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Abstract. Exploratory factor analysis (EFA) is an important tool in data analyses,
particularly in social science. Usually four steps are carried out which contain a
large number of options. One important option is the number of factors and the
association of variables with a factor. Our tools aim to visualize various models
with different numbers in parallel of factors and to analyze which consequences a
specific option has. We apply our method to data collected at the School of Business
and Economics for evaluation of lectures by students. These data were analyzed by
Zhou (2004) and Reichelt (2007).

Keywords: Factor analysis, visualization, questionnaire, evaluation of teach-
ing

JEL classification: C39, C45, C63

1 Introduction

The exploratory factor analysis of a dataset consists of four steps:

1. estimating the correlation matrix R̂ between the observed p items.
The Bravais-Pearson correlation is the one usually used. For ordinal data
Kendall’s τb, Spearmans rank correlation or polychoric correlation (un-
derlying variable approach, see e.g. Bartholomew, Steele, Moustaki and
Galbraith, 2002) can be used.

2. estimating the number of common factors k < p. Various criteria
are used to find the number of factors: Kaiser (eigenvalues larger than 1),
Parallel analysis of Horn (1965), 90% of explained variance and Elbow-
criterion.

This work was supported by the Deutsche Forschungsgemeinschaft through the
SFB 649 ”Economic risk” and the Multimedia-Förderprogramm 2006 of the
Humboldt-Universität zu Berlin.
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3. estimating the loadings matrix Â of the common factors. Depending
on the beliefs about the data, several extraction methods can be used:
principal component (PC), principal axis (PA), maximum likelihood (ML),
unweighted least squares (ULS).

4. rotating the loadings to improve interpretability. Different rotation meth-
ods have been developed, e.g. the varimax rotation if the rotated factors
should be uncorrelated and the promax rotation if the rotated factors can
be correlated.

2 Visualizations

We have used four plots to obtain information about our items and factor
models:

correlation plot which visualizes the underlying correlation matrix of the
items (see Figure 1 left). White here represents a small correlation whereas
black represents a large absolute correlation. If we group the highly cor-
related variables together then we can see which variables will become a
factor.

scree plot which is a simple Scree plot added with the decision criteria (see
Figure 1 right) mentioned before. The horizontal grey line represents the
Kaiser criterion, the (nearly) horizontal falling line represent the Horn
criterion and the vertical lines the 10%, ..., 90% variance criterion. This
plot indicates how many factors should be chosen.

factor model plot we can see for each factor model which variables are
explained by the same factor (see Figure 2). These variables are combined
by a grey horizontal line. A grey square indicates that the absolute factor
loading is smaller than a cut-off value (default: 0.5), but still has its
absolute maximum loading at this factor. The black square indicates that
the absolute factor loading is above the cut-off value. The colored plot
version allows to differentiate between between small and large loadings
above the cut-off value.

communality plot where each curve represents one factor model and shows
how much ”variance” is explained by it (see Figure 3). For each model
we can see where it improves the variance explanation of an item.

In all graphics except the scree plot we can choose the order of the vari-
ables. In the correlation plot the variables are arranged in such a way that
variables with the largest absolute correlation are near to each other. In the
factor model plot and communality plot we count, in all computed models,
how often variables are explained by the same factor (based on the grey and
black squares). The variables with the highest counts are placed near to each
other.



Visualizing exploratory factor analysis models 3

 

 

b7
c9
f3
f1
c4
c3
c8
c1
c2
c5
c6
c7
b3
b2
b1
b4
b6_2
b6
b5
f4
f2
e3
e2
e1
e4
e5
d1
d3
d2

d2d3d1e5e4e1e2e3f2f4b5b6b6
_2

b4b1b2b3c7c6c5c2c1c8c3c4f1f3c9b7

Sc
re

ep
lo

t(s
)

Fa
ct

or

Explained variance

0.
1

0.
2

0.
3

5
10

15
20

25

uv
,u

ls
,v

ar
im

ax

F
ig

.
1
.

L
ef

t:
T
et

ra
ch

o
ri

c
co

rr
el

a
ti

o
n

o
f

th
e

2
9

it
em

s
in

th
e

ev
a
lu

a
ti

o
n

d
a
ta

.
A

d
a
rk

er
ci

rc
le

m
ea

n
s

a
h
ig

h
er

a
b
so

lu
te

co
rr

el
a
ti

o
n

b
et

w
ee

n
th

e
it

em
s

(w
h
it

e:
b
et

w
ee

n
-0

.2
a
n
d

0
.2

,
..
.,

b
la

ck
:
b
el

ow
-0

.8
o
r

a
b
ov

e
0
.8

).
R

ig
h
t:

S
cr

ee
p
lo

t
fo

r
th

e
ev

a
lu

a
ti

o
n

d
a
ta

.
T

h
e

h
o
ri

zo
n
ta

l
g
re

y
li
n
e

in
d
ic

a
te

s
th

e
K

a
is

er
cr

it
er

io
n
,
th

e
sl

ow
ly

fa
ll
in

g
,
n
ea

rl
y

h
o
ri

zo
n
ta

l,
g
re

y
li
n
e

th
e

H
o
rn

cr
it

er
io

n
a
n
d

th
e

v
er

ti
ca

l
g
re

y
li
n
es

in
d
ic

a
te

th
e

1
0
%

,
2
0
%

,
..
.
u
p

to
9
0
%

ex
p
la

in
ed

va
ri

a
n
ce

li
n
es

.



4 Klinke, S. and Wagner, C. uv,uls,varimax
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Fig. 2. We see the factor models starting from one up to ten factors. Black squares
indicate an absolute loading larger than 0.5, grey squares indicate the largest ab-
solute loading of a variable. Variables explained by the same common factor are
connected by a grey line.
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Fig. 3. Communalities of variables explained by several factor models. The lower
grey line represents the one-factor model, the upper grey line the ten-factor model,
the black lines the four-, five-, six- and seven-factor model (from lower to upper).
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3 Application

For more than ten years, each semester students of the School of Business and
Economics have been asked (see appendix A) to evaluate by questionnaire the
lectures they have attended. Questionnaire data for the summer term 2002,
2003, 2005 and 2006 was analyzed by Zhou (2004) and Reichelt (2007). Here
we reanalyze the data from lectures in the summer term of 2003 where the
questionnaire consisted of 29 questions, each item with five answers ranging
from good to bad. The missing values have been replaced by the maximum
likelihood for categorical data method as described in Schafer (1997, p. 239ff).

The correlation plot, Figure 1 left, indicates that we should expect around
five factors. One with the variables e5-d3; this is pretty much uncorrelated
with all other factors. The other four groups of variables (c4-c5, c6+c7, b3-b6,
b5-e1) seem to be correlated to each other.

In the scree plot in Figure1 (right) we identify four (Horn) or five factors
(Kaiser). Both explain between 60% and 70% of the total variance. Zhou
(2004) identified five factors: ”communication skill” (b1, b2, b3, b4, c1, c2,
c3), ”lecture notes” (c5, c6, c7), ”course attributes” (d1, d2, d3, e5), ”question
answering” (b6, b6 2) and ”student reactions” (e1, e2, e3, f2, f4). It might
also be interesting to look at the seven factor model since the eigenvalue
curve here falls down a fraction.

For the factor model plot we therefore decided to visualize all models
starting from a one factor model up to a ten factor model. We are currently
looking for a set of variables which form a factor and which is stable to about
several factor models.

Looking for the models, especially the four till seven factor model, we see
that

• the variables e5, d1, d2 and d3 (course attributes) form a stable fac-
tor over nearly all models. Since the questionnaire was carried out four
weeks before the exams, the student could also appreciate the speed and
difficulties of a course.

• Another set of variables is f2, f4, e1, e2 and e3 (student reactions). How-
ever, as the variable f4 also loads on a different factor, it might be better
to exclude it from the factor.

• c5, c6 and c7 also form a stable factor (lecture notes).
• In the eight factor model the variables b1-b5 and c1-c4 form one factor

(communications skill). However some variables turn out to be problem-
atic in earlier models: b3 and b5 belong either to different factors or also
load on a different factor.

• Finally, we have two factors (f1, f3 and ”question answering”: b6, b6 2,
b7) with a small number of items.

We end up with four or six factors depending whether we want factors
with a small number of items or not. This complies with Zhou’s result (2004)
that a six factor model is appropriate; her final choice of a five factor model is
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visual analysis of several factor models provides us with a more informative
and reliable result.

However, an analysis of later data in Reichelt (2007) for the lectures in 2005
and 2006 revealed a high correlation (≈ 0.7) between the factors ”commu-
nication skills” and ”lecture notes”. This is also reflected to some extent in
the factor models: later split of factors means higher correlation between the
factors, see for example the factor ”course attributes”. This clearly indicates
that students tend to make a general judgement about a lecture rather than
differentiating its characteristics which in Reichelt (2007) led to a two factor
model:

1. Did the student like the course?
2. Did the student consider the course difficult?

4 R routines

efa //

��

efa.compute //
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Fig. 4. Shows the relationship of the efa routines. The underlined routines are the
ones which are usually used.

To produce our plots we have written several R routines. Figures 4 and 5
show the order how the routines should be applied:

efa generates from a data set a R object of class efa and computes a cor-
relation matrix. Possible correlations are: pearson (default) for Bravais-
Pearson correlation, kendall for Kendalls τ , spearman for Spearmans
rank correlation, cov for covariance and uv for tetrachoric correlation
(slow).

efa.plotCorr visualizes the correlation between the variables (see Figure 1
left).

Fig. 4. Shows the relationship of the efa routines. The underlined routines are the
ones which are usually used.

due to the fact that in the other three datasets she found a five-factor model.
The visual analysis of several factor models provides us, via stability analysis
and variance explanation for each item, with a more informative and reliable
result.

However, an analysis of later data in Reichelt (2007) for the lectures in
2005 and 2006 revealed a high correlation (≈ 0.7) between the factors ”com-
munication skills” and ”lecture notes” in a promax rotated model. This is
also reflected to some extent in the factor models: later split between items
means higher correlation between them, see for example the factor ”course
attributes”. This clearly indicates that students tend to make a general judg-
ment about a lecture rather than differentiating its characteristics which in
Reichelt (2007) led to a two factor model:

1. Did the student like the course?
2. Did the student consider the course difficult?

4 R routines

To produce our plots we have written several R routines. Figures 4 and 5
show the order how the routines should be applied:

efa generates from a data set a R object of class efa and computes a cor-
relation matrix. Possible correlations are: pearson (default) for Bravais-
Pearson correlation, kendall for Kendalls τ , spearman for Spearmans
rank correlation, cov for covariance and uv for tetrachoric correlation
(slow).

efa.plotCorr visualizes the correlation between the variables (see Figure 1
left).
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vl03_full <- read.csv2(" vl03_impute.csv")

vl03 <- vl03_full [ ,8:36] # extract question answers

efa_vl03 <- efa(vl03 , "uv")

efa.plotCorr (efa_vl03)

efa_vl03 <- efa.compute(efa_vl03 , factors =10,

extract ="uls", horn=T)

efa.plotScree (efa_vl03)

efa.plotFactor (efa_vl03)

efa.plotCommunality (efa_vl03 , modelsep=c(1,4:7,10),

col=c("grey", "black", "black",

"black", "black", "grey "))

Fig. 5. Basic R program to generate the graphics in the paper.

efa.compute computes the factor models based on the correlation matrix.
Options are none, promax and varimax (default) for rotation, pc (prin-
cipal component), uls (unweighted least squares), mle (maximum likeli-
hood) and prax principal axis for extraction. The parameter factors de-
termines the maximal number of factors and can either be a text (kaiser,
ellbow or horn) or a number. Numbers between zero and one are inter-
preted as minimal percentage of variance explained and numbers larger
than one give the maximal number of factors to be extracted.

efa.plotFactors visualizes the computed factor models (see Figures 2),
efa.plotScree shows the scree plot with the selection criteria (see Figures 1

right) and
efa.plotCommunality shows the explained variance per item (see Figure 3).

Additionally some helper routines have been written to realise specific ex-
traction methods etc.:

uls unweighted least squares method to compute the factor loadings,
prax principal axis method to compute the factor loadings (like in SPSS),
horn computes the eigenvalues for a parallel analysis (Horn, 1965),
efa.computeCor computes the correlation for an R object of class efa and
efa.sortIndex computes an order of variables based on a square matrix,

e.g. the correlation matrix.

The R routines are still in development, but can be requested from the first
author (sigbert@wiwi.hu-berlin.de).

5 Conclusion

The factor model plot, in particular, will simplify the task of understanding
how many factors we can identify with an exploratory factor analysis and

Fig. 5. Basic R program to generate the graphics in the paper.

efa.compute computes the factor models based on the correlation matrix.
Options are none, promax and varimax (default) for rotation, pc (prin-
cipal component), uls (unweighted least squares), mle (maximum likeli-
hood) and prax principal axis for extraction. The parameter factors de-
termines the maximal number of factors and can either be a text (kaiser,
elbow or horn) or a number. Numbers between zero and one are inter-
preted as minimal percentage of variance explained and numbers larger
than one give the maximal number of factors to be extracted.

efa.plotFactors visualizes the computed factor models (see Figures 2),
efa.plotScree shows the scree plot with the selection criteria (see Figures 1

right) and
efa.plotCommunality shows the explained variance per item (see Figure 3).

Additionally some helper routines have been written to realize specific
extraction methods etc.:

uls unweighted least squares method to compute the factor loadings,
prax principal axis method to compute the factor loadings (like in SPSS),
horn computes the eigenvalues for a parallel analysis (Horn, 1965),
efa.computeCor computes the correlation for an R object of class efa and
efa.sortIndex computes an order of variables based on a square matrix,

e.g. the correlation matrix.

The R routines are still in development, but can be requested from the
first author (sigbert@wiwi.hu-berlin.de).

5 Conclusion

The factor model plot, in particular, will simplify the task of understanding
how many factors we can identify with an exploratory factor analysis and
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which variables should belong to a factor. It also incorporate steps from a
more traditional approach (computing a model, creating scales and comput-
ing reliability). If a variable in a scale leads to a too small Cronbachs α, it
may load on different factors in different factor models.
With a different questionnaire we were able, based on the factor model plot,
to analyze the effect of missing value treatment and to provide a better in-
terpretable factor model.
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A Evaluation questionnaire

Lecturer

b1 Explain ability b5 Stimulation of independent thought
b2 Content clarity b6 Willingness to answer questions
b3 Transparency quality b6 2 Quality of answered questions
b4 Didactical ability b8 Time allowed after course

Lecture Concept

c1 Aspects covered deepness c6 Availability of lecture notes
c2 Topic structure clarity c7 Presence in the internet
c3 Related topics reference c8 Content update
c4 Practical example application c9 Relevance between lecture and exercise
c5 Choice of lecture notes

Course attributes

d1 Lecture speed d3 Difficulty
d2 Mathematical level

Self assessment

e1 Interest degree e4 Preparation level
e2 Attention span e5 Challenging feeling
e3 Knowledge increase

Course atmosphere

f1 Atmosphere-stress level f3 Atmosphere-disciplined degree
f2 Atmosphere-interest degree f4 Atmosphere- motivation level

For the questionnaire form and coding see Zhou (2004), page 64 and 70.
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