
 
 
 
 
 
 

 
 
 
 
 

SFB 649 Discussion Paper 2008-009 

Recursive Portfolio 
Selection with 
Decision Trees 

 
 

Anton Andriyashin* 
Wolfgang Härdle* 
Roman Timofeev* 

* Humboldt-Universität zu Berlin, Germany 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Recursive Portfolio Selection with Decision Trees∗

Anton Andriyashin
CASE – Center for Applied Statistics and Economics

Humboldt-Universität zu Berlin,

Spandauer Straße 1, 10178 Berlin, Germany

Wolfgang K. Härdle
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Abstract

A great proportion of stock dynamics can be explained using publicly available

information. The relationship between dynamics and public information may be of

nonlinear character. In this paper we offer an approach to stock picking by employing

so-called decision trees and applying them to XETRA DAX stocks. Using a set of

fundamental and technical variables, stocks are classified into three groups according to

the proposed position: long, short or neutral. More precisely, by assessing the current

state of a company, which is represented by fundamental variables and current market

situation, well reflected by technical variables, it is possible to suggest if the current

market value of a company is underestimated, overestimated or the stock is fairly

priced. The performance of the model over the observed period suggests that XETRA

DAX stock returns can adequately be predicted by publicly available economic data.

Another conclusion of this study is that the implied volatility variable, when included

into the training sample, boosts the predictive power of the model significantly.

JEL classification: C14, C49, G11, G12

Keywords: CART, decision trees in finance, nonlinear decision rules, asset management,

portfolio optimisation
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1 Introduction

There is extensive literature in financial econometrics on the predictability of characteristics

of stock prices (e.g. volatility, directions, duration) using publicly available information.

Goyal & Welch (2003) investigated the empirical real-world out-of-sample performance of

plain linear regressions to predict the equity premium and concluded that none of the com-

binations of the well-known and widely suggested variables (e.g. the dividend-price ratio,

dividend yield, interest and inflation rates etc.) lead to an appropriate result. Unsatisfac-

tory out-of-sample performance for linear regression was also obtained by other groups of

researches such as Campbell (1988) and Fama & French (1988). Attempts to forecast the

Eurex stock returns using Logit regression were undertaken by Amenc, et al (2003) – the

model showed an average hit ratio of 2/3 over the observed period with the correspond-

ing annual return of about 7%. Bauer & Molenaar (2002) employed a similar approach of

Logit regression and provided information ratios greater than 0.50. Avramov (2002) used a

Bayesian model averaging to develop a global model that has proven to be robust in pre-

dicting stock returns. As a result, a weighted model that averages across competing models

provided the Sharpe ratios of less than 0.25.

In this paper an alternative approach to stock picking by employing Classification and Re-

gression Trees (CART) is offered. Due to its properties (Breiman, et al 1987), CART provides

considerable performance gains in comparison with other, more traditional models. CART is

nonparametric, does not require variables to be selected in advance, is invariant to monotone

transformations of the independent variables, is robust to the effects of outliers and, what

most important is, provides superior performance to major stock exchange indexes. Stock

pricing with CART has been considered among other methods like rolling regressions by the

leading financial institutions, such as SmithBarney (a member of Citigroup), see Sorensen, et

al (1999). The model yielded 19.62% (annualized) with the standard deviation of 11.96% and

the Sharpe ratio of 1.23. JPMorgan (Seshadri 2003) used CART to classify US technology

stocks into three classes: overpriced, underpriced and fairly priced ones. The performance of

their quantitative model has shown 14.6% of the annualised return with the corresponding

standard deviation of 9.5% and the Sharpe ratio of 1.54.

Our model based on weekly observations of XETRA DAX companies yielded 19.99% annu-

3



alised with the corresponding Sharpe ratio of 0.88, which clearly outperforms other bench-

mark strategies for the relevant period. Risk free rate was assessed by the three month

London interbank offer rate (LIBOR).
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Figure 1.1: Wealth curves for active CART strategy and benchmark strategies

In the last part of the study we include the implied volatility variable in the learning sample

that increased the performance of the strategy up to 25.55% per year with the corresponding

Sharpe ratio of 1.59, see Figure 1.1. CART strategy (solid line) shows a superior performance

in comparison with major stock exchange indexes and risk free rate. These results prove the

importance of implied volatility as a risk factor that is consistent with the conclusions of

Ferson & Harvey (1991) where it states that the relationship between stock and bond market

returns and market fluctuations exists and is well approximated by the implied volatility.

The structure of the paper is as follows: Sections 2 and 3 give a short overview of the

4



decision tree methodology. We start with the general notions used in the study such as the

splitting rule and the impurity measure, then in Section 3 the tree pruning mechanism is

described. Section 4 describes available data and the construction of the learning sample,

which is quite important in order to train adequately the decision trees. Section 5 provides

the backtesting results and the model performance, Section 6 has concluding remarks.

2 CART – Classification and Regression Trees

CART stands for Classification and Regression Trees and is a nonparametric classification

method that uses available data in the form of (X ,Y). X is the matrix of explanatory

variables and Y is the vector of classes which has to be defined a priori. It means that

the available data may not contain the target characteristic Y in advance and has to be

computed additionally – usually using the available data X .

For stock picking applications of decision trees it is natural to regard an element of the

class vector y ∈ Y as a predefined characteristic of a stock, for instance a stock could be

subjectively undervalued, overvalued or it could also have a subjectively fair price. In this

setup y ∈ {long, short, neutral} are three predefined classes of stocks. X can then contain a

set of fundamental and technical variables relating to a particular stock and probably some

general macroeconomic factors as well. However, there could be several ways to assess the

historical stock potential in the aforementioned terms and build vector Y , this aspect will

be examined in more detail in Section 4.

At this point we assume that each observation has its class that constitutes vector Y for the

whole learning sample – the combination of available data from the past X and (probably

computed additionally) target characteristic Y . The data set (X ,Y) is used to extract

available data patterns – this is achieved by “learning” i.e. the creation of a decision tree T

that extracts different outcomes from the past and tries to “explain” a connection between

X and Y observed in the past in the form of a binary tree. The decision tree is then used to

classify new data into classes from Y – in this way when new market information becomes

available, for a given stock using the existing tree it is possible to produce a recommendation

either to long, short or maintain the current position.
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Consider an example of an artificially generated two-dimensional data set with five classes

and the resulting decision tree presented in Figure 2.3. For the sake of simplicity, each color

represents a class, and CART tends to separate the respective colour areas with the minimal

number of questions (or splits) in a binary tree. Nodes with tags Blue, Green, Black, Yellow

and Purple are the so called terminal nodes T̃k whereas the node at the top, with the question

“Is X1 ≤ 0.5?”, is called the root node. If the answer is positive, the left branch of the tree

is taken.

Decision trees are represented by a set of questions that splits the learning sample into

smaller and smaller parts. CART asks only yes/no questions. A possible question could be:

“Are the company’s last reported Earnings Per Share (EPS) > 1.5?” or “Is the Brent crude

oil 1-month future price < 80?”. But where does the value of 1.5 in the question about EPS

come from?

CART searches through all available variables and their possible values in order to find the

split s – a combination of a variable from the available data X and the appropriate question

value. The question s∗ that splits the data into two parts with maximum homogeneity

inside each of those parts is then selected as optimal. The process is repeated for each of the

resulting data fragments since every question in a tree just splits the initial data set into two

parts, see Section 2.2 for more details on splitting algorithm employed in this study. At some

point of time a tree T reaches its “optimal” size, this means that no additional questions are

added to the rule (refer to Section 3 for the description of the tree optimisation procedure).

Finally, at the bottom of a tree there are terminal nodes T̃k that contain decision rule parts for

a certain combination of data questions led to a particular node t. Different data questions

lead to different terminal nodes, so a set of terminal nodes along with the respective paths

to nodes constitute a final decision rule T ∗.

The application of decision trees to a data set implies conducting three major steps:

• the construction of the so called maximum tree TMAX

• the choice of the right tree size (tree pruning) T ∗

• the classification of new data using the constructed tree T ∗
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Figure 2.2: Application of CART to an artificial two-dimensional data set. Because of

the special form of the questions (univariate linear splits), the separating lines are always

orthogonal to the axes. For a given example four splits were sufficient to separate data into

different nodes of the tree. The corresponding tree is depicted on Figure 2.3

2.1 Construction of the Maximum Tree

Let P be the number of variables from the available company data X . If X = (X1,X2, . . . ,XP )

is the matrix of the learning sample and there are M observations available, then the class

vector Y has the same length M , i.e. a class tag yi is assigned to each i-th observation of the

learning sample. Without the loss of generality let us also suppose that there are J unique

classes (the situation when yi ∈ {long, short, neutral} corresponds to J = 3).

Let tP be a parent node and tL, tR – left and right child nodes of the parent node tP

respectively so that a fraction pL of observations from node tP follows to the left child node

and a fraction pR = (1 − pL) – to the right one. If nP is the number of observations in tP
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Figure 2.3: The resulting classification tree. Left branches stand for the positive answers,

right branches – for the negative ones. There are four splits and five terminal nodes in this

tree.

and nL, nR – in tL and tR respectively, then

pL =
nL

nP

, pR =
nR

nP

(1)

A classification tree is built in accordance with a splitting rule – a rule that determines a

split s∗ at each node. Its aim is to create two more homogenous groups by splitting the

initial less homogenous one (the parent node) into two parts (two child nodes). A split s∗

contains those variable Xp∗ , p
∗ ∈ {1, . . . , P} from the matrix of explanatory variables X and

a question value x∗, which lead to splitting of the parent node tP into nodes tL and tR, when

a question “Is Xp∗ < x∗?” separates the data contained in tP into two different groups with

the maximum feasible inner homogeneity.

Homogeneity is defined via an impurity function i(t). This is an arbitrary function that

has a unique maximum at point
(

1
J
, 1

J
, . . . , 1

J

)
∈ RP and a unique minimum at points

(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . ., (0, 0, 0, . . . , 1) ∈ RP . It also possesses some important
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Figure 2.4: Parent and child node hierarchy

technical properties, refer to Breiman, et al (1987) for more details. Section 2.2 contains

the explicit definition of this function that is frequently employed for applied decision tree

analysis and was employed in this study.

The split corresponding to the maximum homogeneity of the left and right child nodes

compared to the parent node is equivalent to the split following from the maximization of

change of the impurity function ∆i(t) for an arbitrary node t and arbitrary split s:

∆i(t) = i(tP )− E {i(tC)} (2)

where E {i(tC)} = pLi(tL) + pRi(tR) and set of child nodes C = {L, R}.

Assuming that pL and pR are the estimated probabilities of the right and left nodes (respec-

tive proportions of observations distributing from the parent node to two child nodes), it

follows that:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR) (3)

for an arbitrary data split s.

Therefore, at each node one solves the following optimisation problem:

s∗ = argmax
s

∆i(s, t) = argmax
s

{−pLi(tL)− pRi(tR)} =

= argmin
s

{pLi(tL) + pRi(tR)} (4)
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Note that tL and tR are implicit functions of s since a change of an arbitrary question variable

Xp̃, p̃ ∈ {1, . . . , P} or an arbitrary question value x̃ (change of an arbitrary s̃: “Is Xp̃ < x̃?”)

makes the values tL and tR change as well.

In this algorithm CART searches through all possible values of all variables constituting the

matrix X for the best split s∗ that maximises the change of impurity function ∆i(s∗, t).

The maximum tree TMAX is the tree containing the maximum number of nodes for a given

data set. Put differently, it is a tree built by applying equation (4) to the original data set

and resulting split data portions until the following condition holds. This condition defines

TMAX as the tree where each terminal node contains only observations belonging to the same

class j:

∀t ∈ T̃ ∃j: p(j|t) = 1 (5)

where T̃ is the set of terminal nodes of a tree T .

The next important step is to define the impurity function i(t). Although impurity func-

tions can be defined in numerous ways, the Gini index is the preferred choice in financial

applications, see Kolyshkina & Brookes (2002).

2.2 Gini Splitting Rule

Employing the idea of the Gini index, this special form of the impurity function i(t) can be

written down as follows:

i(t) =
J∑

k 6=l

k=1

J∑
l 6=k

l=1

p(k|t)p(l|t) (6)

where k, l = 1, J are class indices and

p(j|t) =
nt(j)

nt

(7)

10



where nt(j) is the number of observations from X belonging to the class j ∈ {1, . . . , J} that

have been filtered to a node t for a given split s; nt is the overall number of observations

contained in the node t.

Applying the Gini splitting rule to (3), ∆i(t) transforms to:

∆i(t) = −
J∑

j=1

p2(j|t) + pL

J∑
j=1

p2(j|tL) + pR

J∑
j=1

p2(j|tR) (8)

and (4) takes the following form:

s∗ = argmax
s

{
−

J∑
j=1

p2(j|t) + pL

J∑
j=1

p2(j|tL) + pR

J∑
j=1

p2(j|tR)

}
(9)

It is possible to show that for a certain setup the Gini index is equivalent to the data

variance according to the class in Y i.e. it evaluates class homogeneity of the data in a

given node, see Breiman, et al (1987) for more details. The Gini algorithm usually tends to

search for the largest class in a learning sample and isolate it from the rest of the data – the

relevant examples and the comparison with other impurity function types can also be found

in Breiman, et al (1987).

3 Optimal Tree Size

3.1 Over- and Underparameterization of the Trees

The algorithm of the tree building is as follows. Equation (9) is first applied to the whole

learning sample (root node) X , after which it is applied to each of the created tree nodes.

This process can be looped until either i(t) = 0 for every terminal node as indicated in (5)

or until the size of the tree becomes balanced.

But what is the balanced or optimal size of a tree? And why is a maximum tree not always

the best choice?
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Indeed, applying (9) until (5) holds means that at each step it was possible to decrease the

class heterogeneity inside the learning sample by filtering out observations of other classes

and assigning them to other nodes. Therefore, if in the limiting case each observation can

be assigned to a separate node, it would only mean that even smallest random disturbances

including, but not limited to measurement errors, were represented as parts of a final decision

rule. Clearly one would wish to have only those reliable parts of the tree that stand for a

fundamental inner data pattern. And the reason is straightforward – new data to classify

would have to pass through the created tree, therefore if they pass through a noisy part of

the rule, with a high probability the classification of new data may be wrong.

On the other hand, a small tree is also not a panacea since it can be under-parameterised,

i.e. it does not account for significant data portions in the learning sample.

One solution to the problem could be the application of the cross-validation to the subtrees

of different sizes and comparison of their performance.

3.2 Cost-complexity Function and Cross-validation

The idea of this method presented in Breiman, et al (1987) is to introduce some new measure

that would be able to take into account tree complexity, i.e. its size which can be estimated

by the number of terminal nodes. Then the maximum tree is penalized for its big size,

however on the other hand it makes perfect in-sample predictions. Small trees, of course,

get a much lower penalty for their size, but their predicting abilities are naturally limited.

The aim is therefore to find a balance between the tree size, which is penalized, and the

predictive power of the tree. This can be achieved via the cost-complexity function to be

defined later in this Section.

First, let us define the internal misclassification error of an arbitrary observation at node

t as e(t) = 1 − max
j

p(j| t), define also E(t) = e(t)p(t). Then the internal misclassification

tree error is:

E(T ) =
∑
t∈T̃

E(t) (10)

12



where T̃ is a set of terminal nodes. For any subtree T ≤ TMAX define the number of

terminal nodes
∣∣∣T̃ ∣∣∣ as the measure of its complexity. Then the cost-complexity function

aimed to optimize the decision tree size is defined as follows:

Eα(T ) = E(T ) + α
∣∣∣T̃ ∣∣∣ (11)

where α ≥ 0 is the complexity parameter and α
∣∣∣T̃ ∣∣∣ is the cost component.

Although α can have an infinite number of values, the number of subtrees of TMAX resulting

in minimisation of Eα(T ) is finite. Hence pruning of TMAX leads to creation of subtrees

sequence T1, T2, T3, . . . with a decreasing number of terminal nodes. Since the sequence is

finite, if T (α) is an optimal subtree for some arbitrary α, then it will remain optimal until

the complexity parameter is not changed to some α′ when T (α′) becomes a new optimal

subtree until complexity parameter value is α′′ and so on.

In Breiman, et al (1987) it is shown that for ∀α ≥ 0 an optimal tree T (α) exists in the sense

that

1. Eα {T (α)} = min
T≤TMAX

Eα(T ) = min
T≤TMAX

[
E(T ) + α

∣∣∣T̃ ∣∣∣]
2. if Eα(T ) = Eα {T (α)}, then T (α) ≤ T .

Let {t0} denote the root node. This way one can get a sequence of optimal nested subtrees

TMAX � T1 � T2 � T3 � . . . � {t0} for which it is possible to prove that the sequence

{αk} is increasing, i.e. αk < αk+1, k ≥ 1 and α1 = 0. For k ≥ 1: αk ≤ α < αk+1 and

T (α) = T (αk) = Tk.

Applying then the method of the V -fold cross-validation to the sequence TMAX � T1 � T2 �
T3 � . . . � {t0}, an optimal tree is then determined.

However, selecting an optimal tree as the one with the minimum value of ECV (T ) may

not be the best solution since usually there is a whole range of values ECV (T ) satisfying

ECV (T ) < E
CV

MIN(T )+ ε for small ε > 0. And if V is less than the number of observations in

X , then the second run of V-fold cross-validation procedure could provide slightly different

results because of the randomness embedded in the algorithm of cross-validation.
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Therefore, a so called one standard error empirical rule is applied. It states that if Tk0 is the

tree minimizing ECV (Tk0) from the sequence of nested subtrees TMAX � T1 � T2 � T3 �
. . . � {t0}, then a value k1 and a correspondent tree Tk1 are selected so that

argmax
k1

Ê(Tk1) ≤ Ê(Tk0) + σ
{

Ê(Tk0)
}

(12)

where σ(·) denotes the sample estimate of the standard error and Ê(·) – the relevant esti-

mates of the internal misclassification errors (introduced in (10)) that are derived from data

subsamples employed by the cross-validation procedure.
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Figure 3.5: The example of relationship between Ê(Tk) and number of terminal nodes

The dotted line in Figure 3.5 shows the area where the values of Ê(Tk) only slightly differ

from min
|T̃k|

Ê(Tk). The left edge, which is roughly equivalent to 16 terminal nodes, shows the

application of the one standard error rule. The use of the one standard error rule allows not

only more robust results to be achieved, but also to get trees of lower complexity given the

error comparable with min
|T̃k|

Ê(Tk).
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4 Available Data and Calibration

In this study we operate with a single data set of XETRA DAX companies for the period

of 27 April, 2000 – 30 October, 2003 that, along with historical stock prices, has a set of

technical and fundamental indicators. Table 4.1 provides an overview of the available data.

Indicator Type Frequency Description

Momentum Technical 1 day Mt = Pt − Pt−T , T = 20

Stochastic Technical 1 day Pt−PL

PH−PL
, PH = max(Pt), PL = min(Pt)

MA Technical 1 day MA(T ) =
∑t

i=t−T Pi

T
, T = 12

MA St. Error Technical 1 day Standard deviation of MA

MACD Technical 1 day (1− n1

n2
){MA(n1)−MA(n2 − n1)}

n1 = 12, n2 = 26

ROC Technical 1 day Pt

Pt−T
, T = 10

TRIX Technical 1 day Triple exponentially smoothed MA

BV Fundamental 1 month Book Value

CF Fundamental 1 month Cash Flow

Dividends paid Fundamental 1 month -

Depreciation

EPS Fundamental 1 month Earnings Per Share

Sales Fundamental 1 month -

ImplVola Fundamental 1 day Implied volatility

Table 4.1: List of available variables, t is the current time period

The data contain two types of variables: technical indicators, which are collected daily and

usually represent some derivative of historical price, and fundamental data, which provide

us with the evidence of the current market status of the company by means of various

numbers and ratios from the balance sheet and the income statement. Fundamental data

are collected monthly and sometimes quarterly. In order to have the same time scale, the

following transformations were applied: other than daily variables are normalized by the

stock price, e.g. instead of BVt,
BVt

Pt
is taken, where t refers to a particular time moment,

see Table 4.1 for the description of the available variables.
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Because of the different measurement periods for technical and fundamental data (refer to

Table 4.1), it is an open question which time scale to use for the stock picking analysis.

Obviously, daily data provide us with a sufficient number of observations in a learning set,

but at the same time they may contain undesired market fluctuations and natural noise (e.g.

measurement errors). Since fundamental data are collected monthly, their daily changes

bring us little new information. On the other hand, monthly data will give us 12 observations

per year, which is not enough to construct a reliable tree. Our analysis is therefore based

on weekly observations which is a trade-off between data scarcity and informational content.

The final data set consists of technical data by the end of each week and fundamental

indicators normalised by corresponding stock prices.

Individual trees are built for each stock from XETRA DAX. This is opposed to a setup when

the data from all the stocks are combined and a single common tree is employed to provide

forecasts for each of the stocks. However, due to the different nature, scale and business

areas of the companies in XETRA DAX, individual decision trees are employed to capture

those company peculiarities that might be lost if a single common tree is used.

The available data are divided into three groups: the learning set, the test/calibration set

and the validation set. The first data set is a learning sample that is used to construct the

initial decision tree for every company. The test set is employed for the model parameters to

be optimised. And finally, with the optimised model parameters, the simulated performance

of each stock is evaluated using the last section of the data – the validation set.

In Section 2 the stock classes (stored in the vector Y) were introduced in the form of three

possible values – long, short or neutral standing for undervalued, overvalued and fairly priced

stocks. In this study we assess the relative performance of a stock in the following way.

Let R̄ be some positive threshold. Then for given R̄ the tree classes are defined as following:


Rt ≥ R̄ ⇒ long

−R̄ ≤ Rt ≤ R̄ ⇒ neutral

Rt ≤ −R̄ ⇒ short

16



If the forward-looking one period stock return for the next period t + 1 computed at time t

Rt =
Pt+1 − Pt

Pt

(13)

exceeds the threshold value R̄ (where Pt is the current stock price), this stock is regarded as

underperforming in the current period t.

The value of R̄ is supposed to be different for each of the analysed XETRA DAX stocks.

Setting it up too high R̄ results in a low number of cases in the learning sample where active

positions should be maintained – the trading system is too cautious. On the other hand,

if R̄ is close to zero, then even small price fluctuations, which are, perhaps, due to only

speculative market activity and not fundamental reasons, trigger the signal for maintaining

the active position – in this case the trading system is too sensitive to market signals.

The threshold value R̄ was optimised using the calibration set for each stock individually. It

was chosen in such a way that maximises the return of the stock over the calibration period

if the trading activity is simulated. For that purpose different values of R̄ starting from 0%

and ending at 3% with a step of 0.25% were analysed resulting in 13 different scenarios for

each stock. Although different stocks resulted in various values of R̄, in the majority of cases

R̄ was close to 1.5%.

The size of the learning set was set to one year (52 weekly observations). In order to reflect

structural changes on the market, a sliding window approach was employed, i.e. as new data

point becomes available, it was included in the sample while the oldest one was excluded.

Thus, the size of the learning sample remains fixed over time, but it is constantly updated

with the new observations as they become available.

The calibration sample size was set to 26 weeks. The rest data points were allocated for the

validation set.

5 Backtesting Results

As mentioned before, each available stock from XETRA DAX was analysed using the indi-

vidual trees. Due to the data scarcity only the stocks with the market data available during
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the whole period were regarded: ADS (1939), VOW (621), SAP (24243), DTE (19594),

BMW (708), FME (684), HEN3 (3917), SIE (657) – the numbers in parentheses correspond

to the relevant company XETRA DAX codes.

For the validation period for every time point the model forecasted position (via optimised

and properly calibrated decision trees) was compared with an actual following period return

happened in the past. If the position coincided with the forward-looking stock price change

direction, the trading system recorded the relevant profit.

An example of the decision tree for SIE (657) is given in Figure 5.6. Left branch corresponds

to the positive answer, whereas right branch to the negative answer to the question in the

parent node. The number of observations for each of three classes is given in brackets. The

class of terminal nodes (marked with yellow) is defined by the dominating class of the node.

Since the sliding window approach was employed, a new tree was constructed as soon as

data become available.
(long, short, neutral) [10, 0.75]

Impl. Vola < 42.574
(15,17,20)

EPS
P < 0.042
(4,12,17)

CLASS short
(1,10,4)

CLASS neutral
(3,2,13)

CLASS long
(11,5,3)

Figure 5.6: One of the decision trees for SIE (657), R̄ = 3%

At the beginning of each period all open positions were closed and profits were not reinvested.

Transaction costs in amount of 10 b.p. for each operation were included into the calculations.

An equally-weighted portfolio out of the available stocks with the recommended active posi-

tions (either long or short) was formed for every period. Because the trading system updated
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the recommendations every week (when new market data became available), the weights of

the portfolio were recalculated as well. If At > 0 is the number of stocks with the recom-

mended active position for the current period t, then the relevant i-th stock weight in the

portfolio at time point t is ωit:

|ωit| =
1

At

. (14)

If At = 0, then the portfolio positions remain unchanged from the previous period. The

portfolio is created at the first week c of the validating period when Ac > 0.

The creation of the equally weighted portfolio is a common way to get the backtesting

results for stock picking in the case of multiple stocks, see, for example, Amenc, et al (2003),

Seshadri (2003) or Sorensen, et al (1999).

Figure 5.7 shows the weekly portfolio returns and Figure 5.8 plots the wealth curves of the

CART strategy and traditional benchmarks: dynamics of XETRA DAX, FTSE 100 and

Dow Jones Industrial indices. The risk free rate was approximated with the three month

LIBOR interest rate. For the observed period the average annualized profit was 19.99% with

the corresponding Sharpe ratio of 0.88.

Value

Sharpe ratio 0.88

Mean relative weekly 19.99%

Skewness 0.63

Kurtosis 6.69

Risk free (Avg. LIBOR) 0.04

Table 5.2: Performance statistics for portfolio without the implied volatility variable in the

learning sample

To test the relevance of the implied volatility in terms of the stock price predicting power, the

second recursive portfolio based on the learning samples with the implied volatility variable

was constructed. Weekly returns and wealth curve are available in Figures 5.9 and 5.10. The

performance of the portfolio with the implied volatility variable is summarised in Table 5.3.

Because the implied volatility data were not available for SAP (24243), we excluded this
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Figure 5.7: Weekly portfolio returns for active CART strategy without the implied volatility

variable in the learning sample

stock from the second portfolio. Hence one can notice slightly different backtesting periods

on the following pairs of Figures: 5.7, 5.8 vs 5.9, 5.10.

Value

Sharpe ratio 1.59

Mean relative weekly 25.55%

Skewness 1.00

Kurtosis 5.68

Risk free (Avg. LIBOR) 0.04

Table 5.3: Performance statistics for portfolio with the implied volatility in the learning

sample
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Figure 5.8: Wealth curves for active CART strategy without the implied volatility variable

in the learning sample; wealth curves for benchmark strategies

It is clear that the implied volatility variable, at least for the indicated stock market and

period, had a positive effect on the stock price predictive power. Being one of the factors

that allows the measurement of the overall market uncertainty and, ultimately, one of the

important risk factors, the inclusion of implied volatility variable in the learning sample

boosted the forecasting potential of the proposed trading model based on binary decision

trees.
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Figure 5.9: Weekly portfolio returns for active CART strategy with the volatility variable

in the learning sample

6 Concluding Remarks

In this study it is assumed that stock selection can effectively be based on the proper analysis

of available market data, i.e. a relationship of an unknown non-linear form between the

current stock prices and the lagged market indicators exists. This relationship is estimated

here via a nonparametric classification method called decision trees. Decision trees are a type

of the classification rule that describes the relationship between the stock price and available

market information in the form of a binary tree and are further employed to predict the

future movements of the price. We also imply that this dependency may change in time

with the evolving financial markets and therefore rebuild the decision tree for each period

(week) whereas the last observations are included into the learning sample to keep it updated
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Figure 5.10: Wealth curves for active CART strategy with the implied volatility variable in

the learning sample; wealth curves for benchmark strategies

and the oldest one is excluded to maintain the fixed sample size.

In order to evaluate the importance of the market risk factor for the stock prediction power,

two different recursive portfolios – including and excluding the implied volatility variable in

the learning samples – were created. The first portfolio was constructed using only techni-

cal and fundamental information available from data providers. With an annualised yield

of 19.99% and the corresponding Sharpe ratio of 0.88 it clearly outperformed traditional

benchmark strategies. Having included the implied volatility variable, the backtesting per-

formance of the trading system was boosted up to an annual yield of 25.55% and the Sharpe

ratio of 1.59. This result is consistent with previous research in the area implying that equity

premium can be well explained by risk factors that are well approximated by the implied

volatility.
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