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Confidence Bands in Quantile Regression∗

Wolfgang K. Härdle †, Song Song ‡

Abstract
Let (X1, Y1), . . ., (Xn, Yn) be i.i.d. rvs and let l(x) be the un-

known p-quantile regression curve of Y conditional on X. A quantile-
smoother ln(x) is a localised, nonlinear estimator of l(x). The strong
uniform consistency rate is established under general conditions. In
many applications it is necessary to know the stochastic fluctuation
of the process {ln(x)− l(x)}. Using strong approximations of the em-
pirical process and extreme value theory, we consider the asymptotic
maximal deviation sup06x61 |ln(x)− l(x)|. The derived result helps in
the construction of a uniform confidence band for the quantile curve
l(x). This confidence band can be applied as a econometric model
check. An economic application considers the relation between age
and earnings in labour market by means of parametric model speci-
fication tests, which presents a new framework to describe trends in
the entire wage distribution in a parsimonious way.

Keywords: Quantile Regression; Consistency Rate; Confidence Band;
Check Function; Kernel Smoothing; Nonparametric Fitting

JEL classification: C00; C14; J01; J31

1 Introduction

In standard regression function estimation, most investigations are concerned
with the conditional mean regression. However, new insights about the un-
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derlying structures can be gained by considering other aspects of the condi-
tional distribution. The quantile curves are key aspects of inference in various
economic problems and are of great interest in practice. These describe the
conditional behaviour of a response variable (e.g. wage of workers) given the
value of an explanatory variable (e.g. education level, experience, occupation
of workers), and investigate changes in both tails of the distribution, other
than just the mean.

When examining labour markets, economists are concerned with whether
discrimination exists, for example for different genders, nationalities, union
status and so on. To study this question, we need to separate out other
effects first, e.g. age, education, etc. The crucial relation between age and
earnings or salaries belongs to the most carefully studied subjects in labor
economics. The fundamental work in mean regression can be found in Mur-
phy and Welch (1990). Quantile regression estimates could provide more
accurate measures. Koenker and Hallock (2001) present a basket of impor-
tant economic applications, including quantile Engel curves and claim that
“quantile regression is gradually developing into a comprehensive strategy
for completing the regression prediction”. Besides this, it is also well-known
that a quantile regression model (e.g. the conditional median curve) is more
robust to outliers, especially for fat-tailed distributions. For symmetric con-
ditional distributions the quantile regression generates the nonparametric
mean regression analysis since the p = 0.5 (median) quantile curve coincides
with the mean regression.

As first introduced by Koenker and Bassett (1978), one may assume a
parametric model for the p-quantile curve and estimate parameters by the
interior point method discussed by Koenker and Park (1996) and Portnoy
and Koenker (1997). Similarly, we can also adopt nonparametric methods to
estimate conditional quantiles. The first one, a more direct approach using
a check function such as a robustified local linear smoother, is provided by
Fan et al. (1994) and further extended by Yu and Jones (1997, 1998). An
alternative procedure is first to estimate the conditional distribution function
using the double-kernel local linear technique of Fan et al. (1996) and then
to invert the conditional distribution estimator to produce an estimator of
a conditional quantile by Yu and Jones (1997, 1998). Beside these, Hall
et al. (1999) proposed a weighted version of the Nadaraya-Watson estimator,
which was further studied by Cai (2002). Recently Jeong and Härdle (2008)
have developed the conditional quantile causality test. More generally, for
an M -regression function which involves quantile regression as a special case,
the uniform Bahadur representation and application to the additive model
is studied by Kong et al. (2008). An interesting question for the parametric
fitting, especially from labour economicsts, would be how well these models
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fit the data, when compared with the nonparametric estimation method.
Let (X1, Y1), (X2, Y2), . . ., (Xn, Yn) be a sequence of independent identi-

cally distributed bivariate random variables with joint pdf f(x, y), joint cdf
F (x, y), conditional pdf f(y|x), f(x|y), conditional cdf F (y|x), F (x|y) for Y
given X and X given Y respectively, and marginal pdf fX(x) for X, fY (y)
for Y where x ∈ J , and J is a possibly infinite interval in Rd and y ∈ R. In
general, X may be a multivariate covariate, although here we restrict atten-
tion to the univariate case and J = [0, 1] for convenience. Let l(x) denote
the p-quantile curve, i.e. l(x) = F−1

Y |x(p).

Under a “check function”, the quantile regression curve l(x) can be viewed

as the minimiser of L(θ)
def
= E{ρp(y − θ)|X = x} (w.r.t. θ) with ρp(u) =

pu1{u ∈ (0,∞)} − (1 − p)u1{u ∈ (−∞, 0)} which was originally motivated
by an exercise in Ferguson (1967)[p.51] in the literature.

A kernel-based p-quantile curve estimator ln(x) can naturally be con-
structed by minimising:

Ln(θ) = n−1

n∑
i=1

ρp(Yi − θ)Kh(x−Xi) (1)

with respect to θ ∈ I where I is a possibly infinite, or possibly degenerate,
interval in R, and Kh(u) = h−1K(u/h) is a kernel with bandwidth h. The
numerical solution of (1) may be found iteratively as in Lejeune and Sarda
(1988) and Yu et al. (2003).

In light of the concepts of M -estimation as in Huber (1981), if we define
ψ(u) as:

ψp(u) = p1{u ∈ (0,∞)} − (1− p)1{u ∈ (−∞, 0)}
= p− 1{u ∈ (−∞, 0)},

ln(x) and l(x) can be treated as a zero (w.r.t. θ) of the function:

H̃n(θ, x)
def
= n−1

n∑
i=1

Kh(x−Xi)ψ(Yi − θ) (2)

H̃(θ, x)
def
=

∫
R
f(x, y)ψ(y − θ)dy (3)

correspondingly.
To show the uniform consistency of the quantile smoother, we shall reduce

the problem of strong convergence of ln(x) − l(x), uniformly in x, to an

application of the strong convergence of H̃n(θ, x) to H̃(θ, x), uniformly in x
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and θ, as given by Theorem 2.2 in Härdle et al. (1988). It is shown that
under general conditions almost surely (a.s.)

sup
x∈J

|ln(x)− l(x)| 6 B∗ max{(nh/(log n))−1/2, hα̃}, as n→∞.

where B∗ and α̃ are parameters defined more precisely in Section 2.
Please note that without assuming K has compact support (as we do

here) under similar assumptions Franke and Mwita (2003) get:

ln(x) = F̂−1
Y |x(p)

F̂ (y|x) =

∑n
i=1Kh(x−Xi)1(Yi < y)∑n

i=1Kh(x−Xi)

sup
x∈J

|ln(x)− l(x)| 6 B∗∗{(nh/(sn log n))−1/2 + h2}, as n→∞.

for α-mixing data where B∗∗ is some constant and sn, n > 1 is an increasing
sequence of positive integers satisfying 1 6 sn 6 n

2
and some other criteria.

Thus {nh/(log n)}−1/2 6 {nh/(sn log n)}−1/2.
By employing similar methods as those developed in Härdle (1989) it is

shown in this paper that

P
(
(2δ log n)1/2

[
sup
x∈J

r(x)|{ln(x)− l(x)}|/λ(K)1/2 − dn

]
< z

)
−→ exp{−2 exp(−z)}, as n→∞. (4)

from the asymptotic Gumbel distribution where r(x), δ, λ(K), dn are suitable
scaling parameters. The asymptotic result (4) therefore allows the construc-
tion of (asymptotic) uniform confidence bands for l(x) based on specifica-
tions of the stochastic fluctuation of ln(x). The strong approximation with
Brownian bridge techniques that we use in this paper is available only for
the approximation of the 2-dimensional empirical process. The extension to
the multivariate covariable can be done by partial linear modelling which
deserves furthur research.

The plan of the paper is as follows. In Section 2, the stochastic fluctuation
of the process {ln(x)− l(x)} and the uniform confidence band are presented
through the equivalence of several stochastic processes, with a strong uni-
form consistency rate of {ln(x) − l(x)} also shown. In Section 3, in a small
Monte Carlo study we investigate the behaviour of ln(x) when the data is
generated by fat-tailed conditional distributions of (Y |X = x). In Section 4,
an application considers a wage-earning relation in the labour market. All
proofs are sketched in Section 5.
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2 Results

The following assumptions will be convenient. To make x and X clearly dis-
tinguishable, we replace x by t sometimes, but they are essentially the same.
(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A]
and is Lipschitz continuously differentiable with bounded derivatives;
(A2) (nh)−1/2(log n)3/2 → 0, (n log n)1/2h5/2 → 0, (nh3)−1(log n)2 6 M , M a
constant;
(A3) h−3(log n)

∫
|y|>an

fY (y)dy = O(1), fY (y) the marginal density of Y ,

{an}∞n=1 a sequence of constants tending to infinity as n→∞;
(A4) inft∈J |q(t)| > q0 > 0, where q(t) = ∂ E{ψ(Y − θ)|t}/∂θ|θ=l(t) · fX(t) =
f{l(t)|t}fX(t);
(A5) the quantile function l(t) is Lipschitz twice continuously differentiable,
for all t ∈ J .
(A6) 0 < m1 6 fX(t) 6 M1 < ∞, t ∈ J ; the conditional densities
f(·|y), y ∈ R, are uniform local Lipschitz continuous of order α̃ (ulL-α̃)
on J , uniformly in y ∈ R, with 0 < α̃ 6 1.

Define also

σ2(t) = E[ψ2{Y − l(t)}|t] = p(1− p)

Hn(t) = (nh)−1

n∑
i=1

K{(t−Xi)/h}ψ{Yi − l(t)}

Dn(t) = ∂(nh)−1

n∑
i=1

K{(t−Xi)/h}ψ{Yi − θ}/∂θ|θ=l(t)

and assume that σ2(t) and fX(t) are differentiable.
Assumption (A1) on the compact support of the kernel could possibly be

relaxed by introducing a cutoff technique as in Csörgö and Hall (1982) for
density estimators. Assumption (A2) has purely technical reasons: to keep
the bias at a lower rate than the variance and to ensure the vanishing of
some non-linear remainder terms. Assumption (A3) appears in a somewhat
modified form also in Johnston (1982). Assumptions (A5, A6) are common
assumptions in robust estimation as in Huber (1981), Härdle et al. (1988)
that are satisfied by exponential, and generalised hyperbolic distributions.

For the uniform strong consistency rate of ln(x)−l(x), we apply the result
of Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I = R,
q1 = q2 = −1, γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and
λ = ∞ to satisfy the representations for the parameters there. Thus from
Theorem 2.2 and Remark 2.3(v) there we immediately have the following
lemma.
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LEMMA 2.1 Let H̃n(θ, x) and H̃(θ, x) be given by (2) and (3). Under
assumption (A6) and (nh/ log n)−1/2 → ∞ through (A2), for some constant
A∗ not depending on n, we have a.s. as n→∞

sup
θ∈I

sup
x∈J

|H̃n(θ, x)− H̃(θ, x)| ≤ A∗ max{(nh/ log n)−1/2, hα̃} (5)

For our result on ln(·), we shall also require

inf
x∈J

∣∣ ∫
ψ{y − l(x) + ε}dF (y|x)

∣∣ > q̃|ε|, for |ε| 6 δ1, (6)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus
(1984). This assumption is satisfied if there exists a constant q̃ such that
f(l(x)|x) > q̃/p, x ∈ J .

THEOREM 2.1 Under the conditions of Lemma 2.1 and also assuming
(6), we have a.s. as n→∞

sup
x∈J

|ln(x)− l(x)| ≤ B∗ max{(nh/ log n)−1/2, hα̃} (7)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(t). If
additionally α̃ > {log(

√
log n)− log(

√
nh)}/log h, it can be further simplified

to
sup
x∈J

|ln(x)− l(x)| ≤ B∗{(nh/ log n)−1/2}.

THEOREM 2.2 Let h = n−δ, 1
5
< δ < 1

3
, λ(K) =

∫ A

−AK
2(u)du and

dn = (2δ log n)1/2 + (2δ log n)−1/2[log{c1(K)/π1/2}+
1

2
{log δ + log log n}],

if c1(K) = {K2(A) +K2(−A)}/{2λ(K)} > 0

dn = (2δ log n)1/2 + (2δ log n)−1/2 log{c2(K)/2π}

otherwise with c2(K) =

∫ A

−A
{K ′(u)}2du/{2λ(K)}.

Then (4) holds with

r(x) = (nh)1/2f{l(x)|x}{fX(x)/p(1− p)}1/2.

This theorem can be used to construct uniform confidence intervals for the
regression function as stated in the following corollary.
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COROLLARY 2.1 Under the assumptions of the theorem above, an ap-
proximate (1− α)× 100% confidence band over [0, 1] is

ln(t)± (nh)−1/2{p(1− p)λ(K)/f̂X(t)}1/2f̂−1{l(t)|t}{dn + c(α)(2δ log n)−1/2},

where c(α) = log 2 − log | log(1 − α)| and f̂X(t), f̂{l(t)|t} are consistent
estimates for fX(t), f{l(t)|t}.

In the literature, according to Fan et al. (1994, 1996), Yu and Jones
(1997, 1998), Hall et al. (1999), Cai (2002) and others, asymptotic normality
at interior points for various nonparametric smoothers, e.g. local constant,
local linear, reweighted NW methods, etc. has been shown:

√
nh{ln(t)− l(t)} ∼ N

(
0, τ 2(t)

)
with τ 2(t) = λ(K)p(1− p)/[fX(t)f 2{l(t)|t}]. Please note that the bias term
vanishes here as we adjust h. With τ(t) introduced, we can further write
Corollary 2.1 as:

ln(t)± (nh)−1/2{dn + c(α)(2δ log n)−1/2}τ̂(t).

Through minimising the approximation of AMSE (asymptotic mean square
error), the optimal bandwidth hp can be computed. In practice, the rule-of-
thumb for hp is given by Yu and Jones (1998):

1. Use ready-made and sophisticated methods to select optimal band-
width hmean from conditional mean regression, e.g. Ruppert et al.
(1995)

2. hp = [p(1− p)/ϕ2{Φ−1(p)}]1/5 · hmean
with ϕ, Φ as the pdf and cdf of a standard normal distribution

Obviously the further p lies from 0.5, the more smoothing is necessary.
The proof is essentially based on a linearisation argument after a Taylor

series expansion. The leading linear term will then be approximated in a
similar way as in Johnston (1982), Bickel and Rosenblatt (1973). The main
idea behind the proof is a strong approximation of the empirical process of
{(Xi, Yi)

n
i=1} by a sequence of Brownian bridges as proved by Tusnady (1977).

As ln(t) is the zero (w.r.t. θ) of H̃n(θ, t), it follows by applying 2nd-order

Taylor expansions to H̃n(θ, t) around l(t) that

ln(t)− l(t) = {Hn(t)− EHn(t)}/q(t) +Rn(t) (8)
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where {Hn(t)− EHn(t)}/q(t) is the leading linear term and

Rn(t) = Hn(t){q(t)−Dn(t)}/{Dn(t) · q(t)}+ EHn(t)/q(t)

+
1

2
{ln(t)− l(t)}2 · {Dn(t)}−1 (9)

·(nh)−1

n∑
i=1

K{(x−Xi)/h}ψ′′{Yi − l(t) + rn(t)}, (10)

|rn(t)| < |ln(t)− l(t)|.
is the remainder term. In Section 5 it is shown (Lemma 5.1) that ‖Rn‖ =
supt∈J |Rn(t)| = Op{(nh log n)−1/2}.

Furthermore, the rescaled linear part

Yn(t) = (nh)1/2{σ2(t)fX(t)}−1/2{Hn(t)− EHn(t)}

is approximated by a sequence of Gaussian processes, leading finally to the
Gaussian process

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x). (11)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain
asymptotically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {FX|y(x|y), FY (y)},

which transforms (Xi, Yi) into T (Xi, Yi) = (X ′
i, Y

′
i ) mutually independent

uniform rv’s. In the event that x is a d-dimension covariate, the transforma-
tion becomes:

T (x1, x2, . . . , xd, y) = {FX1|y(x1|y), FX2|y(x2|x1, y), . . . ,

FXk|xd−1,...,x1,y(xk|xd−1, . . . , x1, y), FY (y)}. (12)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be
applied to obtain the following lemma.

LEMMA 2.2 On a suitable probability space a sequence of Brownian bridges
Bn exists that

sup
x∈J,y∈R

|Zn(x, y)−Bn{T (x, y)}| = O{n−1/2(log n)2} a.s.,

where Zn(x, y) = n1/2{Fn(x, y) − F (x, y)} denotes the empirical process of
{(Xi, Yi)}ni=1.
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For d > 2, it is still an open problem which deserves further research.
Before we define the different approximating processes, let us first rewrite

(11) as a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(t) = {hg′(t)}−1/2

∫∫
K{(t− x)/h}ψ{y − l(t)}dZn(x, y),

g′(t) = σ2(t)fX(t).

The approximating processes are now:

Y0,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dZn(x, y) (13)

where Γn = {|y| 6 an}, g(t) = E[ψ2{y − l(t)} · 1(|y| 6 an)|X = t] · fX(t)

Y1,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dBn{T (x, y)} (14)

{Bn} being the sequence of Brownian bridges from Lemma 2.2.

Y2,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(t)}dWn{T (x, y)} (15)

{Wn} being the sequence of Wiener processes satisfying

Bn(x
′, y′) = Wn(x

′, y′)− x′y′Wn(1, 1)

Y3,n(t) = {hg(t)}−1/2

∫∫
Γn

K{(t− x)/h}ψ{y − l(x)}dWn{T (x, y)} (16)

Y4,n(t) = {hg(t)}−1/2

∫
g(x)1/2K{(t− x)/h}dW (x) (17)

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x) (18)

{W (·)} being the Wiener process.

Lemmas 5.2 to 5.7 ensure that all these processes have the same limit
distributions. The result then follows from
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LEMMA 2.3 (Theorem 3.1 in Bickel and Rosenblatt (1973)) Let dn, λ(K),
δ as in Theorem 2.2. Let

Y5,n(t) = h−1/2

∫
K{(t− x)/h}dW (x).

Then, as n→∞, the supremum of Y5,n(t) has a Gumbel distribution.

P
{

(2δ log n)1/2
[
sup
t∈J

|Y5,n(t)|/{λ(K)}1/2 − dn

]
< z

}
→ exp{−2 exp(−z)}.

3 A Monte Carlo Study

We generate bivariate data {(Xi, Yi)}ni=1, n = 500 with joint pdf:

f(x, y) = g(y −
√
x+ 2.5)1(x ∈ [−2.5, 2.5]) (19)

g(u) =
9

10
ϕ(u) +

1

90
ϕ(u/9).

The p-quantile curve l(x) can be obtained from a zero (w.r.t. θ) of:

9Φ(θ) + Φ(θ/9) = 10p,

with Φ as the cdf of a standard normal distribution. Solving it numerically
gives the 0.5-quantile curve l(x) =

√
x+ 2.5, and the 0.9-quantile curve

l(x) = 1.5296 +
√
x+ 2.5. We use the quartic kernel:

K(u) =
15

16
(1− u2)2, |u| 6 1,

= 0, |u| > 1.

In Fig. 1 the raw data, together with the 0.5-quantile curve, are displayed.
The random variables generated with probability 1

10
from the fat-tailed pdf

1
9
ϕ(u/9), see (19), are marked as squares whereas the standard normal rv’s

are shown as stars. We then compute both the Nadaraya-Watson estimator
m∗
n(x) and the 0.5-quantile smoother ln(x). The bandwidth is set to 1.25

which is equivalent to 0.25 after rescaling x to [0, 1] and fulfills the require-
ments of Theorem 2.2.

In Fig. 1 l(x), m∗
n(x) and ln(x) are shown as a dotted line, dashed-dot line,

and solid line respectively. At first sight m∗
n(x) has clearly more variation and

has the expected sensitivity to the fat-tails of f(x, y). A closer look reveals
that m∗

n(x) for x ≈ 0 apparently even leaves the 0.5-quantile curve. It may be
surprising that this happens at x ≈ 0 where no outlier is placed, but a closer
look at Fig. 1 shows that the large negative data values at both x ≈ −0.1 and
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Figure 1: The 0.5-quantile curve, the Nadaraya-Watson estimator m∗
n(x),

and the 0.5-quantile smoother ln(x).

x ≈ 0.25 cause the problem. This data value is inside the window (h = 1.10)
and therefore distorts m∗

n(x) for x ≈ 0. The quantile-smoother ln(x) (solid
line) is unaffected and stays fairly close to the 0.5-quantile curve. Similar
results can be obtained in Fig. 2 corresponding to the 0.9 quantile (h = 1.25)
with the 95% confidence band.

4 Application

Recently there has been great interest in finding out how the financial returns
of a job depend on the age of the employee. We use the Current Population
Survey (CPS) data from 2005 for the following group: male aged 25 − 59,
full-time employed, and college graduate containing 16, 731 observations, for
the age-earning estimation. As is usual for wage data, a log transformation
to hourly real wages (unit: US dollar) is carried out first. In the CPS all
ages (25 ∼ 59) are reported as integers. We rescaled them into [0, 1] by
dividing 40 by bandwidth 0.059 for nonparametric quantile-smoothers. This
is equivalent to set bandwidth 2 for the original age data.

In Fig. 3 the original observations are displayed as small stars. The local
0.5 and 0.9 quantiles at the integer points of age are shown as dashed lines,
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Figure 2: The 0.9-quantile curve, the 0.9-quantile smoother and 95% confi-
dence band.

whereas the corresponding nonparametric quantile-smoothers are displayed
as solid lines with corresponding 95% uniform confidence bands shown as
dashed-dot lines. A closer look reveals a quadratic relation between age and
logged hourly real wages. If we use several popular parametric methods to
estimate the 0.5 and 0.9 conditional quantiles, e.g. quadratic, quartic and
set of dummies (a dummy variable for each 5-year age group) models as in
Fig. 4. With the help of the 95% uniform confidence bands, we can do the
parametric model specification test. At the 5% significance level, we could
not reject any model. However, when the confidence level further decreases
and the uniform confidence bands get narrower, “set of dummies” parametric
model will be the first one to be rejected. At the 10% significance level, the
set of dummies (for age groups) model is rejected while the other two are
not. As the quadratic model performs quite similar by the quartic one, for
simplicity, it is suggested in practice to measure the log(wage)-earing relation
which coincides with Murphy and Welch (1990) in mean regression.
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Figure 3: The original observations, local quantiles, 0.5, 0.9-quantile
smoothers and corresponding 95% confidence bands.
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Figure 4: Quadratic, quartic, set of dummies (for age groups) estimates, 0.5,
0.9-quantile smoothers and their corresponding 95% confidence bands.
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5 Appendix

Proof of Theorem 2.1. By the definition of ln(x) as a zero of (2), we have,
for ε > 0,

if ln(x) > l(x) + ε, and then H̃n{l(x) + ε, x} > 0. (20)

Now

H̃n{l(x) + ε, x} 6 H̃{l(x) + ε, x}+ sup
θ∈I

|H̃n(θ, x)− H̃(θ, x)|. (21)

Also, by the identity H̃{l(x), x} = 0, the function H̃{l(x) + ε, x} is not
positive and has a magnitude > m1q̃ε by assumption (A6) and (6), for 0 <
ε < δ1. That is, for 0 < ε < δ1,

H̃{l(x) + ε, x} 6 −m1q̃ε. (22)

Combining (20), (21) and (22), we have, for 0 < ε < δ1:

if ln(x) > l(x) + ε, and then sup
θ∈I

sup
x∈J

|H̃n(θ, x)− H̃(θ, x)| > m1q̃ε.

With a similar inequality proved for the case ln(x) < l(x) + ε, we obtain,
for 0 < ε < δ1:

if sup
x∈J

|ln(x)− l(x)| > ε, and then sup
θ∈I

sup
x∈J

|H̃n(θ, x)− H̃(θ, x)| > m1q̃ε. (23)

It readily follows that (23), and (5) imply (7). �
Below we first show that ‖Rn‖∞ = supt∈J |Rn(t)| vanishes asymptotically

faster than the rate (nh log n)−1/2; for simplicity we will just use ‖ · ‖ to
indicate the sup-norm.

LEMMA 5.1 For the remainder term Rn(t) defined in (9) we have

‖Rn‖ = Op{(nh log n)−1/2}. (24)

Proof. First we have by the positivity of the kernel K,

‖Rn‖ 6
[

inf
06t61

{|Dn(t)| · q(t)}
]−1

{‖Hn‖ · ‖q −Dn‖+ ‖Dn‖ · ‖EHn‖}

+C1 · ‖ln − l‖2 ·
{

inf
06t61

|Dn(t)|
}−1

· ‖fn‖∞,

where fn(x) = (nh)−1
∑n

i=1K{(x−Xi)/h}.
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The desired result (5.1) will then follow if we prove

‖Hn‖ = Op{(nh)−1/2(log n)1/2} (25)

‖q −Dn‖ = Op{(nh)−1/4(log n)−1/2} (26)

‖EHn‖ = O(h2) (27)

‖ln − l‖2 = Op{(nh)−1/2(log n)−1/2} (28)

Since (27) follows from the well-known bias calculation

EHn(t) = h−1

∫
K{(t− u)/h}E[ψ{y − l(t)}|X = u]fX(u)du = O(h2),

where O(h2) is independent of t in Parzen (1962), we have from assumption
(A2) that ‖EHn‖ = Op{(nh)−1/2(log n)−1/2}.

According to Lemma A.3 in Franke and Mwita (2003),

sup
t∈J

|Hn(t)− EHn(t)| = O{(nh)−1/2(log n)1/2}.

and the following inequality

‖Hn‖ 6 ‖Hn − EHn‖+ ‖EHn‖.
= O{(nh)−1/2(log n)1/2}+ Op{(nh)−1/2(log n)−1/2}
= O{(nh)−1/2(log n)1/2}

Statement (25) thus is obtained.
Statement (26) follows in the same way as (25) using assumption (A2)

and the Lipschitz continuity properties of K, ψ′, l.
According to the uniform consistency of ln(t)− l(t) shown before, we have

‖ln − l‖ = Op{(nh)−1/2(log n)1/2}

which implies (28).
Now the assertion of the lemma follows, since by tightness of Dn(t),

inf06t61 |Dn(t)| > q0 a.s. and thus

‖Rn‖ = Op{(nh log n)−1/2}(1 + ‖fn‖).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ‖fn‖ = Op(1); thus
the desired result ‖Rn‖ = Op{(nh log n)−1/2} follows. �

We now begin with the subsequent approximations of the processes Y0,n

to Y5,n.
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LEMMA 5.2

‖Y0,n − Y1,n‖ = O{(nh)−1/2(log n)2} a.s.

Proof. Let t be fixed and put L(y) = ψ{y− l(t)} still depending on t. Using
integration by parts, we obtain∫∫

Γn

L(y)K{(t− x)/h}dZn(x, y)

=

∫ A

u=−A

∫ an

y=−an

L(y)K(u)dZn(t− h · u, y)

= −
∫ A

−A

∫ an

−an

Zn(t− h · u, y)d{L(y)K(u)}

+L(an)(an)

∫ A

−A
Zn(t− h · u, an)dK(u)

−L(−an)(−an)
∫ A

−A
Zn(t− h · u,−an)dK(u)

+K(A)
{∫ an

−an

Zn(t− h · A, y)dL(y)

+L(an)(an)Zna(t− h · A, an)− L(−an)(−an)Zn(t− h · A,−an)
}

−K(−A)
{∫ an

−an

Zn(t+ h · A, y)dL(y) + L(an)(an)Zn(t+ h · A, an)

−L(−an)(−an)Zn(t+ h · A,−an)
}
.

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y)
and use Lemma 2.2, we finally obtain

sup
06t61

h1/2g(t)1/2|Y0,n(t)− Y1,n(t)| = O{n−1/2(log n)2} a.s..

�

LEMMA 5.3 ‖Y1,n − Y2,n‖ = Op(h
1/2).

Proof. Note that the Jacobian of T (x, y) is f(x, y). Hence

Y1,n(t)− Y2,n(t)

=
∣∣∣{g(t)h}−1/2

∫∫
Γn

ψ{y − l(t)}K{(t− x)/h}f(x, y)dxdy
∣∣∣ · |Wn(1, 1)|.
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It follows that

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · ‖g−1/2‖

· sup
06t61

h−1

∫∫
Γn

|ψ{y − l(t)}K{(t− x)/h}|f(x, y)dxdy.

Since ‖g−1/2‖ is bounded by assumption, we have

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · C4 · h−1

∫
K{(t− x)/h}dx = Op(1).

�

LEMMA 5.4 ‖Y2,n − Y3,n‖ = Op(h
1/2).

Proof. The difference |Y2,n(t)− Y3,n(t)| may be written as∣∣∣{g(t)h}−1/2

∫∫
Γn

[ψ{y − l(t)} − ψ{y − l(x)}]K{(t− x)/h}dWn{T (x, y)}
∣∣∣.

If we use the fact that l is uniformly continuous, this is smaller than

h−1/2|g(t)|−1/2 · Op(h)

and the lemma thus follows. �

LEMMA 5.5 ‖Y4,n − Y5,n‖ = Op(h
1/2).

Proof.

|Y4,n(t)− Y5,n(t)| = h−1/2
∣∣∣ ∫ [{g(x)

g(t)

}1/2

− 1
]
K{(t− x)/h}dW (x)

∣∣∣
6 h−1/2

∣∣∣ ∫ A

−A
W (t− hu)

∂

∂u

[{g(t− hu)

g(t)

}1/2

− 1
]
K(u)du

∣∣∣
+h−1/2

∣∣∣K(A)W (t− hA)
[{g(t− Ah)

g(t)

}1/2

− 1
]∣∣∣

+h−1/2
∣∣∣K(−A)W (t+ hA)

[{g(t+ Ah)

g(t)

}1/2

− 1
]∣∣∣

S1,n(t) + S2,n(t) + S3,n(t), say.

The second term can be estimated by

h−1/2‖S2,n‖ 6 K(A) · sup
06t61

|W (t− Ah)| · sup
06t61

h−1
∣∣∣[{g(t− Ah)

g(t)

}1/2

− 1
]∣∣∣;
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by the mean value theorem it follows that

h−1/2‖S2,n‖ = Op(1).

The first term S1,n is estimated as

h−1/2S1,n(t) =
∣∣∣h−1

∫ A

−A
W (t− uh)K ′(u)

[{g(t− uh)

g(t)

}1/2

− 1
]
du

1

2

∫ A

−A
W (t− uh)K(u)

{g(t− uh)

g(t)

}1/2{g′(t− uh)

g(t)

}
du

∣∣∣
= |T1,n(t)− T2,n(t)|, say;

‖T2,n‖ 6 C5 ·
∫ A

−A |W (t− hu)|du = Op(1) by assumption on g(t) = σ2(t) ·
fX(t). To estimate T1,n we again use the mean value theorem to conclude
that

sup
06t61

h−1
∣∣∣{g(t− uh)

g(t)

}1/2

− 1
∣∣∣ < C6 · |u|;

hence

‖T1,n‖ 6 C6 · sup
06t61

∫ A

−A
|W (t− hu)|K ′(u)u/du = Op(1).

Since S3,n(t) is estimated as S2,n(t), we finally obtain the desired result. �

The next lemma shows that the truncation introduced through {an} does
not affect the limiting distribution.

LEMMA 5.6 ‖Yn − Y0,n‖ = Op{(log n)−1/2}.

Proof. We shall only show that g′(t)−1/2h−1/2
∫∫

R−Γn
ψ{y − l(t)}K{(t −

x)/h}dZn(x, y) fulfills the lemma. The replacement of g′(t) by g(t) may be
proved as in Lemma A.4 of Johnston (1982). The quantity above is less than
h−1/2‖g−1/2‖ · ‖

∫∫
{|y|>an} ψ{y− l(·)}K{(· − x)/h}dZ(x, y)‖. It remains to be

shown that the last factor tends to zero at a rate Op{(log n)−1/2}. We show
first that

Vn(t) = (log n)1/2h−1/2

∫∫
{|y|>an}

ψ{y − l(t)}K{(t− x)/h}dZn(x, y)

p→ 0 for all t

18



and then we show tightness of Vn(t), the result then follows:

Vn(t) = (log n)1/2(nh)−1/2

n∑
i=1

[ψ{Yi − l(t)}1(|Yi| > an)K{(t−Xi)/h}

−Eψ{Yi − l(t)}1(|Yi| > an)K{(t−Xi)/h}]

=
n∑
i=1

Xn,t(t),

where {Xn,t(t)}ni=1 are i.i.d. for each n with EXn,t(t) = 0 for all t ∈ [0, 1].
We then have

EX2
n,t(t) 6 (log n)(nh)−1 Eψ2{Yi − l(t)}1(|Yi| > an)K

2{(t−Xi)/h}
6 sup

−A6u6A
K2(u) · (log n)(nh)−1 Eψ2{Yi − l(t)}1(|Yi| > an);

hence

Var{Vn(t)} = E
{ n∑

i=1

Xn,t(t)
}2

= n · EX2
n,t(t)

6 sup
−A6u6A

K2(u)h−1(log n)

∫
{|y|>an}

fy(y)dy ·Mψ.

where Mψ denotes an upper bound for ψ2. This term tends to zero by
assumption (A3). Thus by Markov’s inequality we conclude that

Vn(t)
p→ 0 for all t ∈ [0, 1].

To prove tightness of {Vn(t)} we refer again to the following moment condi-
tion as stated in Lemma 5.1:

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|} 6 C ′ · (t2 − t1)
2

C ′ denoting a constant, t ∈ [t1, t2].

We again estimate the left-hand side by Schwarz’s inequality and estimate
each factor separately,

E{Vn(t)− Vn(t1)}2 = (log n)(nh)−1 E
[ n∑
i=1

Ψn(t, t1, Xi, Yi) · 1(|Yi| > an)

−E{Ψn(t, t1, Xi, Yi) · 1(|Yi| > an)}
]2

,
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where Ψn(t, t1, Xi, Yi) = ψ{Yi − l(t)}K{(t−Xi)/h} − ψ{Yi − l(t1)}K{(t1 −
X1)/h}. Since ψ, K are Lipschitz continuous except at one point and the
expectation is taken afterwards, it follows that

[E{Vn(t)− Vn(t1)}2]1/2

6 C7 · (log n)1/2h−3/2|t− t1| ·
{∫

{|y|>an}
fy(y)dy

}1/2

.

If we apply the same estimation to Vn(t2)− Vn(t1) we finally have

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|}

6 C2
7(log n)h−3|t− t1||t2 − t| ×

∫
{|y|>an}

fy(y)dy

6 C ′ · |t2 − t1|2 since t ∈ [t1, t2] by (A3).

�

LEMMA 5.7 Let λ(K) =
∫
K2(u)du and let {dn} be as in the theorem.

Then
(2δ log n)1/2[‖Y3,n‖/{λ(K)}1/2 − dn]

has the same asymptotic distribution as

(2δ log n)1/2[‖Y4,n‖/{λ(K)}1/2 − dn].

Proof. Y3,n(t) is a Gaussian process with

EY3,n(t) = 0

and covariance function

r3(t1, t2) = EY3,n(t1)Y3,n(t2)

= {g(t1)g(t2)}−1/2h−1

∫∫
Γn

ψ2{y − l(x)}K{(t1 − x)/h}

×K{(t2 − x)/h}f(x, y)dxdy

= {g(t1)g(t2)}−1/2h−1

∫∫
Γn

ψ2{y − l(x)}f(y|x)dyK{(t1 − x)/h}

×K{(t2 − x)/h}fX(x)dx

= {g(t1)g(t2)}−1/2h−1

∫
g(x)K{(t1 − x)/h}K{(t2 − x)/h}dx

= r4(t1, t2)

where r4(t1, t2) is the covariance function of the Gaussian process Y4,n(t),
which proves the lemma. �
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