Long Memory Persistence in the Factor of Implied Volatility Dynamics

Wolfgang Härdle*
Julius Mungo*

* Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de
ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin
Long Memory Persistence in the Factor of Implied Volatility Dynamics

Wolfgang Karl Härdle1, Julius Mungo2

1CASE – Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin, Germany
2CASE – Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin, Germany; e-mail: mungo@wiwi.hu-berlin.de; phone: +49(0)30 2093-5654
Abstract

The volatility implied by observed market prices as a function of the strike and time to maturity form an Implied Volatility Surface (IVS). Practical applications require reducing the dimension and characterize its dynamics through a small number of factors. Such dimension reduction is summarized by a Dynamic Semiparametric Factor Model (DSFM) that characterizes the IVS itself and their movements across time by a multivariate time series of factor loadings. This paper focuses on investigating long range dependence in the factor loadings series. Our result reveals that shocks to volatility persist for a very long time, affecting significantly stock prices. For appropriate representation of the series dynamics and the possibility of improved forecasting, we model the long memory in levels and absolute returns using the class of fractional integrated volatility models that provide flexible structure to capture the slow decaying autocorrelation function reasonably well.

JEL classification: C14, C32, C52, C53, G12

Keywords: Implied Volatility, Dynamic Semiparametric Factor Modeling, Long Memory, Fractional Integrated Volatility Models

Acknowledgement: This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 ‘Economic Risk’
1 Introduction

As a measure of the standard deviation of the daily range of price movements, volatility is an important determinant of the riskiness of an asset, a crucial parameter in derivative pricing such as options. Findings across several asset markets have reported high persistence of volatility shocks and that over sufficiently long periods of time, volatility is typically stationary with "mean reverting" behavior, [Bollerslev and Jubinski (1999)]. Such series are characterized by distinct but nonperiodic cyclical patterns and their behavior is such that current values are not only influenced by immediate past values but values from previous time periods, allowing for persistence or long memory. Long memory describes the correlation structure of a series at long lags.

It is well known that the volatility implied by observed option prices as a function of the strike and time to maturity form an Implied Volatility Surface (IVS). For each day the IVS forms a high dimensional object that has unknown stochastic behavior that needs to be analyzed. For practical applications such as in risk management, it is desirable to reduce the dimension of this object and characterize its dynamics through a small number of factors. Such dimension reduction may be summarized by a Dynamic Semiparametric Factor Models (DSFM) that characterize the IVS and their movements across time by a multivariate time series of factor loadings, [Borak et al. (2005), Fengler et al. (2007) and Borak et al. (2007)].

The DSFMs approximate the implied volatility surface by regressing log-implied volatility on a two-dimensional covariate containing moneyness and time-to-maturity. To introduce this model, denote by $Y_{t,j} = \log\{\hat{\sigma}_{t,j}(\kappa, \tau)\}$, the log-implied volatility where $t = 1, \ldots, I$ is an index of time, in this case the number of the day, and $j = 1, \ldots, J_t$ is the number of IV observations on day t. Let $X_{t,j} = (\kappa_{t,j}, \tau_{t,j})$ be a two-dimensional covariate where $\kappa_{t,j}$ is a moneyness matrix and $\tau_{t,j}$ denotes time-to-maturity. Moneyness is defined as $\kappa_{t,j} = \frac{K_{t,j}}{F_{t,j}}$ where $K_{t,j}$ is a strike and $F_{t,j} = S_{t}e^{(r_{t,j}, \tau_{t,j})}$ the underlying futures price belonging to the option trade (t, j). The model is expressed as:

$$Y_{t,j} = \sum_{k=0}^{K} z_{t,k} m_{k}(X_{t,j}) + \varepsilon_{t,j}$$

where $z_{t,0} = 1$, m_{k} are smooth basis functions ($k = 0, \ldots, K$) and $z_{t,k}$ are time dependent weights or factor loadings. The IVS is assumed to be a weighted sum of the smooth functional factors, m_{k} and its dynamics is explained by
the stochastic behavior of the factor loadings, \(z_{t,k} \). Approximations of the factor loadings are obtained by fitting model (1) to the implied volatility observations and the functions \(m_k \) are estimated by orthogonal series estimators so that they have zero correlations among each other, Borak et al. (2005). The factor loadings \(z_t = (z_{t,1}, \ldots, z_{t,K})^\top \) forms an unobserved multivariate time series.

The estimates \(\hat{z}_{t,k} \) and \(\hat{m}_k \) are obtained in (1) as minimizers of the following least squares criterion:

\[
\sum_{t=1}^{I} \sum_{j=1}^{J_t} \left\{ Y_{t,j} - \sum_{k=0}^{K} \hat{z}_{t,k} \hat{m}_k \right\}^2 K_h(u - X_{t,j}) \, du, \tag{2}
\]

where \(K_h \) denotes a two-dimension kernel function, chosen as a product of one-dimensional kernels \(K_h(u) = k_{h_1}(u_1) \times k_{h_2}(u_2) \), where \(h = (h_1, h_2)^\top \) are bandwidths and \(k_h(v) = k(h^{-1}v)/h \) is a one-dimensional kernel function. The minimization procedure is iterative, searching through all functions \(\hat{m}_k : \mathbb{R}^2 \rightarrow \mathbb{R} \ (k = 0, \ldots, K) \) and time series \(\hat{z}_{tk} \in \mathbb{R} \ (t = 1, \ldots, I; k = 1, \ldots, K) \).

This paper applies the \textit{DSFM} on the German \textit{DAX} index market from 04.01.1999 to 25.02.2003. Figure 1 displays the implied volatility surface from the \textit{DSFM} fit for the DAX-Option on 2 May 2000, with moneyness between 0.8 and 1.12 and time to maturity between 0 and 0.5 years. Figure 2 shows three volatility-driving factors that could be interpreted in terms of level, slope and curvature factor. \(z_1 \) governs movements in the general level, \(z_2 \) is largely associated with changes in the slope and \(z_3 \) is closely related to dynamic changes in the curvature of the IVS.

The aim of this paper is to investigate dependence in the factor loadings of implied volatility strings because information on persistence can guide the search for economic explanation of the movements in asset returns as well as in risk management applications. Several research involving the autocorrelation functions of various volatility measures (squared, log-squared and absolute returns) have reported decay at a very slow mean-reverting hyperbolic rate, Ding et al. (1993), Bollerslev and Wright (2000) and Sibbertsen (2004). Our analysis follow this line of research on long range dependence investigation and modeling.
Figure 1: Implied volatility surface from DSFM fit for the DAX-Option on 2 May 2000, with moneyness between 0.8 and 1.12 and time to maturity between 0 and 0.5 years.

Figure 2: Time series plots in levels of three loading series from a DSFM fit for the DAX-Option analyzed from 04.01.1999 – 25.02.2003
First, we consider model independent tests for stationarity, $I(0)$ against fractional alternatives $I(d)$. We apply the rescaled variance test (V/S) of Giraitis et al. (1999) that uses the heteroscedastic and autocorrelation consistent (HAC) estimator of the variance, Newey and West (1987) for normalization and the semiparametric (LobRob) test of Lobato and Robinson (1998), that does not depend on a specific parametric form of the spectrum in the neighborhood of the zero frequency. We also apply the log-periodogram regression estimator (GPH) of Geweke and Porter-Hudak (1983) and the Gaussian Semiparametric estimator (GSP) of Robinson (1995a) in estimating the degree of long memory in the factor loadings series. Results are indicative of long-range dependence in the factor loadings series in levels and absolute returns. The first factor, z_1 can be interpreted as highly persistent and influences all options similarly, irrespective of maturity. The second factor z_2 gradually diminishes for longer maturities and the third factor z_3 governs large volatility changes in relatively short maturities.

Second, for appropriate representation of the series dynamics and the possibility of improved forecasting, we model long memory in volatility using the ARFIMA, FIGARCH and HYGARCH models. These models provide flexible structure that captures slow decaying autocorrelation reasonably well. In comparison, models in absolute returns have better performance, confirming the findings of Ding et al. (1993), that absolute returns are most appropriate indicator to represent the long memory volatility processes. Our results imply that shocks to the volatility will persist for long time, affecting the DAX stock prices significantly.

Such dependence or persistence will have importance economic consequences for short-term trading and long range investment strategies. Better option pricing may results from models that price and hedge derivative securities when there is prior information on long-memory volatility in terms of expectation on the potential level of volatility and the rate at which volatility changes. In the presence of long memory, Granger and Joyeux (1980), Geweke and Porter-Hudak (1983) have shown the possibility for improved price forecasting performance within a linear time series framework than with traditional procedures. Option pricing have also been shown to be significantly different when standard models are applied as compared to models allowing for long memory.

By applying the GARCH, EGARCH, FIEGARCH and IEGARCH models, Bollerslev and Mikkelsen (1996) have shown that the price of an option increases with the degree of integration. This means that GARCH models give the lowest price whereas the highest option price is obtained
for the \textit{IGARCH} model. For long memory alternative, [Herzberg and Sibbertsen (2004)] have shown that prices for the \textit{FIGARCH}, \textit{HYGARCH} are inbetween the \textit{GARCH} and \textit{IGARCH} prices. In addition to documented studies of the economic implications of long memory, [Cheung and Lai (1995), Wilson and Okunev (1999)], revealed that portfolio diversification decisions in the case of strategic asset allocation may become extremely sensitive to the investment horizon. There may be diversification benefits in the short and medium term, but not if the assets are held together over the long term if long memory is present. e.g., in a market that exhibits antipersistence, asset prices tend to reverse its trend in the short term thus creating short-term trading opportunities. In addition [Mandelbrot (1971)] has shown that in the presence of long memory the arrival of new market information cannot be fully arbitraged away. It is also known that the possibility of speculative profits as a result of superior long-range dependence model forecast would cast doubt on the basic tenets of market efficiency.

Motivated by evidence of long range dependence in the factor loadings levels and absolute returns, we perform estimation and prediction using the \textit{ARFIMA}, \textit{FIGARCH} and \textit{HYGARCH} models that are known to provide flexible structure to capture slow decaying autocorrelation reasonably well than with traditional \textit{ARMA} procedures.

The rest of our work is structured as follows. Section 2, introduces fractional integration and Long-memory processes. Here we examine some methodology for testing and estimating long range dependence that we apply in our analysis. Section 3 introduces the structure of the class of models we apply to analyze the long memory in the factor loading series. In section 4 we report and discuss our results for the series in levels and absolute returns. A summary of our analysis results and conclusions is given in section 5.

2 Fractional integration and long-memory

The framework of fractional integration yields convenient modeling of long range dependence, [Granger and Joyeux (1980), Baillie (1996)]. A time series process z_t is integrated of order d, $I(d)$ if

$$(1 - L)^d z_t = \varepsilon_t$$

where $\varepsilon_t \in I(0)$ and L is the lag operator ($Lz_t = z_{t-1}$). The non-integer parameter d is the difference parameter and $(1 - L)^d$ is the fractional filter defined by its binomial expansion $(1 - L)^d = \sum_{j=0}^{\infty} \frac{\Gamma(j-d)}{\Gamma(-d)\Gamma(j+1)} L^j$ where $\Gamma(z) =$
\[\int_0^\infty t^{d-1} e^{-t} \, dt \] is the gamma function. The autocorrelation function of such a series is given by

\[\rho_k = \frac{\Gamma(1-d)\Gamma(k+d)}{\Gamma(d)\Gamma(k+1-d)} \sim C k^{2d-1} \]

for \(d \) in the range of \((0, 0.5)\), where \(C \) is a strictly positive constant. In such case \(z_t \) is said to exhibit long memory. For \(0 < d < 0.5 \), the series is stationary. For \(d = 0 \), the series is an \(I(0) \) process and said to have no long-memory. For \(0.5 < d < 1 \) the process is mean reverting as there is no long run impact of an innovation to future values of the process. In the case where \(0 < d < 1 \), not only the immediate past value of \(z_t \) influence the current value, but also values from previous time periods as well. The sum over the autocorrelation does not converge, so that it is a suitable model for long memory, Granger and Joyeux (1980).

2.1 Tests and estimators of long memory processes

We consider two model independent tests for stationarity, \(I(0) \) against fractional alternatives \(I(d) \). The tests include the rescaled variance test \((V/S)\) of Giraitis et al. (1999) that uses the heteroscedastic and autocorrelation consistent \((HAC)\) estimator of the variance, Newey and West (1987) for normalization and the semiparametric \((LobRob)\) test of Lobato and Robinson (1998), that does not depend on a specific parametric form of the spectrum in the neighborhood of the zero frequency.

The Rescaled Variance test is applied by centering the \(KPSS \) statistic based on the partial sum of the deviations from the mean:

\[
V/S(q) = \frac{1}{T^2 \hat{\sigma}^2_T(q)} \left[\sum_{k=1}^T \left(\sum_{j=1}^k (z_j - \bar{z}_T) \right)^2 - \frac{1}{T} \left(\sum_{k=1}^T \sum_{j=1}^k (z_j - \bar{z}_T) \right)^2 \right] \tag{5}
\]

where \(S_k = \sum_{j=1}^k (z_j - \bar{z}_T) \) are the partial sums of the observations and \(\hat{\sigma}^2_T(q) = \hat{\gamma}_0 + 2 \sum_{j=1}^q \left(1 - \frac{j}{T+q} \right) \hat{\gamma}_j \) is the heteroscedastic and autocorrelation consistent \((HAC)\) estimator of the variance, \((q < T) \). \(\hat{\gamma}_0 \) is the variance of the process, and the sequence \(\{\hat{\gamma}_j\}_{j=1}^q \) denotes the autocovariances of the process up to the order \(q \). Giraitis, Kokoszka and Leipus (2000) have shown that this statistic can detect long range dependence in the volatility for the class of \(ARCH(\infty) \) processes.
The **Semiparametric test** is based on the approximation of the spectrum of a long memory process. This test allows to discriminate between \(d > 0\) and \(d < 0\). In the univariate case the test statistic for \(I(0)\) against \(I(d)\) is given by

\[t_{LobRob} = \sqrt{\left(\hat{m}\right)} \frac{\hat{C}_1}{\hat{C}_0} \]

(6)

with \(\hat{C}_k = \frac{1}{m} \sum_{j=1}^{m} \zeta_j^k I(\lambda_j)\) and \(\zeta_j = \log(j) - \frac{1}{m} \sum_{i=1}^{m} \log(i)\), where

\[I(\lambda) = \frac{1}{2\pi T} \left| \sum_{t=1}^{T} z_t e^{i\lambda t} \right|^2, \quad (i = \sqrt{-1}) \]

is the estimated periodogram. \(\lambda_j = \frac{2\pi j}{T}, \quad j = 1, \ldots, m\) is a degenerate band of Fourier frequencies with bandwidth parameter \(m\). Under the null hypothesis the test statistic is asymptotically normally distributed. If the statistic is in the lower fractile of the standardized normal distribution, the series exhibit long-memory whilst if in the upper fractile of that distribution, the series is antipersistent.

To estimate the memory parameter \(d\), we apply two frequently used estimators, the log-periodogram regression estimator \((GPH)\) of Geweke and Porter-Hudak (1983) and the Gaussian Semiparametric estimator \((GSP)\) of Robinson (1995a).

The **log-periodogram regression estimator** is based on the periodogram of a time series \(z_t\), \((t = 1, \ldots, T)\) defined by

\[I(\lambda_j) = \frac{1}{2\pi T} \left| \sum_{t=1}^{T} z_t e^{-i\lambda_j t} \right|^2 \]

(7)

where \(\lambda_j = \frac{2\pi j}{T}, \quad j = 1, \ldots, m\) \((m\) is a positive integer). The memory parameter \(d\) is estimated from a linear regression of the log \(I(\lambda_j)\) on a constant and the variable \(X_j = \log\{4 \sin^2(\lambda_j/2)\}\):

\[\hat{d}_{GPH} = -\frac{\sum_{j=1}^{m} (X_j - \bar{X}) \log\{I(\lambda_j)\}}{2 \sum_{j=1}^{m} (X_j - \bar{X})} \]

(8)

We consider only harmonic frequencies \(\lambda_j = \frac{2\pi j}{T}\), (the \(j^{th}\) Fourier frequency) with \(j \in (l, m]\), where \(l\) is a trimming parameter discarding the lowest frequencies and \(m\) is a bandwidth parameter. The cut-off parameter ensures robustness of the estimator. For the Gaussian case with \(d \in (-0.5, 0.5)\), the estimator is consistent and asymptotically normal with standard error of \(\pi/\sqrt{24m}\). (Robinson (1995b)).

Validity of the \(GPH\) estimator for an enlarged interval has been demonstrated by Velasco (1999). More precisely, he shows that in the interval
[0.5, 0.75), where the time series is nonstationary, asymptotic Normality and consistency is preserved as in the original interval (−0.5, 0.5), while for values of d in the interval [0.75, 1) the estimator is still consistent. Deo and Hurvich (2001) have shown that this estimator is also valid for some non-Gaussian time series.

The **Gaussian Semiparametric estimator** is based on the approximation, \(\lim_{\lambda_i \to 0^+} f(\lambda_i) = CL_i^{-2d} \) of a long memory process in the Whittle approximate maximum likelihood estimator, \(L_W(\theta) \). For \(m^* = \lfloor \frac{T}{2} \rfloor \), an approximation to the Gaussian likelihood, Beran (1994) is given by

\[
L_W(\theta) = -\frac{1}{2\pi} \log f_\theta(\lambda) + I_T(\lambda_j)
\]

for a given parametric spectral density \(f_\theta(\lambda) \). Estimating \(d \) is by solving the minimization,

\[
\arg \min_{C,d} L(C,d) = \frac{1}{m} \sum_{j=1}^{m} \left\{ \log(C\lambda_j^{-2d}) + \frac{I(\lambda_j)}{C\lambda_j^{-2d}} \right\}
\]

where \(I(\lambda_j) \) is the periodogram evaluated for a degenerated range of \(m \) harmonic frequencies \(\lambda_j = \frac{2\pi j}{T}, \quad j = 1, \ldots, m << \left\lfloor \frac{T}{2} \right\rfloor \), where \(\lfloor . \rfloor \) represents the integer part operator, bounded by the bandwidth parameter \(m \), which increases with the sample size \(T \) but more slowly. This bandwidth \(m \) must satisfy \(\frac{1}{m} + \frac{m}{T} \to 0 \) as \(T \to \infty \). If \(m = \lfloor \frac{T}{2} \rfloor \), this estimator is a Gaussian estimator for the parametric model \(f(\lambda) = CL^{-2d} \).

An estimator for \(d \) is given by

\[
\hat{d}_{GSP} = \arg \min_d \left\{ \log \left(\frac{1}{m} \sum_{j=1}^{m} \frac{I(\lambda_j)}{C\lambda_j^{-2d}} \right) - \frac{2d}{m} \sum_{j=1}^{m} \log(\lambda_j) \right\}.
\]

Robinson (1995a) showed that \(\sqrt{m}(\hat{d}_{GSP} - d) \overset{d}{\to} N(0,1/4) \) and is valid in the presence of some form of conditional heteroscedasticity. Robinson and Henry (1999). In general, Phillips and Shimotsu (2004) have shown that the ranges of consistency and asymptotic normality for the model type in (3) are the same as those of the GPH estimator.

3 Long Memory Models

Several studies have dealt with models that provide useful ways of analyzing the relationships between the conditional mean and variance of a process ex-
hbiting long memory and slow decay in its levels. In our analysis we consider an autoregressive fractional integrated moving average (ARFIMA) process model, Granger and Joyeux (1980), Hosking (1981), the (FIGARCH), Baillie et al. (1996), a combination of fractional integrated process for the mean with regular GARCH process for conditional variance and the HYperbolic GARCH, (HY GARCH) of Davidson (2004).

The ARFIMA(p,d,q) model represented as

\[
\Phi(L)(1 - L)^d(z_t - \mu) = \Theta(L)\epsilon_t
\]

where \(\epsilon_t \sim i.i.d (0, \sigma^2)\) extends the integration order of the conventional ARMA model to a non-integer value between 0 and 1. \(\Phi(L) = 1 - \phi_1L - \phi_2L^2 - \cdots - \phi_pL^p\) and \(\Theta(L) = 1 + \theta_1L + \theta_2L^2 + \cdots + \theta_qL^q\) are the autoregressive and moving average polynomials in the lag operator \(L\) respectively. \(d\) is the long memory parameter and \((1 - L)^d\) is the fractional difference filter as defined in equation 3. The ARFIMA process displays persistence for \(0 < d < 0.5\) and anti-persistence for \(-0.5 < d < 0\). For \(|d| > 0.5\), the process is non-stationary as it has finite variance.

In our application, the values for \(p\) and \(q\) are chosen such that the ordered pair \((p, q)\) minimizes the AIC criterion. We estimate the model parameters \(\mu, \phi, \theta\) and \(d\) by maximum likelihood approach of Doornik and Ooms (2004) that allows for (break-) regressors in the mean and structural changes in the variance, and by non-linear least squares estimation method of Beran (1994) that is asymptotically efficient in the presence of GARCH errors.

The FIGARCH(p,δ,q) model of Baillie et al. (1996) given as

\[
\Phi(L)(1 - L)^d\epsilon^2_t = \omega + \Theta(L)\nu_t
\]

where \(\nu_t = \epsilon^2_t - \sigma^2\) combine the fractional integrated process for the mean with regular GARCH process for the conditional variance. The conditional variance can be represented as

\[
\sigma^2_t = \frac{\omega}{1 - \theta(L)} + \left[1 - \frac{\phi(L)(1 - L)^d}{1 - \theta(L)}\right] \epsilon^2_t
\]

with \(0 \leq \delta \leq 1\). The \(\delta\) in FIGARCH does not have the same interpretation of persistence as \(d\) in ARFIMA. The fractional differencing operator in the ARFIMA model applies to the constant term in the mean equation while in FIGARCH it does not apply to \(\omega\) in the variance equation. We base our analysis on the FIGARCH parametrization proposed by Chung (1999),

\[
\Phi(L)(1 - L)^d(\epsilon^2_t - \sigma^2) = \Theta(L)(\epsilon^2_t - \sigma^2)
\]
where σ^2 is the unconditional variance of ε_t. The conditional variance is formulated as

$$
\sigma_t^2 = \sigma^2 + \left[1 - \frac{\phi(L)(1-L)^\delta}{1-\theta(L)} \right] (\varepsilon_t^2 - \sigma^2) \quad (15)
$$

For $p = q = 1$, Chung (1999) shows that $\sigma^2 > 0$ and $0 \leq \phi_1 \leq \theta_1 \leq 1$ is a sufficient condition for positive σ_t^2. When $\delta = 0$ or 1, the FIGARCH model nests the $\text{GARCH}(p, q)$ and IGARCH processes respectively. The IGARCH model is a short memory process having no variance and while the FIGARCH has shortest memory with $\delta > 0$ closest to 1. If $\delta > 0$ the FIGARCH is a non-stationary long memory process, otherwise is a stationary long memory process, Laurent and Peters (2002). The fractional difference filter is defined by,

$$
(1 - L)\delta = \sum_{j=0}^{\infty} \frac{\Gamma(\delta + 1)}{\Gamma(j+1)\Gamma(\delta - j + 1)} L^j \quad (16)
$$

$$
= 1 - \delta L - \frac{1}{2} \delta(1-\delta)L^2 - \frac{1}{6} \delta(1-\delta)(2-\delta)L^3 - \ldots \quad (17)
$$

$$
= 1 - \sum_{j=1}^{\infty} C_j(\delta)L^j \quad (18)
$$

such that $C_1(\delta) = \delta$, $C_2(\delta) = \frac{1}{2}\delta(1-\delta)$, etc. By construction, $\sum_{j=1}^{\infty} C_j(\delta) = 1$ for any δ, belonging to same class type models as the IGARCH.

The hyperbolic GARCH model, $\text{HYGARCH}(p, \alpha, d, q)$ of Davidson (2004) extends the conditional variance of the $\text{FIGARCH}(p, \delta, q)$ model by introducing weights to the difference operator in equation 12 such that $(1 - L)^d = [(1 - \alpha) + \alpha(1 - L)^d]$. The parametrization of $\text{HYGARCH}(p, \alpha, d, q)$ models is given by

$$
\sigma_t^2 = \frac{\omega}{1 - \theta(L)} + \left[1 - \frac{\phi(L)\{1 + \alpha(1-L)^d\}}{1-\theta(L)} \right] \varepsilon_t^2 \quad (19)
$$

where α are weights to $(1 - L)^d$. The parameters α and d are assumed positive. The $\text{HYGARCH}(p, \alpha, d, q)$ nest GARCH models (for $\alpha = 0$), IGARCH (for $\alpha = d = 1$) and FIGARCH (for $\alpha = 1$ or $\log \alpha = 0$). When $\alpha < 1$ ($\log \alpha < 0$) the process is stationary.
4 Empirical Analysis

The factor loadings series data are obtained from DSFM for implied volatility on the German DAX index market from January 1999 to February 2003 (data available at, http://sfb649.wiwi.hu-berlin.de/fedc). Table 1 presents descriptive statistics. Plots of sample autocorrelation functions, spectrum and periodogram (on log-log plane) are shown in Figure 3. The autocorrelation are positive and decay hyperbolically to zero as the lag increases. A linear relationship in the periodogram on log-log plane indicates the presence of self-similarities, the fluctuations in a power-law fashion. Figure 4 shows time series plots in absolute returns of three factor loadings series.

Since unit root tests are known to perform relatively poorly in distinguishing between $I(1)$ and the $I(d)$ alternatives for $d < 1$, Diebold and Rudebusch (1991), we apply model independent tests, V/S and LobRob for $I(0)$ against $I(d)$ alternatives. With no data driven guideline for the choice of truncation lags m, we use different values ($m = 2, 3, 5, 7, 10, 20, 50$) in the V/S test and ($m = 30, 50, 150, 200, 300$) in LobRob test.

Results in Tables 2 and 3 for the V/S and LobRob tests respectively indicate long-range dependence in all three factor loadings levels. For absolute returns, the tests indicate long memory in $|z_1|$ and $|z_3|$ while antipersistence could not be rejected in $|z_2|$. Both tests results reject long memory for all factor loadings returns.

Table 4 shows the \hat{d}_{GPH} and \hat{d}_{GSP} estimates of d for the series in levels, returns and absolute returns. To evaluate the sensitivity of results for the \hat{d}_{GPH} estimator, we report estimates of d for bandwidth $m = T^\alpha$ where $\alpha = 0.5, 0.525, 0.575, 0.6, 0.8$ and $T = 1052$ is the sample size. For the GSP estimator the bandwidth is chosen such that $m = \left[\frac{T}{4}\right], \left[\frac{T}{8}\right], \left[\frac{T}{16}\right], \left[\frac{T}{32}\right], \left[\frac{T}{64}\right]$. Results for series in levels show $0.5 \leq d < 1$; for the return series most estimates from \hat{d}_{GPH} and \hat{d}_{GSP} are in $-0.5 \leq d < 0$ while estimates of d for the absolute returns are within $0 \leq d < 0.5$.

To guarantee that the long memory diagnosis is not a consequence of occasional or structural break such as the 11th September, 2001 terrorist attack on the World Trade Center, we use subsamples of the data to examine whether long run dependencies can be uncovered. Anderson and Bollerslev (1998). This approach is possible given that the value of d is not affected by temporal aggregation, Bollerslev and Wright (2000). Results, not presented here indicate long memory for short span of the data in levels and absolute returns. This therefore suggest that long memory is an inherent
To summarize, our analysis suggest long-range dependence in loading levels as well as in absolute returns for z_1 and z_3. In general no long memory in returns was detected and evidence of antipersistence in the absolute returns for z_2 could not be ruled out. We therefore interpret that there is quite some correlation structure in the loadings in levels as well as in absolute returns. This implies some degree of persistence and the expectation of a slow decay in impulse responses. We also observe that the long range dependence is different for each factor loading such that it could be interpreted in terms of a long term, middle long term and short term impact on the dynamics of IVS. The first factor loading, z_1 is highly persistent and influences all options similarly, irrespective of maturity. The impact of the second factor loading, z_2 gradually diminishes for longer maturities, while the third factor governs large volatility changes in relatively short maturities.
Figure 4: Time series plots of the three factor loading series in absolute returns from 04.01.1999 – 25.02.2003

Table 2: The rescaled variance V/S test for $I(0)$ against $I(d)$ for series in levels, return (r_t) and absolute return ($|r_t|$). q is the truncation lag. If the evaluated statistics are over the critical value, 0.1869 for $I(0)$, we fail to reject the alternative hypothesis that the series display long memory.
<table>
<thead>
<tr>
<th>m</th>
<th>30</th>
<th>50</th>
<th>150</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1</td>
<td>-6.08</td>
<td>-10.60</td>
<td>-30.07</td>
<td>-38.46</td>
<td>-53.60</td>
</tr>
<tr>
<td>z2</td>
<td>-6.50</td>
<td>-11.05</td>
<td>-28.83</td>
<td>-35.98</td>
<td>-49.20</td>
</tr>
<tr>
<td>z3</td>
<td>-5.72</td>
<td>-9.86</td>
<td>-28.33</td>
<td>-36.33</td>
<td>-50.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>30</th>
<th>50</th>
<th>150</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1</td>
<td>0.65</td>
<td>0.96</td>
<td>2.69</td>
<td>2.58</td>
<td>2.83</td>
</tr>
<tr>
<td>z2</td>
<td>2.02</td>
<td>1.47</td>
<td>5.14</td>
<td>5.76</td>
<td>7.03</td>
</tr>
<tr>
<td>z3</td>
<td>1.40</td>
<td>1.61</td>
<td>2.91</td>
<td>2.99</td>
<td>4.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>30</th>
<th>50</th>
<th>150</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1</td>
<td>-1.25</td>
<td>-1.88</td>
<td>-7.76</td>
<td>-10.04</td>
<td>-12.42</td>
</tr>
<tr>
<td>z2</td>
<td>0.715</td>
<td>0.37</td>
<td>-0.01</td>
<td>-0.52</td>
<td>-1.00</td>
</tr>
<tr>
<td>z3</td>
<td>-4.83</td>
<td>-6.81</td>
<td>-9.08</td>
<td>-11.13</td>
<td>-9.69</td>
</tr>
</tbody>
</table>

Table 3: t_{LobRob}: Semiparametric test for $I(0)$ of a time series against long-memory and antipersistency for factor loadings in levels, return (r_t) and absolute return ($|r_t|$). Short memory is rejected against long-memory if the test statistic is in the lower tail of the standard normal distribution. If the test statistic is in upper tail of the standard normal distribution, short memory is rejected against antipersistent.
Table 4: The Log periodogram (\(\hat{d}_{GPH}\)) and the Gaussian semiparametric (\(\hat{d}_{GSP}\)) estimates of \(d\) for levels, returns and absolute returns. Bandwidth \(m\) for GPH estimator is \(m = T^{\alpha}\) with \(\alpha = 0.5, 0.525, 0.575, 0.60, 0.8\) and \(T = 1052\) is the sample size. For the GSP estimator the bandwidth is chosen such that \(m = [\frac{T}{4}], [\frac{T}{8}], [\frac{T}{16}], [\frac{T}{32}], [\frac{T}{64}]\).
Table 5: ARFIMA estimation of factor loading series in levels, z1, z2 and z3 from 04.01.1999 to 25.02.2003. The \(\phi \) coefficients correspond to the autoregressive part and the \(\theta \) coefficients to the moving average part. \(t \)-value of the estimated parameters in brackets, Ln(\(\ell \)) is the log-likelihood and (AIC) Akaike Information Criterion.

<table>
<thead>
<tr>
<th>Level</th>
<th>z1 (5, d, 4)</th>
<th>z2 (3, d, 3)</th>
<th>z3 (1, d, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0.29 (1.78)</td>
<td>0.53 (4.87)</td>
<td>0.29 (0.74)</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>0.59 (3.13)</td>
<td>-0.23 (-0.60)</td>
<td>0.96 (26.10)</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>0.07 (0.31)</td>
<td>0.74 (4.01)</td>
<td></td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>0.29 (1.84)</td>
<td>0.34 (0.99)</td>
<td></td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>0.50 (2.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi_5)</td>
<td>-0.47 (-3.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>0.19 (0.94)</td>
<td>0.17 (0.35)</td>
<td>-0.51 (-1.41)</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>0.04 (0.29)</td>
<td>-0.71 (-3.49)</td>
<td>-0.01 (-0.24)</td>
</tr>
<tr>
<td>(\theta_3)</td>
<td>-0.17 (-1.37)</td>
<td>-0.24 (-0.64)</td>
<td>-0.09 (-2.62)</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>-0.58 (-4.78)</td>
<td>0.03 (0.79)</td>
<td></td>
</tr>
<tr>
<td>(\theta_5)</td>
<td></td>
<td>-0.08 (-2.44)</td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>-0.10</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Ln((\ell))</td>
<td>1892.33</td>
<td>2755.75</td>
<td>3585.06</td>
</tr>
<tr>
<td>AIC</td>
<td>-3764.66</td>
<td>-5453.51</td>
<td>-7152.12</td>
</tr>
</tbody>
</table>

For appropriate representation of the factor loadings series dynamics and the possibility of improved forecasting, we model the long memory in levels and absolute returns using the ARFIMA, FIGARCH and HYGARCH models. These models are known to describe volatility reasonably well and provide flexible structure that captures slow decaying autocorrelation functions. Estimation results with ARFIMA model for series in levels and absolute returns are reported in Tables 5 and 6 respectively. Estimates of \(d \) are highly significant across all time series in levels. The \(t \)-statistic are highly significant to reject the null hypothesis \((H_0: d = 0) \) at 1% significance level. Results for absolute returns \(|z2| \) does confirm earlier tests results in that antiperistence in \(|z2| \) may not be rejected.

Estimation results for the FIGARCH(1, \(\delta \), 1) and HYGARCH(1, d, 1) models are reported in Tables 7 and 8 respectively. We assume the Student-\(t \) distribution because it can appropriately account for leptokurticity exhibited by high frequency financial data [Pagan (1996)]. Under student-\(t \) distributed innovations, the FIGARCH and HYGARCH long memory parameter es-
| Absolute returns | $|z_1|$ | $|z_2|$ | $|z_3|$ |
|-----------------|--------|--------|--------|
| ARFIMA $(2,d,2)$ | 0.30 (4.73) | -0.32 (-0.71) | 0.24 (2.34) |
| $(1,d,5)$ | -0.79 (-4.65) | 0.89 (5.89) | 0.57 (4.28) |
| $(1,d,2)$ | 0.01 (0.02) | 0.61 (2.90) | 0.06 (-0.31) |
| ϕ_1 | -0.06 (-0.61) | -0.22 (-1.09) | -0.48 (-5.59) |
| ϕ_2 | 0.03 (-0.40) | -0.48 (-5.59) | -0.28 (-8.40) |
| θ_1 | 0.61 (2.90) | 0.06 (-0.31) | -0.40 (-2.11) |
| θ_2 | -0.22 (-1.09) | -0.48 (-5.59) | -0.28 (-8.40) |
| const. | 0.3 | | |
| $\ln(\ell)$ | 2381.53 | 2913.99 | 3927.21 |
| AIC | -4753.06 | -5813.98 | -7846.42 |

Table 6: ARFIMA estimation of factor loading series in absolute returns, $|z_1|$, $|z_2|$ and $|z_3|$ from 04.01.1999 to 25.02.2003. The ϕ coefficients correspond to the autoregressive part and the θ coefficients to the moving average part. *t*-value of the estimated parameters in brackets, $\ln(\ell)$ is the log-likelihood and (AIC) Akaike Information Criterion.

Estimates indicate long-memory in levels and absolute returns. Besides, the student-t distribution parameter, ν are significantly different from zero, indicating strong fat tail phenomena. Estimates, $\delta > 0$ in FIGARCH models suggest non-stationary long memory characteristics in levels and absolute returns for the first and third factor loadings series, whereas the second series ($\delta < 0$) indicate a stationary long memory behavior. We assess models fit through the log-likelihood, $\ln(\ell)$, the Akaike Information Criterion, (AIC) and the performance of the Box-Pierce (Q^2) statistic for testing remaining serial correlation in the squared standardized residuals, McLeod and Li (1983).

The FIGARCH and HYGARCH models perform well in describing the high persistence existing in the conditional variance. The $Q^2(24)$ statistics suggests that the FIGARCH model can better capture the autocorrelations in the conditional variance for the series in levels while the HYGARCH is more appropriate in the case of absolute returns. The FIGARCH models report higher loglikelihood values for the series in levels while the HYGARCH values are higher for absolute returns. Moreover, models in absolute returns produce better fit than those in levels, which confirms the findings of Ding et al. (1993), that absolute returns are the most appropriate indicators to represent the long memory volatility processes.
Figure 5: Actual series (red) and in-sample fit (blue) for the estimated ARFIMA(p, d, q) model in levels and absolute returns. Time interval from 04.01.1999 – 25.02.2003, with 1039 observations.

We examine the in-sample fit of the ARFIMA model for the series in levels and absolute returns, Figure 5 as well as the conditional variance forecast in levels, Figure 6 and absolute returns, Figure 7 for the FIGARCH and HYGARCH models. Table 9 show in-sample forecast performance evaluated on the basis of the Root Mean Square Error (RMSE) and the Mean Absolute Prediction Error (MAPE). The main findings are that the FIGARCH and HYGARCH models show better forecast performance than the ARFIMA model and seems to successfully achieve the aim of modeling the long memory behavior of volatility in a parsimonious way.
Table 7: **FIGARCH** estimation of the factor loading series in levels and absolute returns with \(t \) statistics in parentheses. Significance is at 5% level. Estimation is with the Student distribution with \(\nu \) degrees of freedom. \(\ln(\ell) \) is the value of the maximized likelihood. \(Q(24) \) and \(Q^2(24) \) are the Box-Pierce statistic for remaining serial correlation in the standardized and squared standardized residuals respectively, using 24 lags with \(p \)-values in square brackets. The critical value at significant level of 5% is 36.4.
| | z1 | z2 | z3 | |z1| |z2| |z3| |
|---|------|------|------|---|---|---|---|---|---|
| μ | 1.304| -0.001| -0.003| 0.024| 0.004| 0.003|
| | (11.520)| (0.703)| (-2.061)| (26.290)| (20.230)| (19.900)|
| ω | 0.000| 0.184| 0.156| 0.790| 0.344| 0.069|
| | (-0.203)| (5.055)| (3.344)| (1.885)| (2.267)| (2.120)|
| d | 0.082| 0.980| 0.919| 0.975| 0.985| 0.001|
| | (1.164)| (32.630)| (13.220)| (7.073)| (46.840)| (11.610)|
| φ₁ | -0.861| 0.456| -0.893| -0.024| 0.421| 0.271|
| | (-20.720)| (9.161)| (-18.660)| (-0.256)| (2.820)| (1.663)|
| β₁ | -0.897| 0.321| -0.107| 0.730| 0.548| -0.050|
| | (-26.300)| (0.037)| (-1.791)| (5.715)| (4.431)| (-0.776)|
| ν | 11.065| 3.106| 24.200| 5.175| 2.414| 2.668|
| | (3.059)| (7.918)| (1.413)| (5.538)| (9.835)| (8.027)|
| log (α) | 0.836| 0.083| -1.661| -0.120| -0.504| 4.953|
| | (1.003)| (1.586)| (-7.471)| (-1.699)| (-2.553)| (10.200)|
| Ln(ℓ) | 1934.661| 3301.990| 3256.190| 2428.212| 3785.100| 4378.439|
| Q(24) | 59.270| 7315.110| 4096.210| 153.997| 10.412| 37.739|
| | [0.000]| [0.000]| [0.000]| [0.000]| [0.988]| [0.027]| |
| Q²(24) | 19.704| 13.140| 4.499| 11.364| 0.848| 2.042|
| | [0.610]| [0.930]| [0.999]| [0.940]| [1.000]| [1.000]| |

Table 8: HYGARCH estimation of the factor loading series in levels and absolute returns with t statistics in parentheses. Significance is at 5% level. Estimation is with the Student-t distribution with ν degrees of freedom. log (α) is the log of weight α, to the difference operator(1 − L)⁴. Ln(ℓ) is the value of the maximized likelihood. Q(24) and Q²(24) are the Box-Pierce statistic for remaining serial correlation in the standardized and squared standardized residuals respectively, using 24 lags with p-values in square brackets.
Figure 6: Left-Right panels: FIGARCH and HYGARCH conditional variance forecast of factor loading in levels. Time interval from 04.01.1999 – 25.02.2003, with 1039 observations.
Figure 7: Left-Right panels: FIGARCH and HYGARCH conditional variance forecast of absolute returns. Time interval from 04.01.1999—25.02.2003, with 1039 observations.
<table>
<thead>
<tr>
<th></th>
<th>ARFIMA</th>
<th>FIGARCH</th>
<th>HYGARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td>0.026</td>
<td>0.171</td>
<td>0.171</td>
</tr>
<tr>
<td>z_2</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>z_3</td>
<td>0.005</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>$</td>
<td>z_1</td>
<td>$</td>
<td>0.019</td>
</tr>
<tr>
<td>$</td>
<td>z_2</td>
<td>$</td>
<td>0.007</td>
</tr>
<tr>
<td>$</td>
<td>z_3</td>
<td>$</td>
<td>0.002</td>
</tr>
<tr>
<td>MAPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td>3.180</td>
<td>0.991</td>
<td>0.991</td>
</tr>
<tr>
<td>z_2</td>
<td>27.600</td>
<td>1.166</td>
<td>0.860</td>
</tr>
<tr>
<td>z_3</td>
<td>68.720</td>
<td>2.837</td>
<td>9.413</td>
</tr>
<tr>
<td>$</td>
<td>z_1</td>
<td>$</td>
<td>52.657</td>
</tr>
<tr>
<td>$</td>
<td>z_2</td>
<td>$</td>
<td>70.577</td>
</tr>
<tr>
<td>$</td>
<td>z_3</td>
<td>$</td>
<td>41.706</td>
</tr>
</tbody>
</table>

Table 9: In-sample performance of the five-step ahead forecast of the estimated ARFIMA, FIGARCH and HYGARCH models for the factor loading series in levels and absolute returns. The measures of forecast accuracy are the Root Mean Square Error (RMSE) and the Mean Absolute Prediction Error (MAPE).
5 Conclusion

We present an empirical investigation of long memory dynamics in the factors of Implied Volatility Strings. The factor loadings series are obtained by applying a Dynamic Semiparametric Factor Model (DSFM) for implied volatility strings on the German DAX index market. Long range dependence in the factor loadings series is tested using the rescaled variance \(V/S \) and the semiparametric \(\text{LobRob} \) tests. We estimated the degree of long memory based on the log-periodogram \(\text{GPH} \) regression estimator and the \(\text{GSP} \) estimator based on the Whittle approximate maximum likelihood estimate. Results are indicative of long-range dependence in the factor loading series in levels and absolute returns. The factors can be interpreted in terms of a long term, middle long term and short term impact on the dynamics of \(\text{IVS} \). The first factor loading, \(z_1 \) is highly persistent and influences all options similarly, irrespective of maturity. The impact of the second factor loading, \(z_2 \) gradually diminishes for longer maturities and the third factor governs large volatility changes in relatively short maturities. Such dependence or persistence has importance implications for short-term trading and long range investment strategies. As a consequence, hedging strategies of a long position should take into consideration the long-memory effects in a short position in a call option. This would certainly provide more secure protection against negative effects of long-range persistence in volatility. On the other hand, better results could be obtained for models that price and hedge derivative securities when there is prior information on long-memory volatility in terms of expectation on the potential level of volatility and the rate at which volatility changes.

For an appropriate representation of the series dynamics and the possibility of improved forecasting, we model the long memory in volatility via the class of flexible processes, the \(\text{ARFIMA}, \text{FIGARCH} \) and \(\text{HYGARCH} \) models. Our results indicate that these models appear to capture the slow decaying autocorrelation function and therefore are applicable in mimicking the dynamics of the factor loadings. In comparison, models in absolute returns have better performance, confirming the findings of [Ding et al. (1993)](http://example.com) that absolute returns are the most appropriate indicator to represent the long memory volatility processes. It would be interesting to find out if there are persistent time scales that are of local importance or influence the factor loading time series. Therefore, a possible extensions for future research would include studies on spectral analysis or wavelet transform to identify such persistent time scales. In addition, the resulting long range dependence and evidence of fat tail phenomenon also provides a natural extension to
investigate long memory value-at-risk. This would be useful to regulators, derivative market participants and practitioners whose interest is to reasonably forecast stock market movements.

References

SFB 649 Discussion Paper Series 2007

For a complete list of Discussion Papers published by the SFB 649, please visit http://sfb649.wiwi.hu-berlin.de.

002 "Robust Risk Management. Accounting for Nonstationarity and Heavy Tails" by Ying Chen and Vladimir Spokoiny, January 2007.
007 "Rules, Discretion or Reputation? Monetary Policies and the Efficiency of Financial Markets in Germany, 14th to 16th Centuries" by Oliver Volckart, February 2007.
009 "Union Wage Compression in a Right-to-Manage Model" by Thorsten Vogel, February 2007.
010 "On o−additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model" by Volker Krätschmer, March 2007.
017 "Empirical Pricing Kernels and Investor Preferences" by Kai Detlefsen, Wolfgang Härdle and Rouslan Moro, April 2007.
019 "Regional and Outward Economic Integration in South-East Asia" by Enzo Weber, April 2007.
020 "Computational Statistics and Data Visualization" by Antony Unwin, Chun-houh Chen and Wolfgang Härdle, April 2007.
021 "Ideology Without Ideologists" by Lydia Mechtenberg, April 2007.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 "Economic Risk".

027 "Long Memory Persistence in the Factor of Implied Volatility Dynamics" by Wolfgang Härdle and Julius Mungo, May 2007.