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT , zTi

¢−H
¡
pT , yT , zTi , s

T
i

¢
+H

¡
sTi
¢
.

Assumption (10) implies

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT , zTi

¢−H
¡
pT , yT , zTi , s

T
1i, s

T
2i

¢
+H

¡
sT1i, s

T
2i

¢
.

The entropy of independent random variables or independent random vectors equals the

sum of the entropies. See, for example, Cover and Thomas (1991), p. 232, equation (9.59).

Therefore assumption (11) implies

I
¡
pT , yT , zTi ; s

T
i

¢
= H

¡
pT , yT

¢
+H

¡
zTi
¢−H

¡
pT , yT , sT1i

¢−H
¡
zTi , s

T
2i

¢
+H

¡
sT1i
¢
+H

¡
sT2i
¢
.

The last equation can also be expressed as

I
¡
pT , yT , zTi ; s

T
i

¢
= I

¡
pT , yT ; sT1i

¢
+ I

¡
zTi ; s

T
2i

¢
.

Dividing by T on both sides and taking the limit as T →∞ yields

I ({pt} , {yt} , {zit} ; {sit}) = I ({pt} , {yt} ; {s1it}) + I ({zit} ; {s2it}) .

Second, since {pt} , {yt} can be calculated from {pt} , {∆t} and vice versa, we have

I ({pt} , {yt} ; {s1it}) = I ({pt} , {∆t} ; {s1it}) .

Applying the definition of information flow (62) yields

I ({pt} , {∆t} ; {s1it}) = lim
T→∞

1

T
I
¡
pT ,∆T ; sT1i

¢
.

Mutual information equals the difference between entropy and conditional entropy

I
¡
pT ,∆T ; sT1i

¢
= H

¡
pT ,∆T

¢−H
¡
pT ,∆T |sT1i

¢
.

33



See equation (61). The following conditional entropies can be expressed as

H
¡
pT |∆T

¢
= H

¡
pT ,∆T

¢−H
¡
∆T
¢
,

H
¡
pT |∆T , sT1i

¢
= H

¡
pT ,∆T |sT1i

¢−H
¡
∆T |sT1i

¢
.

See, for example, Cover and Thomas (1991), p. 230, equation (9.33). We arrive at

I
¡
pT ,∆T ; sT1i

¢
= H

¡
∆T
¢
+H

¡
pT |∆T

¢−H
¡
∆T |sT1i

¢−H
¡
pT |∆T , sT1i

¢
.

The last equation can also be expressed as

I
¡
pT ,∆T ; sT1i

¢
= I

¡
∆T ; sT1i

¢
+ I

¡
pT ; sT1i|∆T

¢
.

Furthermore, mutual information is non-negative

I
¡
pT ; sT1i|∆T

¢ ≥ 0,
with equality if and only if pT and sT1i are conditionally independent given ∆

T . See, for

example, Cover and Thomas (1991), p. 232, first corollary to theorem 9.6.1. Hence,

I ({pt} , {∆t} ; {s1it}) ≥ I ({∆t} ; {s1it}) ,

with equality if pT and sT1i are conditionally independent given ∆
T for all T .

Third, applying the definition of information flow (62) yields

I ({zit} ; {s2it}) = lim
T→∞

1

T
I
¡
zTi ; s

T
2i

¢
.

Mutual information equals the difference between entropy and conditional entropy

I
¡
zTi ; s

T
2i

¢
= H

¡
zTi
¢−H

¡
zTi |sT2i

¢
.

See equation (61). Since ẑTi ≡ (ẑi1, . . . , ẑiT ) can be calculated from sT2i, we have

H
¡
zTi |sT2i

¢
= H

¡
zTi |sT2i, ẑTi

¢
.

Since conditioning reduces entropy, we have

H
¡
zTi |sT2i, ẑTi

¢ ≤ H
¡
zTi |ẑTi

¢
.
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See, for example, Cover and Thomas (1991), p. 232, second corollary to theorem 9.6.1. We

arrive at

I
¡
zTi ; s

T
2i

¢ ≥ I
¡
zTi ; ẑ

T
i

¢
.

Dividing by T on both sides and taking the limit as T →∞ yields

I ({zit} ; {s2it}) ≥ I ({zit} ; {ẑit}) .

The same arguments yield

I ({∆t} ; {s1it}) ≥ I
³
{∆t} ;

n
∆̂it

o´
.

Next, suppose that {s1it} is a univariate process. Then

∆̂it = µ1 + α1 (L) s1it,

where µ1 is a constant and α1 (L) is an infinite order lag polynomial. See proof of Lemma

1. Thus
n
∆̂it

o
is obtained from {s1it} by applying a one-sided linear filter (and possibly

adding a constant). Standard results on linear filters imply

C∆,∆̂i
(ω) = C∆,s1i (ω) ,

where C∆,∆̂i
(ω) denotes the coherence between the processes {∆t} and

n
∆̂it

o
at frequency

ω. This result in combination with equation (63) yields

I
³
{∆t} ;

n
∆̂it

o´
= I ({∆t} ; {s1it}) .

The same arguments yield that, if {s2it} is a univariate process, then

I ({zit} ; {ẑit}) = I ({zit} ; {s2it}) .

E Proof of proposition 1

The objective function (45) follows from Lemma 1, the price setting equations (22)-(23)

and the orthogonality of ∆t− ∆̂it and zit− ẑit. The information flow constraint (46) follows
from equation (42).
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F Proof of proposition 2

When the profit function is given by equation (18) and (39)-(40) hold, the firm’s decision

problem of what to observe is given by the program (45)-(46). See Proposition 1. The

objective functions (45) and (47) are identical. The information flow constraint (46) implies

inequality (48). See Lemma 2. The definition of the set Γ and assumption (13) imply

conditions (49)-(50). It follows that a solution to the program (45)-(46) cannot make the

firm better off than a solution to the program (47)-(50).

Second, signals of the form (51)-(52) are an element of the set Γ. Furthermore, in the

case of signals of the form (51)-(52), inequalities (43)-(44) hold with equality. Hence, if

signals of the form (51)-(52) have the property (53)-(54), then they satisfy the information

flow constraint (46) and they are a solution to the program (45)-(46).

G Proof of proposition 3

First, the mean of the process
n
∆̂it

o
affects E

·³
∆t − ∆̂it

´2¸
but does not affect the in-

formation flow I
³
{∆t} ;

n
∆̂it

o´
. See equation (63). Therefore a solution to the program

(47)-(50) has to satisfy

E
h
∆̂∗it
i
= E [∆t] .

The same arguments yield that a solution to the program (47)-(50) has to satisfy

E [ẑ∗it] = E [zit] .

Second, a solution to the program (47)-(50) has to satisfy, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0.

Take a process
n
∆̂0it
o
that does not have this property. Formally, for some k ∈ {0, 1, 2, . . .},

E
h³
∆t − ∆̂0it

´
∆̂0it−k

i
6= 0.

Then one can define a new process
n
∆̂00it
o
as follows

∆̂00it =
³
1 + αLk

´
∆̂0it,
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where L is the lag operator and α is the projection coefficient in the linear projection of

∆t − ∆̂0it on ∆̂0it−k. The new process has the property

I
³
{∆t} ;

n
∆̂00it
o´

= I
³
{∆t} ;

n
∆̂0it
o´

,

because applying a one-sided linear filter to a stochastic process does not change the infor-

mation flow. See proof of Lemma 2. Furthermore, the new process has the property

E

·³
∆t − ∆̂00it

´2¸
< E

·³
∆t − ∆̂0it

´2¸
.

Thus the process
n
∆̂0it
o
cannot be a solution to the program (47)-(50). It follows that a

solution has to satisfy, for all k = 0, 1, 2, . . .,

E
h³
∆t − ∆̂∗it

´
∆̂∗it−k

i
= 0.

The same arguments yield that a solution has to satisfy, for all k = 0, 1, 2, . . .,

E
£
(zit − ẑ∗it) ẑ

∗
it−k

¤
= 0.

H Numerical solution procedure

Let the moving average representations for qt and zit be given by

qt =
∞X
l=0

alνt−l,

zit =
∞X
l=0

blξit−l,

where {νt} and {ξit} are Gaussian white noise processes with unit variance. We make a
guess concerning the stochastic process for the aggregate price level

pt =
∞X
l=0

clνt−l.

Applying Proposition 2, we solve the following constrained optimization problem

min
d,f,g,h

(
E

·³
∆t − ∆̂it

´2¸
+

µ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i)

,
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subject to− 14π
πZ
−π
log2

h
1− C∆,∆̂i

(ω)
i
dω

+
− 14π

πZ
−π
log2 [1− Czi,ẑi (ω)] dω

 ≤ κ,

with

∆t =

µ
1− π̂13

|π̂11|
¶ ∞X

l=0

clνt−l +
π̂13
|π̂11|

∞X
l=0

alνt−l,

∆̂it =
∞X
l=0

dlνt−l +
∞X
l=0

flηit−l,

ẑit =
∞X
l=0

glξit−l +
∞X
l=0

hlζit−l,

where {ηit} and {ζit} are Gaussian white noise processes with unit variance that are mu-
tually independent and independent of {νt} and {ξit}. Here we make use of equation (63)
to express information flow as a function of coherence.

Consider, as an example, the choice of the gl and hl, for all l = 0, 1, . . .. The following

simplifications are helpful. Observe that in the objectiveµ
π̂14
π̂11

¶2
E
h
(zit − ẑit)

2
i
=

µ
π̂14
π̂11

¶2 " ∞X
l=0

(bl − gl)
2 +

∞X
l=0

h2l

#
,

and in the constraint

Czi,ẑi (ω) =

·
G(e−iω)G(eiω)
H(e−iω)H(eiω)

¸
h
G(e−iω)G(eiω)
H(e−iω)H(eiω)

i
+ 1

,

where the polynomials G
¡
eiω
¢
and H

¡
eiω
¢
are defined as G

¡
eiω
¢ ≡ g0+ g1e

iω+ g2e
i2ω+ ...

and H
¡
eiω
¢ ≡ h0+ h1e

iω + h2e
i2ω + .... The first-order condition with respect to gl for any

l is µ
π̂14
π̂11

¶2
2(bl − gl) = − µ

4π ln(2)

πZ
−π

∂ ln [1− Czi,ẑi (ω)]
∂gl

dω,

where µ is the Lagrange multiplier. The first-order condition with respect to hl for any l isµ
π̂14
π̂11

¶2
2hl =

µ

4π ln(2)

πZ
−π

∂ ln [1− Czi,ẑi (ω)]
∂hl

dω.

We obtain a system of nonlinear equations in d, f , g, h and µ that we solve numerically.
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Table 1: Parameters and main results for the benchmark economy

Parameters Interpretation

(bπ13/ |bπ11|) = 0.15 Determines the sensitivity of prices to real aggregate demand yt

(bπ14/ |bπ11|) = 1 Determines the sensitivity of prices to the idiosyncratic state variable zit
qt =

P20
l=0 alνt−l, νt ∼ N (0, 1) , The MA representation of nominal aggregate demand qt

with a0 = 1, al = al−1 − 0.05, l = 1, ..., 20
zit =

P20
l=0 blξit−l, ξit ∼ N (0, 1) , The MA representation of the idiosyncratic state variable zit

with b0 = 10, bl = bl−1 − 0.5, l = 1, ..., 20
κ = 3 The upper bound on the information flow

Main results Interpretation

8.2% The average absolute size of price changes per period

κ∗1 = 0.19, κ
∗
2 = 2.81 94% of attention allocated to the idiosyncratic state

E

·³
∆t − ∆̂∗it

´2¸
= 0.39 Expected loss from imperfect tracking of ∆t³bπ14bπ11

´2
E
h
(zit − bz∗it)2i = 2.1 Expected loss from imperfect tracking of zit



Table 2: Varying parameter values

Changes in parameter values Changes in results
relative to the benchmark economy in Table 1

a0 = 50, al = al−1 − 2.5, l = 1, ..., 20 The average absolute size of price changes per period is 35%

Larger variance of nominal aggregate demand κ∗1 increases to 76% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 75.6,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 54

b0 = 12, bl = bl−1 − 0.6, l = 1, ..., 20 The average absolute size of price changes per period is 10%

Larger variance of the idiosyncratic state variable κ∗1 decreases to 4% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.44,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 2.7

(bπ13/ |bπ11|) = 0.1 The average absolute size of price changes per period is 8.2%

More strategic complementarity in price setting κ∗1 decreases to 5% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.31,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 1.9

(bπ13/ |bπ11|) = 0.3 The average absolute size of price changes per period is 8.2%

Less strategic complementarity in price setting κ∗1 increases to 9% of κ

E

·³
∆t − ∆̂∗it

´2¸
= 0.62,

³bπ14bπ11
´2

E
h
(zit − bz∗it)2i = 2.3
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Figure 1: Impulse responses of an individual price to an innovation in the idiosycratic state variable, benchmark economy
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Figure 2: Impulse responses of an individual price to an innovation in nominal aggregate demand, benchmark economy
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Figure 3: Simulated price set by an individual firm in the benchmark economy
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Figure 5: Impulse responses of an individual price to an innovation in the idiosycratic state variable
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Figure 6: Impulse responses of the aggregate price level to an innovation in nominal aggregate demand
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Figure 9: An optimal idiosyncratic signal, benchmark economy
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