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Abstract

In the ideal Black-Scholes world, financial time series are assumed 1)

stationary (time homogeneous) and 2) having conditionally normal dis-

tribution given the past. These two assumptions have been widely-used

in many methods such as the RiskMetrics, one risk management method

considered as industry standard. However these assumptions are unre-

alistic. The primary aim of the paper is to account for nonstationarity

and heavy tails in time series by presenting a local exponential smooth-

ing approach, by which the smoothing parameter is adaptively selected

at every time point and the heavy-tailedness of the process is considered.

A complete theory addresses both issues. In our study, we demonstrate

the implementation of the proposed method in volatility estimation and

risk management given simulated and real data. Numerical results show

the proposed method delivers accurate and sensitive estimates.
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1 Introduction

In the ideal Black-Scholes world, financial time series are assumed 1) stationary (time

homogeneous) and 2) having conditionally normal distribution given the past. These

two assumptions have been widely-used in many methods such as the RiskMetrics

which has been considered as industry standard in risk management after introduced

by J.P. Morgan in 1994. However, these assumptions are very questionable as far as

the real life data is concerned. The time homogeneous assumption does not allow to

model structure shifts or breaks on the market and to account for e.g. macroeconomic,

political or climate changes. The assumption of conditionally Gaussian innovations

leads to underestimation of the market risk. Recent studies show that the Gaussian

and sub-Gaussian distributions are too light to model the market risk associated with

sudden shocks and crashes and heavy-tailed distributions like Student-t or General-

ized Hyperbolic are more appropriate. A realistic risk management system has to

account for the both stylized facts of the financial data, which is a rather compli-

cated task. The reason is that these two issues are somehow contradictory. A robust

risk management which is stable against extremes and large shocks in financial data

is automatically less sensitive to structural changes and vice versa. The aim of the

present paper is to offer an approach for a flexible modeling of financial time series

which is sensitive to structural changes and robust against extremes and shocks on

the market.

1.1 Accounting for Non-stationarity

It is rational to surmise that the structure of volatility process shifts through time,

possibly due to policy adjustments or economic changes. This non-stationary effect

is illustrated in Figure 1, by which the realized variances, the sum of squared returns

sampled at 15 minutes tick-by-tick, of Dow Jones Euro StoXX 50 Index futures are

presented ranging from December 8, 2004 to May 2, 2005. The realized variance

measure has been considered as a robust estimator of the variance of financial asset,

see Anderson, Bollerslev, Diebold and Labys (2001) and Zhang, Mykland and Ait-

Sahalia (2005). We here use the realized variance to illustrate the movement of the

unobserved variance. In the figure, an evident change of market situation is observed

in the last 10 days. It indicates that volatility estimates obtained by averaging over

a long historical interval will significantly underestimate the current volatility and

lead to a large estimation bias.
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Figure 1: The realized variances, the sum of squared returns sampled at 15 minutes
tick-by-tick, of Dow Jones Euro StoXX 50 Index futures ranging from December 8,
2004 to May 2, 2005.

The standard way of accounting for non-stationarity is to recalibrate (reestimate)

the model parameters at every time point using the latest available information from a

time varying window. Alternatively, the exponential smoothing approach assigns some

weights to historical data which exponentially decrease with the time. The choice of a

small window or rapidly decreasing weights results in high variability of the estimated

volatility and, as a consequence, of the estimated value of the portfolio risk from day

to day. In turns, a large window or a low pass volatility filtering method results in

the loss of sensitivity of the risk management system to the significant changes of the

market situation.

An adaptive approach aims to select large windows or slowly decreasing weights in

the time homogeneous situation and it switches to high pass filtering if some structural

change is detected.

Recently a number of local parametric methods has been developed, which inves-

tigates the structure shifts, or equivalently to say, adjusts the smoothing parameter

to avoid serious estimation errors and achieve the best possible accuracy of estima-

tion. For example, Fan and Gu (2003) introduce several semiparametric techniques

of estimating volatility and portfolio risk. Mercurio and Spokoiny (2004) present an
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approach to specify local homogeneous interval, by which volatility is approximated

by a constant. Belomestny and Spokoiny (2006) present the spatial aggregation of

the local likelihood estimates (SSA). Among others, we refer to Spokoiny (2006) for

a detailed description of the local estimation methods. These works however concern

only one issue, namely the nonstationarity of time series, and rely on the unrealistic

Gaussian distributional assumption.

1.2 Accounting for Heavy Tails in Innovations

As already mentioned, the evidence of non-Gaussian heavy-tailed distribution for

the standardized innovations of the financial time series is well documented. For

instance, Student-t or Generalized Hyperbolic distributions are much more accurate

in estimating the quantiles of the standardized returns, see e.g. Embrechts, McNeil

and Straumann (2002) and Eberlein and Keller (1995), among other. However, the

existent methods and approaches to modeling such phenomena are based on one or

another kind of parametric assumptions, and hence, are not flexible for modeling

structural changes in the financial data.

The primary aim of the paper is to present a realistic approach that accounts for

the both features: nonstationarity and heavy tails in financial time series. The whole

approach can be decomposed in few steps. First we develop an adaptive procedure for

estimation of the time dependent volatility under the assumption of the conditionally

Gaussian innovations. Then we show that the procedure continues to apply in the case

of sub-Gaussian innovations (under some exponential moment conditions). To make

this approach applicable to the heavy-tailed data, we make a power transformation of

the underlying process. Box and Cox (1964) stimulated the application of the power

transformation to non-Gaussian variables to obtain another distribution more close

to the normal and homoscedastic assumption. Here we follow this way and replace

the squared returns by their p -power to provide that the resulting “observations”

have exponential moments.

1.3 Volatility Estimation by Exponential Smoothing

Let St be an observed asset process in discrete time, t = 1, 2, . . . , while Rt defines

the corresponding return process: Rt = log(St/St−1) . We model this process via the
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conditional heteroskedasticity assumption:

Rt =
√

θtεt , (1.1)

where εt , t ≥ 1 , is a sequence of standardized innovations satisfying

IE
(
εt | Ft−1

)
= 0, IE

(
ε2

t | Ft−1

)
= 1

where Ft−1 = σ(R1, . . . , Rt−1) is the ( σ -field generated by the first t − 1 observa-

tions), and θt is the volatility process which is assumed to be predictable with respect

to Ft−1 .

In this paper we focus on the problem of filtering the parameter θt from the past

observations R1, . . . , Rt−1 . This problem naturally arises as an important building

block for many tasks of financial engineering like Value-at-Risk or Portfolio Optimiza-

tion. Among others, we refer to Christoffersen (2003) for a systematic introduction

of risk analysis.

The exponential smoothing (ES) and its variation have been considered as good

functional approximations of variance by assigning weights to the past squared re-

turns:

θt =
1

1− η

∞∑
m=0

ηmR2
t−m−1, η ∈ [0, 1).

Many time series models such as the ARCH proposed by Engle (1982) and the

GARCH by Bollerslev (1986) can be considered as variation of the ES. For exam-

ple, the GARCH(1,1) setup can be reformulated as:

θt = ω + αR2
t−1 + βθt−1 =

ω

1− β
+ α

∞∑
m=0

βmR2
t−m−1.

With a proper reparametrization, this is again an exponential smoothing estimate.

It is worth noting that the ES is in fact a local maximum likelihood estimate

(MLE) based on the Gaussian distributional assumption of the innovations, see e.g.

Section 2. One can expect that this method also does a good job if the innovations

are not conditionally Gaussian but their distribution is not far away from normal.

Our theoretical and numerical results confirm this hint for the case of a sub-Gaussian

distribution of the innovations εt , see Section 2 for more details.
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To implement the ES approach, one first faces the problem to choose the smooth-

ing parameter η (or β ) which can be naturally treated as a memory parameter. The

values of η close to one correspond to a slow decay of the coefficients ηm and hence,

to a large averaging window, while the small values of η result in a high-pass filter-

ing. The classical ES methods choose one constant smoothing (memory) parameter.

For instance, in the RiskMetrics design, η = 0.94 has been thought of as an opti-

mized value. This, however, raises the question whether the experience-based value

is really better than others. Another more reliable but computationally demanding

approach is to choose η by optimizing some objective function such as forecasting

errors (Cheng, Fan and Spokoiny, 2003) or log-likelihood function (Bollerslev and

Woolridge, 1992).

In our study, the smoothing parameter is adaptively selected at every time point.

Given a finite set η1, . . . , ηK of the possible values of the memory parameter, we

calculate K local MLEs {θ̃(k)
t } at every time point t . Then these “weak” estimates

are aggregated in one adaptive estimate by using the Spatial Stagewise Aggregation

(SSA) procedure from Belomestny and Spokoiny (2006). Alternatively, we choose one

ηk such that its corresponding MLE θ̃
(k)
t has the best performance in the estimation

among the considered set of K estimates, referred as LMS. Furthermore, we extend

the local exponential smoothing in the heavy-tailed distributional framework. Chen,

Härdle and Jeong (2005) show that the normal inverse Gaussian (NIG) distribution

with four distributional parameters is successful in imitating the distributional behav-

ior of real financial data. It is therefore practically interesting to show that the quasi

ML estimation is applicable under the NIG distributional assumption. Finally, we

demonstrate the implementation of the proposed local exponential smoothing method

in volatility estimation and risk management.

The paper is organized as follows. The local exponential smoothing is described,

by which the SSA and LMS methods are used to select the smoothing parameter in

Section 2. In particular, Section 2.4 investigates the choice of parameters involved

in the localization. Sensitivity analysis is reported. Later in this section, an alter-

native parameter tuning is illustrated by minimizing forecasting errors. The quasi

ML estimation under the NIG distributional assumption is discussed in Section 3.

Section 4 compares the proposed methods with the stationary ES approach based on

simulated data. Moreover, risk exposures of two German assets, one US equity and

two exchange rates are examined using the proposed local volatility estimation under

the normal and NIG distributional assumption.
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Our theoretical study in Section 2.2 claims a kind of “oracle” optimality for the

proposed procedure while the numerical results for simulated and real data demon-

strates the quite reasonable performance of the method in the situations we focus

on.

2 Accounting For Non-Stationarity. Gaussian And

Sub-Gaussian Innovations

This section presents the method of adaptive estimation of time inhomogeneous

volatility process θt based on aggregating the ES estimates with different memory

parameters η . For this section the innovations εt in the model (1.1) are assumed

to be Gaussian or sub-Gaussian. An extension to heavy-tailed innovations will be

discussed in Section 3.

We follow the local parametric approach from Spokoiny (2006). First we show that

the ES estimate is a particular case of the local parametric volatility estimate and

study some of its properties. Then we introduce the SSA procedure for aggregating

a family of “weak” ES estimates into one adaptive volatility estimate and study its

properties in the case of sub-Gaussian innovations.

2.1 Local Parametric Modeling

A time-homogeneous (time-homoskedastic) model means that θt is a constant. For

the homogeneous model θt ≡ θ for t from the given time interval I , the parameter

θ can be estimated using the (quasi) maximum likelihood method. Suppose first

that the innovations εt are conditionally on Ft−1 standard normal. Then the joint

distribution of Rt for t ∈ I is described by the log-likelihood

LI(θ) =
∑
t∈I

`(Yt, θ)

where `(y, θ) = −(1/2) log(2πθ)−y/(2θ) is the log-density of the normal distribution

N(0, θ) and Yt mean the squared returns, Yt = R2
t . The corresponding maximum

likelihood estimate (MLE) maximizes the likelihood:

θ̃I = argmax
θ∈Θ

LI(θ) = argmax
θ∈Θ

∑
t∈I

`(Yt, θ),
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where Θ is a given parametric subset in IR+ .

If the innovations εt are not conditionally standard normal, the estimate θ̃I is

still meaningful and it can be considered as a quasi MLE.

The assumption of time homogeneity is usually too restrictive if the time interval

I is sufficiently large. The standard approach is to apply the parametric modeling in

a vicinity of the point of interest t . The localizing scheme is generally given by the

collection of weights Wt = {wst} which leads to the local log-likelihood

L(Wt, θ) =
∑

s

`(Ys, θ)wst

and to the local MLE θ̃t defined as the maximizer of L(Wt, θ) . In this paper we only

consider the localizing scheme with the exponentially decreasing weights wst = ηt−s

for s ≤ t , where η is the given “memory” parameter. We also cut the weights when

they become smaller than some prescribed value c > 0 , e.g. c = 0.01 . However, the

properties of the local estimate θ̃t are general and apply to any localizing scheme.

We denote by θ̃t the value maximizing the local log-likelihood L(Wt, θ) :

θ̃t = argmax
θ∈Θ

L(Wt, θ).

The volatility model is a particular case of an exponential family, so that a closed form

representation for the local MLE θ̃t and for the corresponding fitted log-likelihood

L(Wt, θ̃t) are available, see Polzehl and Spokoiny (2006) for more details.

Theorem 2.1. For every localizing scheme Wt

θ̃t = N−1
t

∑
s

Yswst

where Nt denotes the sum of the weights wst :

Nt =
∑

s

wst.

Moreover, for every θ > 0 the fitted likelihood ratio L(Wt, θ̃, θ) = maxθ′ L(Wt, θ
′, θ)

with L(Wt, θ
′, θ) = L(Wt, θ

′)− L(Wt, θ) satisfies

L(Wt, θ̃t, θ) = NtK(θ̃t, θ) (2.1)
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where

K(θ, θ′) = −0.5
{
log(θ/θ′) + 1− θ/θ′

}

is the Kullback-Leibler information for the two normal distributions with variances θ

and θ′ : K(θ, θ′) = IEθ log
(
IPθ/dIPθ′

)
.

Proof. One can see that

L(Wt, θ) = −Nt

2
log(2πθ)− 1

2θ

∑
s

Yswst (2.2)

This representation yields the both assertions of the theorem by simple algebra.

Remark 2.1. The results of Theorem 2.1 only rely on the structure of the function

`(y, θ) and do not utilize the assumption of conditional normality of the innovations

εt . Therefore, they apply whatever the distribution of the innovations εt is.

2.2 Some Properties of the Estimate θ̃t in the Homogeneous

Situation

This section collects some useful properties of the (quasi) MLE θ̃t and of the fitted log-

likelihood L(Wt, θ̃t, θ
∗) in the homogeneous situation θs = θ∗ for all s . We assume

the following condition on the set Θ of possible values of the volatility parameter.

(Θ) The set Θ is a compact interval in IR+ and does not containing θ = 0 .

First we discuss the case of Gaussian innovations εs .

Theorem 2.2 (Polzehl and Spokoiny, 2006). Assume (Θ) . Let θs = θ∗ ∈ Θ for

s . If the innovations εs are i.i.d. standard normal, then for any z > 0

IPθ∗
(
L(Wt, θ̃t, θ

∗) > z
) ≡ IPθ∗

(
NtK(θ̃t, θ

∗) > z
) ≤ 2e−z.

Theorem 2.2 claims that the estimation loss measured by K(θ̃t, θ
∗) is with high

probability bounded by z/Nt provided that z is sufficiently large. This result helps

to establish a risk bound for a power loss function and to construct the confidence

sets for the parameter θ∗ .

Theorem 2.3. Assume (Θ) . Let Yt be i.i.d. from N(0, θ∗) . Then for any r > 0

IEθ∗
∣∣L(Wt, θ̃t, θ

∗)
∣∣r ≡ IEθ∗

∣∣NtK(θ̃t, θ
∗)

∣∣r ≤ rr .
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where rr = 2r
∫

z≥0
zr−1e−zdz = 2rΓ (r) . Moreover, if zα satisfies 2e−zα ≤ α , then

Et,α =
{
θ : NtK

(
θ̃t, θ

) ≤ zα

}
(2.3)

is an α -confidence set for the parameter θ∗ in the sense that

IPθ∗
(
Et,α 63 θ∗

) ≤ α.

Proof. By Theorem 2.2

IEθ∗
∣∣L(Wt, θ̃t, θ

∗)
∣∣r ≤ −

∫

z≥0

zrdIPθ∗(L(Wt, θ̃t, θ
∗) > z)

≤ r

∫

z≥0

zr−1IPθ∗(L(Wt, θ̃t, θ
∗) > z)dz ≤ 2r

∫

z≥0

zr−1e−zdz

and the first assertion is fulfilled. The last assertion is proved similarly.

The assumption of normality for the innovations εt is often criticized in the finan-

cial literature. The basic result of Theorem 2.2 and its corollaries can be extended to

the case of non-Gaussian innovations under some exponential moment conditions. We

refer to this situation as the sub-Gaussian case. Later these results in combination

with the power transformation of the data will be used for studying the heavily tailed

innovations, see Section 5.

Theorem 2.4. Assume (Θ) . Let the innovations εs be i.i.d., IEε2
s = 1 , and

log IE exp
{
λ(ε2

s − 1)
} ≤ κ(λ) (2.4)

for some λ > 0 and some constant κ(λ) . Then there is a constant µ0 > 0 such that

for all θ∗, θ ∈ Θ

IEθ∗ exp
{
µ0L(Wt, θ, θ

∗)
} ≡ IEθ∗ exp

{
µ0NtK(θ̃t, θ

∗)
} ≤ 1 (2.5)

and

IPθ∗
(
L(Wt, θ̃t, θ

∗) > z
) ≡ IPθ∗

(
NtK(θ̃t, θ

∗) > z
) ≤ 2e−µ0z. (2.6)

Proof. For brevity of notation we omit the subscript t . It holds for L(W, θ, θ∗) =
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L(W, θ)− L(W, θ∗)

2L(W, θ, θ∗) = −N log(θ/θ∗)− (1/θ − 1/θ∗)
∑

s

Ysws .

Under the measure IPθ∗ , the squared returns Yt can be represented as Yt = θ∗ε2
t

leading to the formula

2L(W, θ, θ∗) = N log(θ∗/θ)− (θ∗/θ − 1)
∑

s

ε2
sws

= N log(1 + u)− u
∑

s

ε2
sws = N log(1 + u)−Nu− u

∑
s

(ε2
s − 1)ws

with u = θ∗/θ−1 . For any µ such that maxs uµws ≤ λ this yields by independence

of the εs ’s

log IEθ∗
{
2µL(W, θ, θ∗)

}
= µN log(1 + u)− µNu +

∑
s

log IEθ∗ exp
{−uµws(ε

2
s − 1)

}

= µN log(1 + u)− µNu +
∑

s

κ(−uµws).

It is easy to see that the condition (Θ) implies κ(−uµws) ≤ κ0u
2µ2w2

s ≤ κ0u
2µ2ws

for some κ0 > 0 . This yields

log IEθ∗
{
2µL(W, θ, θ∗)

} ≤ µN log(1 + u)− µNu +
∑

s

κ0u
2µ2ws

= µN
{
log(1 + u)− u + κ0µu2

}
.

The condition (Θ) ensures that u = u(θ) = θ∗/θ − 1 is bounded by some constant

u∗ for all θ ∈ Θ . The expression log(1 + u)− u +κ0µu2 is negative for all |u| ≤ u∗

and sufficiently small µ yielding (2.5).

Lemma 6.1 from Polzehl and Spokoiny (2006) implies that

{NtK(θ̃t, θ
∗) > z} ⊆ {NtK(θ−, θ∗) > z} ∪ {NtK(θ+, θ∗) > z}

for some fixed points θ+, θ− depending on z . This and (2.5) prove (2.6).

The results of Theorem 2.3 can be similarly extended to the case of sub-Gaussian

innovations.

11



Theorem 2.5. Assume (Θ) and (2.4). Then for any r > 0

IEθ∗
∣∣L(Wt, θ̃t, θ

∗)
∣∣r ≡ IEθ∗

∣∣NtK(θ̃t, θ
∗)

∣∣r ≤ rr µ−r
0 .

Moreover, if zα satisfies 2e−µ0zα ≤ α , then Et,α from (2.3) is an α -confidence set

for the parameter θ∗ .

2.3 Spatial Stagewise Aggregation (SSA) Procedure

In this section we focus on the problem of adaptive (data-driven) estimation of the

parameter θt . We assume that a finite set {ηk, k = 1, . . . , K} of values of the

smoothing parameter is given. Every value ηk leads to the localizing weighting

scheme w
(k)
st = ηt−s

k for s ≤ t and to the local ML estimate θ̃
(k)
t :

Nk =
∑

s

w
(k)
st =

Mk∑
m=0

ηm
k ,

θ̃
(k)
t = N−1

k

∑
s

w
(k)
st Ys = N−1

k

Mk∑
m=0

ηm
k yt−m−1. (2.7)

where Mk = log c/ log ηk − 1 is the cutting point and guarantees that the weights

after Mk are bounded by the prescribed value c , i.e. ηMk+1
k ≤ c . It is easy to

see that the sum of weights Nk =
∑

s w
(k)
st does not depend on t , thus we suppress

the index t in the notation. The corresponding fitted log-likelihood L(W
(k)
t , θ̃

(k)
t , θ)

reads as

L(W
(k)
t , θ̃

(k)
t , θ) = NkK(θ̃

(k)
t , θ).

The local MLEs θ̃
(k)
t will be referred to as “weak” estimates. Usually the parameter

ηk runs over a wide range from values close to one to rather small values, so that

at least one of them is “good” in the sense of estimation risk. However, the proper

choice of the parameter η generally depends on the variability of the unknown random

process θs . We aim to construct a data-driven estimate θ̂t which performs nearly as

good as the best one from this family.

In what follow we consider the spatial stagewise aggregation (SSA) method which

originates from Belomestny and Spokoiny (2006). The underlying idea of the method

is to aggregate all the weak estimates in form of a convex combination instead of

12



choosing one of them. The procedure is sequential and starts with the estimate θ̃
(1)
t

having the largest variability, that is, we set θ̂
(1)
t = θ̃

(1)
t . At every step k ≥ 2

the new estimate θ̂
(k)
t is constructed by aggregating the next “weak” estimate θ̃

(k)
t

and the previously constructed estimate θ̂
(k−1)
t . Following to Spokoiny (2006), the

aggregation is done in terms of the canonical parameter υ which relates to the natural

parameter θ by υ = −1/(2θ) . With υ̃
(k)
t = −1/(2θ̃

(k)
t ) and υ̂

(k−1)
t = −1/(2θ̂

(k−1)
t )

υ̂
(k)
t = γkṽ

(k)
t + (1− γk)υ̂

(k−1)
t ,

θ̂
(k)
t = −1/(2υ̂

(k)
t ).

Equivalently one can write

θ̂
(k)
t =

(
γk

θ̃
(k)
t

+
1− γk

θ̂
(k−1)
t

)−1

The mixing weights {γk} are computed on the base of the fitted log-likelihood by

checking that the previously aggregated estimate θ̂
(k−1)
t is in agreement with the next

“weak” estimate θ̃
(k)
t . The difference between these two estimates is measured by the

quantity

γk = Kag

( 1

zk−1

L(W
(k)
t , θ̃

(k)
t , θ̂

(k−1)
t )

)
= Kag

( 1

zk−1

NkK(θ̃
(k)
t , θ̂

(k−1)
t )

)
(2.8)

where z1, . . . , zK−1 are the parameters of the procedure, see Section 2.4 for more

details, and Kag(·) is the aggregation kernel. This kernel monotonously decreases on

IR+ , is equal to one in a neighborhood of zero and vanishes outside the interval [0, 1] ,

so that the mixing coefficient γk is one if there is no essential difference between θ̃
(k)
t

and θ̂
(k−1)
t and zero, if the difference is significant. The significance level is measured

by the “critical value” zk−1 . In the intermediate case, the mixing coefficient γk is

between zero and one. The procedure terminates after step k if γk = 0 and we

define in this case θ̂
(m)
t = θ̂

(k)
t = θ̂

(k−1)
t for all m > k . The formal definition reads as

1. Initialization: θ̂(1) = θ̃(1) .

2. Loop: for k ≥ 2

θ̂
(k)
t =

(
γk

θ̃
(k)
t

+
1− γk

θ̂
(k−1)
t

)−1

13



where the aggregating parameter γk is computed as by (2.8). If γk = 0 then

terminate by letting θ̂
(k)
t = . . . = θ̂

(K)
t = θ̂

(k−1)
t .

3. Final estimate: θ̂t = θ̂
(K)
t .

In a special case of the SSA procedure with the binary γk equal to zero or one,

every estimate θ̂
(k)
t and hence, the resulting estimate θ̂t coincide with one of the

“weak” estimates θ̃
(k)
t . This fact can easily be seen by induction arguments. Indeed,

if γk = 1 , then θ̂
(k)
t = θ̃

(k)
t and if γk = 0 , then θ̂

(k)
t = θ̂

(k−1)
t . Therefore, in

this situation the SSA method reduces to a kind of local model selection procedure

(LMS). One limitation of the SSA compared to the alternative approach LMS is that

it may magnify the bias through the summation, which will be illustrated in the later

simulation study. On the meanwhile, the LMS may suffer from a high variability

since it merely concerns discrete and finite values of the smoothing parameter.

The next section discusses in details the problem of the parameter choice and

critical values identification for the SSA procedure.

2.4 Parameter Choice and Implementation Details

To run the procedure, one has to specify the setup and fix the parameters of the

procedure.

The considered setup mainly concerns the set of localizing schemes W
(k)
t = {w(k)

st }
for k = 1, . . . , K yielding a set of “weak” estimates θ̃

(k)
t . Due to Theorem 2.4,

variability of every θ̃
(k)
t is characterized by the local sample size Nk (the sum of the

corresponding weights w
(k)
st over s ) which increases with k . In this paper we focus

on the exponentially decreasing localizing schemes, so that every W
(k)
t is completely

specified by the rate ηk and the cutting level c .

So, the aggregating procedure for a family of the “weak” ES estimates assumes

that a growing sequence of values η1 < η2 < . . . < ηK is given in advance. This

set leads to the sequence of localizing schemes W
(k)
t with w

(k)
st = ηt−s

k for s ≤ t

and ηt−s
k > c otherwise w

(k)
st = 0 . The set corresponding “weak” estimates θ̃

(k)
t is

defined by (2.7). The procedure applies to any such sequence for which the following

condition is satisfied:

(MD) for some u0, u with 0 < u0 ≤ u < 1 , the values N1, . . . , NK satisfy

u0 ≤ Nk−1/Nk ≤ u.
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Here we present one example of constructing such a set {ηk} which is used in our

simulation study and application examples.

Example 2.1. [Set {ηk} ] Given values η1 < 1 and a > 1 , define

Nk+1

Nk

≈ 1− ηk

1− ηk+1

= a > 1. (2.9)

The coefficient a controls the decreasing speed of the variations. The starting value

η1 should be sufficiently small to provide a reasonable degree of localization. Our

default values are a = 1.25 , η1 = 0.6 , and c = 0.01 . The total number K of the

considered localizing schemes is fixed by the condition that ηK does not exceed the

prescribed value η∗ < 1 . One can expect a very minor influence of the mentioned

parameters a, c on the performance of the procedure. This is confirmed by our

simulation study in Section 4.

The definition of the mixing coefficients γk involves the “aggregation” kernel Kag .

Our theoretical study is done under the following assumptions on this kernel:

(Kag) The aggregation kernel Kag is monotonously decreasing for u ∈ IR+ , Kag(0) =

1 , Kag(1) = 0 . Moreover, there exists some u0 ∈ (0, 1) such that Kag(u) = 1

for u ≤ u0 .

Our default choice is Kag(u) = {1−(u−1/6)+}+ so that Kag(u) = 1 for u ≤ 1/6 .

Another choice is the uniform aggregation kernel Kag(u) = 1(u ≤ 1) . This

choice leads the binary mixing coefficients γk and hence, to the local model selection

procedure.

Next we discuss the most important question of choosing the critical values zk .

The idea of selecting the critical values zk is to provide the prescribed performance

of the procedure in the simple parametric situation with θt ≡ θ∗ . In this situation,

all the squared returns Yt are i.i.d. and follow the equation Yt = θ∗ε2
t . The cor-

responding joint distribution of all Yt is denoted by IPθ∗ . The approach assumes

that the distribution of the innovations εs is known and it satisfies the condition

(2.4). A natural candidate is the Gaussian distribution. However, we consider below

in Section 3 the case when the εs ’s are obtained from the normal inverse Gaussian

distribution, the heavy-tailed distribution, by some power transformation.

The way of selecting the critical values is based on the so called “propagation”

condition and it can be formulated in a quite general setup. Recall that the SSA
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procedure is sequential and delivers after the step k the estimate θ̂
(k)
t which depends

on the parameters z1 ,. . . , zk−1 . We now consider the performance of this procedure

in the simple “parametric” situation of constant volatility θt ≡ θ∗ . In this case the

“ideal” or optimal choice among the first k estimates θ̃
(1)
t , . . . , θ̃

(k)
t is the one with

the smallest variability, that is, the latest estimate θ̃
(k)
t whose variability is measured

by the quantity Nk , see Theorem 2.3. Our approach is similar to the one which

is widely used in the hypothesis testing problem: to select the parameters (critical

values) by providing the prescribed error under the “null”, that is, in the parametric

situation. The only difference is that in the estimation problem the risk is measured

by another loss function. This consideration leads to the following condition: for all

θ∗ ∈ Θ and all k = 2, . . . , K

IEθ∗
∣∣L(W

(k)
t , θ̃

(k)
t , θ̂

(k)
t )

∣∣r ≡ IEθ∗
∣∣NkK

(
θ̃

(k)
t , θ̂

(k)
t

)∣∣r ≤ (k − 1)αrr

K − 1
. (2.10)

Here rr is from Theorem 2.3, and r and α are the fixed global parameters. The

meaning of this condition is that the statistical difference between the adaptive esti-

mate θ̂
(k)
t and the “oracle” estimate θ̃

(k)
t after the first k steps measured by the left

hand-side of (2.10) is bounded by a prescribed constant which linearly grows with k .

As a particular case for k = K , the condition (2.10) implies for θ̂t = θ̂
(K)
t

IEθ∗
∣∣NKK

(
θ̃

(K)
t , θ̂t

)∣∣r ≤ αrr .

This means that the final adaptive estimate θ̂t is sufficiently close to its non-adaptive

counterpart θ̃
(K)
t .

The relation (2.10) gives us K−1 inequalities to fix K−1 parameters z1, . . . , zK−1 .

However, these parameters only implicitly enter in (2.10) and it is unclear, how they

can be selected in a numerical algorithmic way. The next section describes a sequen-

tial procedure for selecting the parameters z1, . . . , zK−1 one after another by Monte

Carlo simulations.

The condition (2.10) is stated uniformly over θ∗ . However, the following technical

result allows to reduce the condition to any one particular θ∗ , e.g. for θ∗ = 1 .

Lemma 2.6. Let the squared returns Yt follow the parametric model with the con-

stant volatility parameter θ∗ , that is, Yt = θ∗ε2
t . Then the distribution of the “test

statistics” L(W
(k)
t , θ̃

(k)
t , θ̂

(k−1)
t ) = NkK(θ̃

(k)
t , θ̂

(k−1)
t ) under IPθ∗ is the same for all

θ∗ > 0 .
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Proof. Under IPθ∗ the squared returns Ys fulfill Yt = θ∗ε2
t and for every k , the

estimate θ̃
(k)
t can be represented as

θ̃
(k)
t = N−1

k

∑
s

Ysw
(k)
st = θ∗N−1

k

∑
s

ε2
sw

(k)
st ,

so that θ̃
(k)
t is θ∗ times the estimate computed for θ∗ = 1 . The same applies by

simple induction argument to the aggregated estimate θ̂
(k−1)
t . It remains to note that

the Kullback-Leibler divergence K(θ̃
(k)
t , θ̂

(k−1)
t ) is a function of the ratio θ̃

(k)
t /θ̂

(k−1)
t ,

in which θ∗ cancels.

The condition (2.10) involves two more “hyperparameters” r and α . The param-

eter r in (2.10) specifies the selected loss function. To provide a stable performance

of the method and to minimize the Monte Carlo error we suggest the choice r = 1/2 .

The parameter α is similar to the test level parameter, and, exactly as in the testing

setup, its choice depends upon the subjective requirements on the procedure. Small

values of α mean that we put more attention to the performance of the methods

in the time homogeneous (parametric) situation and such a choice leads to a rather

conservative procedure with relatively large critical values. Increasing α would result

in a decrease of the critical values and an increase of the sensitivity of the method

to the changes in the underlying parameter θt at cost of some loss of stability in

the time homogeneous situation. For the most of applications, a reasonable range of

values α is between 0.2 and 1. Section 4 presents a small simulation study which

demonstrates the dependence of the critical values on the parameters r and α .

It is important to note that the “hyperparameters” r and α are global and their

proper choice depends on the particular application while the estimation procedure

is local and it constructs the estimate θ̂t separately at each point. The parameters

r and α can be selected in a data driven way by fixing some objective function, e.g.,

by minimizing the forecasting error, see Section 2.5, however, we prefer to keep this

choice free for the user.

Below we present one way of selecting the critical values zk using Monte Carlo

simulations from the parametric model successively, starting from k = 1 . To specify

the contribution of z1 in the final risk of the method, we set all the remaining values

z2, . . . , zK−1 equal to infinity: z2 = . . . = zK−1 = ∞ . Now, for every particular z1 ,

the whole set of critical values zk is fixed and can run the procedure leading to the

estimates θ̂
(k)
t (z1) for k = 2, . . . , K . The value z1 is selected as the minimal one for
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which

IEθ∗
∣∣NkK

(
θ̃

(k)
t , θ̂

(k)
t (z1)

)∣∣r ≤ αrr

K − 1
, k = 2, . . . , K. (2.11)

Such a value exists because the choice z1 = ∞ leads to θ̂
(k)
t (z1) = θ̃

(k)
t for all k . No-

tice that the rule of “early stop” (the procedure terminates and sets θ̂
(k)
t = . . . , θ̂

(K)
t =

θ̂
(k−1)
t if γk = 0 ) is important here, otherwise zk = ∞ leads to γk = 1 and θ̂

(k)
t = θ̃

(k)
t

for all k ≥ 2 .

Next, with z1 fixed in this way, we select z2 . The method is similar: set z3 =

. . . = zK−1 = ∞ and play with z2 . Every particular value of z2 determines the whole

set of critical values z1, z2,∞, . . . ,∞ . The procedure with such critical values results

in the estimates θ̂
(k)
t (z1, z2) for k = 3, . . . , K . We select z2 as the minimal value

which fulfills

IEθ∗
∣∣NkK

(
θ̃

(k)
t , θ̂

(k)
t (z1, z2)

)∣∣r ≤ 2αrr

K − 1
, k = 3, . . . , K. (2.12)

Such a value exists because the choice z2 = ∞ provides a stronger inequality (2.11).

We continue this way for all k < K . Suppose z1, . . . , zk−1 have been already fixed.

We set zk+1 = . . . = zK−1 = ∞ and play with zk . Every particular choice of zk leads

to the estimates θ̂(m)(z1, . . . , zk) for m = k + 1, . . . , K coming out of the procedure

with the parameters z1, . . . , zk,∞, . . . ,∞ . We select zk as the minimal value which

fulfills

IEθ∗
∣∣NlK

(
θ̃

(l)
t , θ̂

(l)
t (z1, . . . , zk)

)∣∣r ≤ kαrr

K − 1
, l = k + 1, . . . , K. (2.13)

By simple induction arguments one can see that such a value exists and that the final

procedure with the such defined parameters fulfills (2.10).

Note that the proposed Monte Carlo procedure heavily relies on the joint distribu-

tion of the estimates θ̃
(1)
t , . . . , θ̃

(K)
t under the parametric measure IPθ∗ . In particular,

it automatically accounts for the correlation between the estimates θ̃
(k)
t .

It is also worth mentioning that the numerical complexity of the proposed proce-

dure is not very high. It suffices to generate once M samples from IPθ∗ and compute

and store the estimates θ̃
(k,m)
t for every realization, m = 1, . . . ,M and k = 1, . . . , K .

The SSA procedure operates with the estimates θ̃
(k)
t and there is no need to keep

the samples themselves. Now, with the fixed set of parameters zk , computing the

estimates θ̂
(k)
t requires only the finite number of operations proportional to K . One
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can roughly bound the total complexity of the Monte Carlo study by CMK2 for

some fixed constant C .

Below we present some numerical results for the proposed procedures for selecting

the critical values. We first specify our setup. Then we illustrate how the resulting

critical values depend on the other “hyperparameters” like r and α .

The parameters {ηk} defining the weighting scheme W
(k)
t are fixed by setting

the values c, a, η1 .We select c = 0.01 , a = 1.25 and η1 = 0.6 . We also restrict the

largest ηK to be smaller than η∗ = 0.985 .

To understand the impact of using a continuous aggregation kernel, we also con-

sider the LMS procedure which comes out of the algorithm for the uniform aggregation

kernel Kag(u) = 1(u ≤ 1) .

For the above defined family of localizing schemes, the critical values zk of the

SSA and LMS procedures are fixed by the method from Section 2.4. The coefficients

{ηk} , the corresponding local window width Mk and the resulting critical values are

reported in Table 1. An interesting observation is that the first critical value z1 is

relatively small compared with the second and third values. A possible explanation is

that the first two localizing schemes W
(1)
t and W

(2)
t are close to each other leading

to a strong correlation between the estimates θ̃
(1)
t and θ̃

(2)
t . The parameter z1 is

responsible just for the risk associated with the discrepancy N2K(θ̃
(2)
t , θ̃

(1)
t ) which

can be bounded with a high probability by a relatively small value z1 .

Next few numerical results illustrate the influence of the parameters r , α , a ,

and c on the critical values zk .

The sequences of the critical values zk for the SSA procedure for different combi-

nations of r , α , a , and c are detailed in Table 2. We start with the default choice

and then slightly vary one parameter fixing the others to the default.

The numerical results can be summarized as follows:

• r (Default choice: r = 0.5 ): The parameter r is the power of the loss function.

Our numerical results confirm that the growth of the power loss results in an

increase of the critical values and hence, in a more conservative and less sensitive

procedure, see Section 2.4.

• α (Default choice: α = 1 ): As already mentioned, the parameter α has the

same meaning as the test level. Correspondingly, a decrease of α results in an

increase of zk and hence, in a less sensitive procedure.
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k ηk Mk Nk zk (SSA) zk (LMS)

1 0.600 9 2.485 0.192 0.192

2 0.680 11 3.095 0.548 0.141

3 0.744 15 3.872 0.587 0.091

4 0.795 20 4.843 0.220 0.065

5 0.836 25 6.045 0.134 0.053

6 0.869 32 7.555 0.145 0.043

7 0.895 41 9.446 0.117 0.035

8 0.916 52 11.806 0.087 0.030

9 0.933 66 14.759 0.076 0.025

10 0.946 83 18.446 0.065 0.020

11 0.957 104 23.051 0.050 0.016

12 0.966 131 28.816 0.037 0.012

13 0.973 165 36.024 0.022 0.007

14 0.978 207 45.029 0.015 0.001

15 0.982 259 56.280

Table 1: Critical values of the SSA and LMS methods w.r.t. the default choice:
c = 0.01 , a = 1.25 , η1 = 0.6 , r = 0.5 and α = 1 .

• a (Default choice: a = 1.25 ): This parameter specifies how dense is the set

of possible values ηk . The values of a close to one result in a rather dense

set which becomes more and more rare with the increase of a . Therefore, for

smaller a -values we have more estimates to select between. This can be helpful

for improving the accuracy of approximation and thus, for reducing the bias of

estimation. This improvement is however, at cost of some loss of sensitivity,

because the growth of K requires more conditions to be checked. Note also

that our theoretical upper bound for the critical values zk from Theorem 2.7

presented later linearly increases with K . From the other side, the use of a

relatively small a results in a strong correlation between the estimates θ̃
(k)
t

which leads to a decrease of the critical values zk . Figure 2 shows the critical

values zk for the default choice ( K = 15 ), a = 1.5 ( K = 9 ) and a = 1.1

( K = 34 ).

• c (Default choice: c = 0.01 ): The parameter c specifies the cutting point
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k default r = 0.3 r = 0.7 r = 1.0 α = 0.5 α = 0.7 α = 1.5 c = 0.005 c = 0.02

1 0.192 0.122 0.294 0.578 0.246 0.225 0.170 0.198 0.342
2 0.548 0.280 0.921 1.547 0.691 0.603 0.439 0.500 0.602
3 0.587 0.236 1.055 1.690 0.933 0.757 0.421 0.568 0.513
4 0.220 0.108 0.413 0.764 0.415 0.285 0.155 0.209 0.190
5 0.134 0.079 0.173 0.193 0.155 0.151 0.114 0.131 0.177
6 0.145 0.075 0.242 0.407 0.219 0.178 0.104 0.143 0.161
7 0.117 0.065 0.204 0.549 0.202 0.158 0.082 0.111 0.116
8 0.087 0.053 0.120 0.206 0.137 0.112 0.066 0.086 0.091
9 0.076 0.046 0.105 0.120 0.114 0.095 0.053 0.075 0.081
10 0.065 0.040 0.095 0.144 0.107 0.087 0.043 0.064 0.069
11 0.050 0.032 0.069 0.103 0.093 0.070 0.030 0.049 0.052
12 0.037 0.025 0.044 0.050 0.069 0.054 0.019 0.036 0.039
13 0.022 0.017 0.024 0.020 0.053 0.037 0.008 0.022 0.024
14 0.015 0.022 0.002 0.001 0.066 0.039 0.001 0.014 0.016

rr 0.401 0.535 0.321 0.252 0.401 0.401 0.401 0.400 0.403

Table 2: Sensitivity analysis: comparison of the SSA critical values zk .

of the exponential smoothing window. As one can expect, this value has only

minor influence on the critical values and on the whole procedure. This is in

agreement with our numerical results.

2.5 Parameter Tuning by Minimizing the Forecast Errors

The proposed procedure is local in the sense that the the adaptation (model selection

or aggregation) is performed at every time instant t separately. However, the pro-

cedure involves some global parameters like the loss power r or the level α . Their

choice can be done in a data-driven way by minimizing the global forecasting error as

suggested in Cheng et al. (2003). The estimated value θ̂t can be viewed as a forecast

for the volatility for a short forecasting horizon h . So, a good performance of the

method means a relatively small forecasting error which is measured as

mean h -step-ahead forecasting errors:
T∑

t=t0

1

h

h−1∑
m=0

∣∣yt+m − θ̂t

∣∣p
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Figure 2: Sequences of critical values zk for the default choice a = 1.25 ( K = 15 ),
a = 1.5 ( K = 9 ) and a = 1.1 ( K = 34 ) w.r.t. the smoothing parameter ηk for
k = 1, . . . , K − 1 .

for some power p > 0 .

2.6 Some Theoretical Properties of the SSA Estimate

Belomestny and Spokoiny (2006) claimed some “oracle” property of the SSA estimate

θ̂t . However, the results presented there only apply to the local maximum likelihood

estimates obtained from independent observations. Here we show that the similar

results continue to apply in the sub-Gaussian case and in the time series framework.

The first result gives an upper bound for the critical values zk .

Theorem 2.7 (Belomestny and Spokoiny (2006, Theorem 5.1)). Let the in-

novations εt be i.i.d. standard normal. Assume (MD) and (Kag) . There are three

constants a0, a1 and a2 depending on u0 , u and u0 only such that the choice

zk = a0 + a1 log α−1 + a2r log Nk

ensures (2.10) for all k ≤ K .

The result and the proof extend in a straightforward way to the case of the sub-
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Gaussian innovations using the result of Theorem 2.4. In that case, the constants

a0, a1 , and a2 also depend on µ0 shown in Theorem 2.4.

The construction of the procedure ensures some risk bound for the adaptive esti-

mate θ̂ in the time homogeneous situation, see (2.10). It is natural to expect that

a similar behavior is valid in the situation when the time varying parameter θt does

not significantly deviates from some constant value θ . Here we quantify this property

and show how the deviation from the parametric time homogeneous situation can be

measured.

Denote by I
(k)
t the support of the k th weighting scheme corresponding to the

memory parameter ηk : I
(k)
t = [t−Mk, t] , k = 1, . . . , K . Define for each k and θ

∆
(k)
t (θ) =

∑

s∈I
(k)
t

IK
(
Pθs , Pθ

)
, (2.14)

where IK
(
Pθs , Pθ

)
means the Kullback-Leibler distance between two distributions

of Ys with the parameter values θs and θ . In the case of Gaussian innovations,

IK
(
Pθs , Pθ

)
= K(θs, θ) . The value ∆

(k)
t (θ) can be considered as a distance from the

time varying model at hand to the parametric model with the constant parameter θ

on the interval I
(k)
t .

Note that the volatility θs is in general a random process. Thus, the value ∆
(k)
t (θ)

is random as well. Our small modeling bias condition means that there is a number

k∗ such that the modeling bias ∆
(k)
t (θ) is small with a high probability for some θ

and all k ≤ k∗ . Consider the corresponding estimate θ̂
(k∗)
t obtained after the first

k∗ steps of the algorithm. The next “propagation” result claims that the behavior of

the procedure under the small modeling bias condition is essentially the same as in

the pure parametric situation.

Theorem 2.8. Assume (Θ) , (MD) , and (2.4). Let θ and k∗ be such that

max
k≤k∗

IE∆
(k)
t (θ) ≤ ∆ (2.15)

for some ∆ ≥ 0 . Then for any r > 0

IE log

(
1 +

N r
k∗K

r
(
θ̃

(k∗)
t , θ̂

(k∗)
t

)

αRr

)
≤ 1 + ∆,

IE log

(
1 +

N r
k∗K

r
(
θ̃

(k∗)
t , θ

)

Rr

)
≤ 1 + ∆
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where Rr = rr in the case of Gaussian innovations and Rr = µ−r
0 rr in the case of

sub-Gaussian innovations with the constant µ0 from Theorem 2.4.

Proof. The proof is based on the following general result.

Lemma 2.9. Let IP and IP0 be two measures such that the Kullback-Leibler diver-

gence IE log(dIP/dIP0) , satisfies

IE log(dIP/dIP0) ≤ ∆ < ∞.

Then for any random variable ζ with IE0ζ < ∞

IE log
(
1 + ζ

) ≤ ∆ + IE0ζ.

Proof. By simple algebra one can check that for any fixed y the maximum of the

function f(x) = xy − x log x + x is attained at x = ey leading to the inequality

xy ≤ x log x − x + ey . Using this inequality and the representation IE log
(
1 + ζ

)
=

IE0

{
Z log

(
1 + ζ

)}
with Z = dIP/dIP0 we obtain

IE log
(
1 + ζ

)
= IE0

{
Z log

(
1 + ζ

)}

≤ IE0

(
Z log Z − Z

)
+ IE0(1 + ζ)

= IE0

(
Z log Z

)
+ IE0ζ − IE0Z + 1.

It remains to note that IE0Z = 1 and IE0

(
Z log Z

)
= IE log Z .

The first assertion of the theorem is just a combination of this result and the

condition (2.10). The second follows in a similar way from Theorem 2.3 for the case

of Gaussian innovations and from Theorem 2.4 in the sub-Gaussian case.

Due to the “propagation” result, the procedure performs well as long as the “small

modeling bias” condition ∆k(θ) ≤ ∆ is fulfilled. To establish the accurate result for

the final estimate θ̂ , we have to check that the aggregated estimate θ̂k does not

vary much at the steps “after propagation” when the divergence ∆k(θ) from the

parametric model becomes large.

Theorem 2.10 (Belomestny and Spokoiny (2006), Theorem 5.3). It holds for

every k ≤ K

NkK
(
θ̂

(k)
t , θ̂

(k−1)
t

) ≤ zk. (2.16)
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Moreover, under (MD) , it holds for every k′ with k < k′ ≤ K

NkK
(
θ̂

(k′)
t , θ̂

(k)
t

) ≤ a2c2
u zk (2.17)

where cu = (u−1/2−1)−1 , a is a constant depending on Θ only, and zk = maxl≥k zl .

Combination of the “propagation” and “stability” statements implies the main

result concerning the properties of the adaptive estimate θ̂t .

The result claims again the “oracle” accuracy N
−1/2
k∗ for θ̂ up to the log factor

zk∗ . We state the result for r = 1/2 only. An extension to an arbitrary r > 0 is

obvious.

Theorem 2.11 (“Oracle” property). Assume (Θ) , (MD) , (2.4), and let IE∆
(k)
t ≤

∆ for some k∗ , θ and ∆ . Then

IE log

(
1 +

N
1/2
k∗ K1/2

(
θ̂t, θ

)

aR1/2

)
≤ log

(
1 + cuR

−1
1/2

√
zk∗

)
+ ∆ + α + 1

where cu is the constant from Theorem 2.10 and R1/2 from Theorem 2.8.

Remark 2.2. Before proving the theorem, we briefly comment on the result claimed.

By Theorem 2.8, the “oracle” estimate θ̃
(k∗)
t ensures that the estimation loss K1/2

(
θ̃

(k∗)
t , θ

)

is stochastically bounded by Const. /N
1/2
k∗ where Const. is a constant depending on

∆ from the condition (2.15). The “oracle” result claims the same property for the

adaptive estimate θ̂t but the loss K1/2(θ̂t, θ) is now bounded by Const.
√

zk∗/Nk∗ .

By Theorem 2.7, the parameter zk∗ is at most logarithmic in the sample size. Hence,

the accuracy of adaptive estimation is the same in order as for the “oracle” up to

a logarithmic factor which can be viewed as “payment for adaptation”. Belomestny

and Spokoiny (2006) argued that the “oracle” result implies rate optimality of the

adaptive estimate θ̂ and that the log-factor zk∗ cannot be removed or improved.

Proof. Similarly to the proof of Theorem 2.10,

K1/2
(
θ̂t, θ

) ≤ aK1/2
(
θ̃

(k∗)
t , θ

)
+ aK

(
θ̃

(k∗)
t , θ̂

(k∗)
t

)
+ a

k̂∑

l=k∗+1

K1/2
(
θ̂

(l)
t , θ̂

(l−1)
t

)

≤ aK1/2
(
θ̃

(k∗)
t , θ

)
+ aK1/2

(
θ̃

(k∗)
t , θ̂

(k∗)
t

)
+ acu

√
zk∗/Nk∗ .

This, the elementary inequality log(1 + a + b) ≤ log(1 + a) + log(1 + b) for a, b ≥ 0
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implies similarly to Theorem 2.8 that

IE log

(
1 +

N
1/2
k∗ K1/2

(
θ̂t, θ

)

aR1/2

)

≤ log
(
1 +

cu

√
zk∗

R1/2

)
+ IE log

(
1 +

N
1/2
k∗ K1/2

(
θ̃

(k∗)
t , θ̂

(k∗)
t

)
+ N

1/2
k∗ K1/2

(
θ̃

(k∗)
t , θ

)

R1/2

)

≤ log
(
1 +

cu

√
zk∗

R1/2

)
+ ∆ + α + 1

as required.

3 Accounting for Heavy Tails

The proposed local exponential smoothing methods and the calculation of the critical

values are valid in the Gaussian framework. They can be easily extended to the

sub-Gaussian framework considered in Section 2.2. Financial time series however

often indicates a heavily tailed behaviour which goes far beyond the sub-Gaussian

case. In this section, we extend the methods in the normal inverse Gaussian (NIG)

distributional framework which can well describe the heavy-tailed behavior of the real

series. The density is of the form:

fNIG(ε; φ, β, δ, µ) =
φδ

π

K1

(
φ
√

δ2 + (ε− µ)2
)

√
δ2 + (ε− µ)2

exp{δ
√

φ2 − β2 + β(ε− µ)},

where the distributional parameters fulfill conditions: µ ∈ IR, δ > 0 and |β| ≤ φ ,

and Kλ(·) is the modified Bessel function of the third kind which is of the form:

Kλ(y) =
1

2

∫ ∞

0

yλ−1 exp{−y

2
(y + y−1)} dy.

We refer to Prause (1999) for a detailed description of the NIG distribution.

One can easily see that the exponential moment IE{exp(λε2
t )} of the squared

NIG innovations ε2
t does not exist. Hence, the results of Section 2.2 do not apply to

NIG innovations. Apart the theoretical reasons, the quasi MLE θ̃t computed from

the squared returns Yt with the heavy-tailed innovations indicates high variability

and is very volatile. To ensure a robust and stable risk management, we suggest to

replace the squared returns Yt by their p -power. The choice of 0 ≤ p < 1/2 ensures
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that the resulting “observations” yt,p = Y p
t have exponential moments, see Chen et

al. (2005). This enables us to apply the proposed SSA procedure to the transformed

data yt,p to estimate the parameter ϑt . One easily gets

IE{yt,p | Ft−1} = IE{Y p
t | Ft−1} = θp

t IE|εt|2p = θp
t Cp = ϑt,p (3.1)

where Cp = IE|εt|2p is a constant and relies on p and the distribution of the innova-

tions εt which is assumed to be NIG. Note that the equation (3.1) can be rewritten

as

yt,p = ϑt,pε
2
t,p

where the “new” standardized squared innovations

ε2
t,p = yt,p/ϑt,p = Y p

t /(Cpθ
p
t )

satisfy IE{ε2
t,p | Ft−1} = 1 .

An important question for this application is the choice of parameters of the

method, especially of the critical values zk . The formal application of the approach

of Section 2.4 requires to use the underlying NIG distribution of the innovations εt for

the Monte Carlo simulations. This means that one has to first simulate the NIG data

Yt under the time homogeneous situation Yt = θ∗ε2
t with NIG εt and then compute

the transformed data yt,p for the calculation of “weak” estimates ϑ̃
(k)
t,p . This approach

would require the exact knowledge of the parameters of the NIG distribution of εt

which is difficult to expect in real life situation. On the other hand, the use of power

transformation with an appropriate choice of p makes the distribution of the “new”

innovations εt,p close to the Gaussian case. This suggests to apply the critical values

zk computed for the Gaussian case. Below in Section 4 we calculate critical values

zk given the true distributional parameters of the NIG innovations, which shows that

the use of Gaussian εt,p in the Monte Carlo simulations and the values of p around

1/2 works well and delivers almost the same results as if the true NIG distribution

for the εt ’s would be utilized.

The adaptive procedure delivers the estimate ϑ̂t,p of the “new” variable ϑt,p . To

get the estimate of the original variance θt from the relation (3.1), we need to know

the constant Cp which depends upon the parameters of the NIG distribution. We

suggest two ways to fix this constant. One is based on the fact that the standardized
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innovations ε2
t = Yt/θt should satisfy IEε2

t = 1 . The estimates θ̂t = ϑ̂
1/p
t,p /C

1/p
p lead

to the estimated squared innovations ε̃2
t = Yt/θ̂t = C

1/p
p Yt/ϑ̂

1/p
t,p , so that an estimate

of Cp can be obtained from the equation

n−1C1/p
p

t1∑
t=t0

Yt

ϑ̂
1/p
t,p

= 1, (3.2)

where n = t1−t0+1 means the number of observations based on which the estimation

is done. A small problem with this approach is that the presented sum of Yt/ϑ̂
1/p
t,p is

quite sensitive to extreme values of Yt and even one or two outliers can dramatically

destroy the resulting estimate.

The other method of fixing the constant Cp is based on the proposal of Section 2.5

to minimize the mean of forecasting error. Namely, we define the value Cp in a way

to minimize

t1∑
t=t0

1

h

h−1∑
m=0

∣∣Yt+m − θ̂t

∣∣p =

t1∑
t=t0

1

h

h−1∑
m=0

∣∣Yt+m − ϑ̂
1/p
t,p /C1/p

p

∣∣p.

After the constant Cp is estimated one can use the estimated returns ε̃t for fixing

the NIG parameters which will be used for our risk evaluation.

The adaptive procedure for the NIG innovations is summarized as:

1. Do power transformation to the squared returns Yt : Yt,p = Y p
t .

2. Compute the estimate ϑ̂t,p of the parameter ϑt,p from Yt,p applying the critical

values zk obtained for the Gaussian case.

3. Estimate the value Cp from the equation (3.2).

4. Compute the estimates θ̂t = (ϑ̂t,p/Cp)
1/p and identify the NIG distributional

parameters from ε̃t = Rtθ̂t

−1/2
.

5. (Optional) Calculate critical values zk with the identified NIG parameters using

Monte Carlo simulation. Repeat the above procedure to estimate θt .

All the theoretical results from Section 2.6 applies to the such constructed es-

timate ϑ̂t,p of the parameter ϑt,p if p < 1/2 is taken. This automatically yields

the “oracle” accuracy for the back transformed estimate θ̂t of the original volatility

θt . For reference convenience, we present the “oracle” result. Below Pϑ means the
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distribution of Yt,p = ϑ|εt|2p with NIG εt . Note that neither the procedure nor the

result does not assume that the parameter of the NIG distribution are known.

Theorem 3.1 (“Oracle” property for NIG innovations). Let the innovations

εt be NIG and p < 1/2 . Assume (Θ) , (MD) , and let, for some k∗ , ϑ and ∆ ,

IE
∑
t∈I

IK
(
Pϑt,p , Pϑ

) ≤ ∆.

Then

IE log

(
1 +

N
1/2
k∗ K1/2

(
ϑ̂t,p, ϑ

)

aR1/2

)
≤ log

(
1 + cuR

−1
1/2

√
zk∗

)
+ ∆ + α + 1

where cu is the constant from Theorem 2.10 and R1/2 from Theorem 2.8.

4 Simulation Study

This section aims to compare the performance of the proposed adaptive procedures

and the well established stationary ES estimation with the default parameter η =

0.94 and with the optimized parameter for the given data by hand. We consider two

versions of the SSA procedure: one with the default parameter set and the other one

with the uniform kernel Kag which does a model selection and therefore, referred to

as LMS.

In the simulation study, we generate 1000 stochastic processes driven by the

hidden Markov model: Rt =
√

θtεt with εt either standard normal or NIG with

parameters φ = 1.340 , β = −0.015 , δ = 1.337 , µ = 0.010 . These NIG parameters

are in fact the maximum likelihood estimates of the devolatilized Deutsche Mark

to the US Dollar daily rates (innovations) from 1979/12/01 to 1994/04/01. The

data is available at the FEDC (http://sfb649.wiwi.hu-berlin.de/fedc). The designed

volatility process has 7 states : 0.2, 0.25, 0.3, 0.4, 0.5, 0.7 and 1 , see Figure 3. The

sample size of the stochastic processes is T = 1000 . The first 300 observations

are reserved as a training set for the very beginning volatility estimations since the

largest smoothing parameter ηK in the adaptive procedure corresponds to 259 past

observations.

In the simulation study, we apply the power transform with the frontier value

p = 0.5 as a default choice. We also present a small sensitivity analysis by varying
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values of p and show the accuracy of estimation based on the critical values driven

in the Gaussian and NIG distributional assumptions respectively. Two criteria are

used to measure the accuracy of estimation:

1. Sum of the absolute error (AE) of the estimated volatility.

AE =
T∑

t=301

∣∣θ̂1/2
t − θ

1/2
t

∣∣.

2. Ratio of the AE (RAE) of the adaptive approach to that of the stationary ES.

RAE =
AESSA
AEES

or
AELMS
AEES

The volatility estimates of one realization with εt ∼ N(0, 1) is displayed in Figure

3, by which the adaptive SSA estimates fast react to jumps of the process. The LMS

displays the similar pattern and the difference between these two adaptive approaches

is not significant. It shows that the adaptive estimates better illustrate the movement

of the generated volatility process than the ES.

Over the 1000 simulations with the Gaussian innovations, the LMS with the

average AE of 68.84 and the SSA with 69.55 are more accurate than the “optimized”

stationary ES 82.50 with η = 0.94 . The corresponding average values of RAE of

the SSA is 84.42% indicating a roughly 16% improvement over the ES. Moreover,

Figure 4 illustrates the boxplot of RAEs w.r.t. not only the adaptive but also the

stationary ES approaches with smoothing parameters in the default sequence of {ηk}
for k = 1, . . . , 15 , see Table 1. The best performance of the stationary ES is realized

for η = 0.895 that corresponds to k = 7 . The adaptive ES approaches, namely

the SSA and the LMS, show even better performance than the “best” stationary ES

approach. The figure also approves that a potential limitation of the SSA compared

to the LMS is that it may magnify the bias through the summation as mentioned

before.

Table 3 summarizes the estimation errors w.r.t. different values of the four pa-

rameters analyzed in Section 2.4. The comparison of the RAEs reasons the default

choice in the SSA approach.

Given the simulated heavy-tailed data with the NIG innovations, we follow the

procedure explained in Section 3 by first applying the critical values zk computed

for the Gaussian case to the transformed data. Furthermore, we calculate the critical
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Figure 3: Estimated volatility process based on one realized simulation data with
εt ∼ N(0, 1) . The “optimized” ES ( η = 0.94 ), LMS and SSA estimates and the
generated volatility process are displayed.

def. SSA r, def. 0.5 α, def. 1 a, def. 1.25 c, def. 0.01

0.3 0.7 1.0 0.5 0.7 1.5 1.1 1.5 0.005 0.02

0.84 0.85 0.87 0.92 0.88 0.86 0.84 0.84 0.86 0.84 0.85

Table 3: Average RAE of the 1000 simulation data sets with εt ∼ N(0, 1) , by which
the SSA method is applied w.r.t. several values of the parameters involved in the
adaptive approach. In the stationary ES, η = 0.94 is applied.

values given the true NIG distributional parameters in the Monte Carlo simulation

and reestimate the volatility following the adaptive procedure. Compared to the “op-

timized” ES, the SSA approach is sensitive to the structure shifts. One realization of

the estimated volatility process is displayed in Figure 5. In our study, we also mea-

sure the influence of the parameter p over a range from 0.1 to 1 on the estimation,

see Table 4. The default choice p = 0.5 for example results in an average value of

RAE with 90.27% over the 1000 simulations, indicating a better performance of the

adaptive method than the ”optimized” ES. The RAEs of the SSA estimates based

on the critical values under the Gaussian case and the NIG case are reported in the
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Figure 4: The boxplots of the RAEs of the SSA, LMS and ES with ηk for k =
1, . . . , K .

table as well. It is observed that the Gaussian-based critical values works well and

the accuracy of estimation is improved as the values of p are close to the default

choice.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CV N(0, 1) 1.09 1.08 1.06 1.03 0.99 0.94 0.91 0.90 0.90 0.91

CV NIG 1.01 0.96 0.93 0.91 0.90 0.90 0.90 0.90 0.90 0.91

Table 4: Average RAEs over 1000 simulated NIG data sets with different values of
p , by which p = 0.5 is default choice. Two sequences of critical values calculated
in the Gaussian case and given the true NIG parameters are used in the adaptive
procedure.

5 Application to Risk Analysis

The aim of this section is to illustrate the performance of the risk management ap-

proach based on the adaptive SSA procedure.
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Figure 5: Estimated volatility process based on one realized simulation data with
εt ∼ NIG(1.340,−0.015, 1.337, 0.010) . The ES ( η = 0.94 ) and SSA ( p = 0.5 and
critical values given the true NIG parameters) estimates and the generated volatility
process are displayed.

A sound risk management system is of great importance, because a large devalua-

tion in the financial market is often followed by economic depression and bankruptcy

of credit system. Therefore, it is necessary to measure and control risk exposures

using accurate methods. As mentioned before, a realistic risk management method

should account for nonstationarity and heavy tailedness of financial time series. In

this section, we implement the proposed local exponential smoothing approaches to

estimate the time-varying volatility and assume that the innovations are either NIG

or Gaussian distributed:

Rt =
√

θtεt, where εt ∼ N(0, 1) or εt ∼ NIG (5.1)

We consider here log-returns of three assets Microsoft (MC), Volkswagen (VW),

Deutsche Bank (DB) with daily closed price from 2002/01/01 to 2006/01/05 (972

observations) and of two exchange rates: EUR/USD (EURUSD) and EUR/JPY (EU-

RJPY) ranging from 1997/01/02 to 2006/01/05 (2332 observations). The data sets

have been provided by the financial and economic data center (FEDC) of the Col-
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laborative Research Center 649 on Economic Risk of the Humboldt-Universität zu

Berlin. The NIG innovations (standardized returns) are assumed to be stationary.

The KPSS tests of stationarity are not rejected at the 90% confidence level, see Table

5.

data vola mean s.d. skewness kurtosis KPSS

MC SSA 0.001 1.235 0.261 10.494 0.059

LMS -0.004 1.204 0.065 10.173 0.085

ES -0.003 1.071 0.545 12.492 0.036

VW SSA -0.063 1.150 0.493 9.530 0.065

LMS -0.061 1.132 0.477 10.382 0.076

ES -0.054 1.050 0.680 10.016 0.056

DB SSA -0.097 1.142 -0.661 7.868 0.317

LMS -0.100 1.132 -0.631 8.855 0.308

ES -0.087 1.025 -0.558 6.561 0.242

EURUSD SSA -0.008 1.091 -0.172 4.190 0.317

LMS -0.006 1.074 -0.051 4.175 0.258

ES -0.014 1.043 -0.278 3.773 0.270

EURJPY SSA -0.007 1.121 0.164 4.942 0.313

LMS -0.006 1.092 0.186 4.953 0.274

ES -0.010 1.051 0.164 4.646 0.292

Table 5: Descriptive statistics of the standardized returns. The critical value of the
KPSS test without trend is 0.347 (90%).

Two mainly used risk measures at probability pr , Value-at-Risk (VaR) and ex-

pected shortfall (ExS), are calculated:

VaRt,pr = −quantile(Rt)pr = −
√

θt ∗ quantile(εt)pr

ExS = IE{−Rt| −Rt > VaRt,pr}.

The performance of the proposed local exponential smoothing approaches is evaluated

from the viewpoints of regulator, investors and internal supervisor.

Minimum regulatory requirement: The main goals of risk regulatory are to

ensure the adequacy of capital and restrict the happening of large losses of finan-

cial institutions. It regulates that the financial institutions shall reserve appropriate
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amount of capital related to 1% risk level of their portfolio, namely the market risk

charge (RC), in the central bank:

RCt = max

(
Mf

1

60

60∑
i=1

VaRt−i, VaRt

)
(5.2)

where the multiplicative factor Mf has a floor value 3 . According to the modification

of the Basel market risk paper in 1997, financial institutions are allowed to use their

internal models to measure the market risks. The internal models are verified in

accordance with the “traffic light” rule that counts the number of exceedances over

VaR at 1% probability spanning the last 250 days and identifies the multiplicative

factor Mf in the form (5.2), see Table 6, cited from Franke, Härdle and Hafner (2004).

It is clear that an increase of Mf or concerning an extremal risk level such as 0.5%

Number of exceedances Increase of Mf Zone

0 bis 4 0 green

5 0.4 yellow

6 0.5 yellow

7 0.65 yellow

8 0.75 yellow

9 0.85 yellow

More than 9 1 red

Table 6: Traffic light as a factor of the exceeding amount.

results in a large amount of risk charge and consequently a low ratio of profit. This

observation indicates that the regulatory rule in fact motivates financial institutions

to control VaR at 1.6% = 4
250

level instead of 1% . Therefore an internal model is

particularly desirable by generating an empirical probability p̂r that is smaller or

equal to 1.6% ,

p̂r =
number of exceedances

number of total observations
,

and simultaneously requiring risk charge as small as possible.

Table 7 gives a detailed report of risk analysis, which shows that all the considered

models locate either in the green or yellow zone. The Gaussian-based adaptive ES
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models successfully fulfill the minimal requirement of regulatory. To be more specific,

the LMS for MC, VW and EURUSD and the SSA for DB generate the favorable

results. The EURJPY data is extraordinary by which the models with the Gaussian

noise can not fulfill the regulatory requirement. A compensate choice is the ES with

the NIG noise.

Investors’ review: From the viewpoint of investors, it is important to measure the

size of loss instead of the frequency of loss since investors suffer loss at bankruptcy.

Even in the “best” case, the loss equals to the difference between the total realized

loss and the reserved risk capital. As a consequence, investors care the ExS more

than the VaR.

Table 7 shows that the Gaussian-based model in general generates larger values

of ExS than the NIG-based model. Furthermore, the adaptive ES are desirable for

investors concerning extreme risk level. The ExS values of EURJPY at the expected

0.5% level, for example, are 0.231 (SSA), 0.255 (LMS) and 0.263 (ES) with NIG

innovations. It is clear that the SSA procedure is superior to the other two.

Internal supervisory review: It is important for internal supervisory to exactly

measure the market risk exposures before controlling them. Based on this criterion,

it is rational to choose a model that generates the empirical risk level p̂r as close as

possible to the target one:

In the real data analysis, the models with the NIG innovations and using the local

exponential smoothing approaches generate more precise empirical values than other

alternative methods at two risk levels 0.5% and 1% .

On summary, the models based on the local volatility estimates and the NIG

distributed residuals best suit the requirements of investors and supervisory. The VaR

models based on the adaptive approaches and the normal distributional assumption,

on the contrary, is successful to fulfill the regulatory requirement.
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