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Abstract

We present a new way to model age-specific demographic variables, using the example
of age-specific mortality in the United States, building on the Lee–Carter approach and
extending it in several dimensions. We incorporate covariates and model their dynamics
jointly with the latent variables underlying mortality of all age classes. In contrast to
previous models, a similar development of adjacent age groups is assured, allowing for
consistent forecasts. We develop an appropriate Markov chain Monte Carlo algorithm
to estimate the parameters and the latent variables in an efficient one-step procedure.
Via the Bayesian approach we are able to assess uncertainty intuitively by constructing
error bands for the forecasts. We observe that in particular parameter uncertainty is
important for long-run forecasts. This implies that existing forecasting methods, which
ignore certain sources of uncertainty, may yield misleadingly sure predictions. To test
the forecast ability of our model we perform in-sample and out-of-sample forecasts up to
2050, revealing that covariates can help improve the forecasts for particular age classes.
A structural analysis of the relationship between age-specific mortality and covariates
is conducted in a companion paper.
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1 Introduction

Demographic issues are of general interest since they address the most fundamental at-
tributes of human life. Their research takes place at the crossways of economics and sociol-
ogy, medicine, and other academic disciplines, which in turn are often influenced themselves
by demographic findings. This gives rise to a multidisciplinary scientific interest. Of course,
such research is not only of interest to science, but also to many recipients in the domains of
politics and business. Reliable forecasts of future mortality and a better understanding of
the determinants of changing mortality are obviously of great importance in areas such as
social security and public health. In the private sector such advancements of knowledge can
have substantial monetary value, since they improve the calculation of life insurance rates
and pension schemes for the insurance industry. Population forecasts that can be derived
from demographic rates are another example of interest beyond pure science owing to their
implications for investment decisions in the public and private sectors. All of these potential
recipients benefit most from stochastic models, which yield distributional statements on the
probabilities of outcomes instead of pure projections of some scenarios. For this purpose,
stochastic models of age-specific mortality and other demographic variables are needed.

We present a new way to model age-specific demographic variables using the example of
age-specific mortality. Existing parametric and nonparametric approaches to modeling and
forecasting mortality suffer from different shortcomings in the embodiment of the age di-
mension. Our model avoids these drawbacks. Furthermore, it is very general and comprises
both the well-known Lee–Carter model and the use of covariates as special cases. Advanced
methods from the domain of Bayesian time series econometrics are used to set up the model
and estimate the parameters. Unobserved or latent variables, which drive the common de-
velopment of the observed age-specific variables, are complemented by observable covariates.
We formulate two explicit laws of motion in the form of (vector) autoregressions (VARs),
which ensure a relatively smooth development not only along the time but also the age
dimension of the demographic variable. For the latter, this is usually neglected. The im-
portance of this issue is demonstrated by the very smooth surface without jumps in Figure 1
representing U.S. mortality. We feel confident that a reasonable model of age-specific mor-
tality should explicitly embody this feature and guarantee such smoothness across ages in
forecasts too. By the use of VARs we also allow for mutual interactions between latent vari-
ables and all covariates in the model. Finally, we use Markov chain Monte Carlo (MCMC)
methods to estimate the model with an efficient one-step procedure. By the choice of priors
this Bayesian estimation approach also clearly reveals the assumptions made. Most notably,
it yields not only point estimates but also distributional statements for the results in a very
intuitive way.

Our approach is very flexible and can be applied to model all kinds of demographic variables,
using different numbers of latent variables and different sets of covariates. In this paper, we
present applications to U.S. mortality, with gross domestic product (GDP) and unemploy-
ment as important macroeconomic variables. Owing to our particular modeling approach,
stochastic forecasts of the modeled variables are easily achieved and have the advantage of
being fully consistent among adjacent age classes, unlike some parametric approaches or the
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Figure 1: Mortality surface of the logarithmized age-specific total (female and male com-

bined) mortality in the United States, 1933–2005.

popular Lee–Carter method. In addition to this important feature of age-related smooth-
ness, we also can distinguish the impact of different sources of uncertainty on the forecast
results. We show that the uncertainty associated with the random terms in the model is
more important at the beginning, whereas the uncertainty associated with the estimation
of parameters is very important in a longer perspective. This means that false confidence
in forecasts may result from ignoring important sources of uncertainty by concentrating on
the random term, such as in the Lee–Carter model. In-sample forecasts reveal that both
versions of the model, either including covariates or not, perform accurately. We present
out-of-sample forecasts of mortality with respective error bands for a longer horizon up to
the year 2050 which show that covariates can help improve the forecasts for particular age
classes. Moreover, the use of VARs, which is facilitated by the enormous reduction of the
dimension with the help of latent variables, allows for further structural analyses of the
interactions between the covariates and the demographic variable, revealing the full pattern
of age-specific reactions to external influences. Such an extended analysis is presented in a
companion paper.2

The presented approach can be applied to model, forecast, and analyze all kinds of age-
specific variables. Mortality is just a prominent example owing to its great importance in
general and to the fact that our model can be interpreted as a generalization of the estab-
lished Lee–Carter model. Moreover, in addition to their own intrinsic value, forecasts of

2Cf. Reichmuth and Sarferaz (2008).
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mortality also constitute an important part of the input needed for stochastic population
forecasts with the cohort component method of stepwise interpolation of an initial popula-
tion.

The rest of the paper is organized as follows: Section 2 provides a brief summary of the
literature on modeling and forecasting mortality. Our model is stated in Section 3. Section
4 describes the predictive densities. Sections 5 and 6 address the priors and the estimation
procedure, and the data are described in Section 7. The estimation and forecast results are
presented in Section 8, which additionally provides some intuitively interpretable life table
variables based on age-specific mortality. Finally, Section 9 presents our conclusions.

2 Literature on Modeling and Forecasting Mortality

We start with a short overview of some developments in modeling and forecasting age-
specific mortality.3 Models that map age to age-specific mortality take advantage of the
obvious strong regularities in mortality’s age pattern.4 In the context of forecasting, these
regularities have to be taken into account, because naive univariate forecasts of each age-
specific time series separately would propagate too much noise, quickly leading to serious
inconsistencies. Of course, such models also substantially reduce the dimensionality of the
data to be handled.

2.1 Parametric Modeling of Age-Specific Mortality

Systematic patterns in mortality have been known since the development of the first life
tables by Graunt (1662) and Halley (1693). In terms of a mathematical law of mortality
for the observed age pattern, Gompertz (1825) first mentioned that mortality m(x) at
age x in adulthood shows a nearly exponential increase

m(x) = αeβx .

Among the many more sophisticated proposals for a formula of age-specific mortality since
that time, Heligman and Pollard (1980) suggest a sum of three terms representing
different components of mortality,

m(x) = A(x+B)C

+ De−E(ln x−ln F )2 + GHx/ (1 + GHx) ,

with eight time-dependent parameters At, . . . ,Ht. The rapidly falling first term accounts for
mortality during childhood, the second term models the accident hump for young adults, and
the third term picks up the Gompertz exponential for the senescent mortality of adulthood
and old age. McNown and Rogers (1989) forecast the eight parameters of the Heligman–
Pollard model using the univariate time series method of autoregressive integrated moving
average (ARIMA) processes, which may lead to inconsistencies in the long run.

3Of course, we can only briefly sketch some major issues. Booth (2006) gives a comprehensive survey
of demographic forecasting.

4For the sake of simplicity, except for the final life table calculations, we use the term age-specific mortality
for both the probability 1qx = (lx − lx+1) / lx of dying at age x, which is related to the population at risk,
that is, the number lx of survivors to age x, and the death rate 1mx = (lx − lx+1) / 1Lx at age x, which is
related to the person-years 1Lx lived at age x (lx+1 ≤ 1Lx ≤ lx).
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2.2 Lee–Carter and Non-parametric Modeling of Age-Specific Mortality

Non-parametric approaches to modeling age-specific mortality span from early model life
tables to the nowadays well-established method of Lee and Carter (1992). After the first
set of model life tables released by the United Nations (1955), Coale et al. (1966)
developed a two-dimensional set of four regional patterns, each with 24 different mortality
levels identified by the life expectancy of children. Brass (1971) presents a relational
model that maps a tabulated standard age pattern of mortality with two parameters to
actual mortality.

Lee and Carter (1992) apply principal component analysis and propose a model

ln (mx,t) = ax + bxkt + εx,t

with mortality mx,t at age x and time t, fixed age effect ax equal to the average observed
log death rate, and an age-specific impact bx of a time-specific general mortality index kt.
This single parameter kt maps the average age pattern of mortality deviation from ax to
the actual pattern and bx is the first principal component and is estimated by singular
value decomposition. The subsequent estimation of the mortality index kt as an ARIMA
process results in a simple random walk with drift. The outcome, however, of forecasting
age-specific mortality by this method with one time-dependent parameter is similar to that
if each age-specific time series were extrapolated along its own historic time trend, poten-
tially leading to an implausible age pattern in the long run.5 This disadvantage is especially
severe if the Lee–Carter approach is applied to single-cause mortality, for which it was not
indeed assigned.6 Nevertheless, the Lee–Carter method and its several enhancements have
become the standard for mortality forecasts and have also been used for the newly emerged
stochastic population forecasts since Lee and Tuljapurkar (1994) and Lee (1998).

There is broad literature introducing models more or less similar to the Lee–Carter ap-
proach. Lee (2000) reviews the original model as well as some of its problems and ex-
tensions. Quantitative comparisons of several recent models are given by Cairns et al.
(2007, 2008), but they only apply data for the age classes 60–89, that is, model a relatively
even part of the full pattern of age-specific mortality, which is of course of special interest
for the insurance industry. Renshaw and Haberman (2006) include an additional co-
hort effect estimated in a two-step procedure. To overcome potential roughness De Jong
and Tickle (2006) apply smoothing along the age dimension by restricting the impact of
several kt on particular age classes with a spline matrix.7 Delwarde et al. (2007) apply
smoothing with a roughness penalty for both the Lee–Carter and a Poisson log-bilinear
model.

5This critique goes back to McNown (1992) and Alho (1992).
6Girosi and King (2008, pp. 38–42) discuss this point and give examples.
7In a different approach of a generalized linear model with Poisson errors, Currie et al. (2004) apply

smoothing along both the age and time dimensions with splines and handle future values to be forecasted
as missing values which are estimated simultaneously.

4



Pedroza (2006) applies Bayesian methodology to mortality forecasting and adopts it to
a state space reformulation of the Lee–Carter model. Girosi and King (2008) also gen-
eralize the Lee–Carter method to an analysis with several principal components instead of
considering only the first one. Nevertheless, they advocate a completely different approach
and run Bayesian regressions on socio-economic time series as explanatory covariates for
mortality. Their main purpose is to establish a formalized way to incorporate additional
information about regularities along a cross-section dimension of mortality, which may com-
prise age, sex, country, or cause of death, and generate priors to express experts’ assessments
of these similarities.

3 A Bayesian State Space Model

The dynamics of age-specific demographic variables can be captured by models based on a
latent common component as in Lee and Carter (1992). We follow this line of research
and extend these models by including additional macro variables as covariates and relating
them with the latent variable by a VAR. We assume an autoregressive (AR) process for the
coefficients, which link the explanatory variables with the age-specific demographic vari-
ables, to ensure smoothness along the age dimension. For the estimation of this state space
model we use Bayesian methods, providing an appropriate MCMC algorithm. Although in
this paper we apply our model to mortality, we present it in a more general way for any
age-specific demographic variable.

3.1 General Model

Given an observed demographic variable dx,t with age classes x = 0, . . . , A and time periods
t = 1, . . . , T , we can formulate the equation

dx,t = dx + βxzt + εd
x,t (1)

with arithmetic mean dx = 1
T

∑T
t=1 dx,t and explanatory variables zt ≡ [κt Yt]′, where κt

is a K × 1 vector of unobservables and Yt is an N × 1 vector of observed covariates. The
corresponding coefficient vector βx ≡ [βκ

x βY
x ] is 1 ×M , where βκ

x is a 1 ×K vector and
βY

x is a 1×N vector with M = K + N . We assume zt and βx follow vector autoregressive
processes,

zt = c + φ1zt−1 + φ2zt−2 + · · ·+ φpzt−p + εz
t , (2)

βx = α1βx−1 + α2βx−2 + · · ·+ αqβx−q + εβ
x , (3)

where c is an M × 1 vector of constants, φ1, . . . , φp are M ×M matrices, and α1, . . . , αq are
M×M diagonal matrices. We assume εd

x,t ∼ i.i.d. N (0, σ2
d) for the disturbances in Equation

(1), εz
t ∼ i.i.d. N (0,Σz) for the disturbances in Equation (2), and εβ

x ∼ i.i.d. N (0,Σβ) for
the disturbances in Equation (3), where the covariance matrix Σβ is a diagonal matrix. Thus
each component of βx in fact follows an autoregressive process on its own. All disturbances
are assumed to be independent of each other.
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3.2 Special Case Lee–Carter

To give a more intuitive introduction to our model, we will show in the following that the
Lee–Carter model can be seen as a special case of our model. We begin by assuming that
zt ≡ κt, dropping Equation (3), and specifying an extremely strong prior on φ1, φ2, . . . , φq,
where we specify the prior on φ1 very tightly around 1 and the prior on φ2, . . . , φq very
tightly around 0. Of course, this can be applied by subsequently strengthening the power of
the priors. For the extreme case, when the priors are very dominant, information emerging
from the data will be completely ignored for the VAR parameters φ1, φ2, . . . , φq and we
obtain, approximately, the model

dx,t = dx + βκ
xκt + εd

x,t (4)

with an AR process for the mortality index κt,

κt = c + κt−1 + εκ
t , (5)

which is the Lee–Carter model in state space representation as described in Pedroza
(2006).

3.3 Augmenting the Simple Model with Covariates

The inclusion of covariates may noticeably improve the forecasts of demographic models.8

Respective time series provide additional information, which is ignored otherwise, if these
covariates exhibit a possibly small but systematic impact on the demographic variable.
Hence, in principle, the co-evolution of the demographic variable and its covariates should
be modeled together. In our case, this means choosing N > 0, resulting in the full model
with zt = [κt Yt]′ instead of the simpler special case where zt = κt, according to the
Lee–Carter model. The informational gain of this inclusion depends of course on the spec-
ifications of the demographic variable and appropriate covariates and has to be weighted
against the increased number of parameters to be estimated. By the vector autoregression
in Equation (2), our model enables the requested utilization of covariates in an appropriate
way. Nevertheless, this is only a further alternative to the parsimonious version without
covariates, which already exhibits good forecasting features.

3.4 Smoothing Along the Age Dimension

When trying to predict future mortality, we have to consider the knowledge about its
systematic pattern. To exemplify this point, we might have no idea in the first place about
the level of mortality of a 40-year-old 50 years from now; nevertheless, we are very confident
that this mortality is quite similar to that of a 41-year-old. Hence any forecast missing this
basic feature with diverging developments of adjacent age classes should be mistrusted. As
already discussed in Section 2.2, the Lee–Carter model cannot prevent potential implausible
age patterns in out-of-sample forecasts. Our model mitigates this problem. Equation (3)
guarantees smoothness along the age dimension because the coefficients βx, . . . , βx−q are

8This issue is discussed extensively in Girosi and King (2008).
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connected by autoregressive processes. For q
2 ∈ N and αq/2 6= 0, Equation (3) can easily be

reformulated to get a symmetric representation of smoothing between adjacent age classes:9

βx̃ = α̃− q
2
βx̃− q

2
+ · · ·+ α̃−1 βx̃−1 + α̃1 βx̃+1 + · · ·+ α̃ q

2
βx̃+ q

2
+ ε̃β

x̃ . (6)

Assuring a plausible age pattern without jumps might be even more important when look-
ing at more volatile data than in our example of current all-cause mortality from the
United States, for example, as for the case of single-cause mortality or for data from non-
industrialized countries in the past and present.

3.5 Cohort Effects

The general model described previously can theoretically be extended to also capture cohort
effects. We just have to extend Equation (1) with an additional variable corresponding to
the cohort dimension, which can be expressed as

dx,t = dx + βxzt + βγ
xγt−x + εd

x,t . (7)

With N = 0 Equation (7) is similar to the model described in Renshaw and Haberman
(2006). One deviation from their model is that we assume the following law of motion:

γt−x = ϕ1γ(t−x)−1 + ϕ2γ(t−x)−2 + · · ·+ ϕrγ(t−x)−r + εγ
t , (8)

where εγ
t is not serially correlated and independent of εd

x,t, εz
t , and εβ

x at all leads and lags.
The other deviation to Renshaw and Haberman (2006) is that they estimate Equation
(7) in a two-step procedure, whereas we would be able to estimate the extended model in
a more efficient one-step procedure by introducing an additional step to the Gibbs sampler
described in Section 6.

3.6 Indeterminacies

In the estimation procedure we have to deal with three kinds of potential indeterminacies,
namely, sign, scale, and rotational indeterminacies. The former two can be illustrated with
the following example. Presume we multiply Equation (1) by 1 = γ

γ , γ 6= 0; then we obtain

dx,t = dx + (βκ
xγ)

(
κt

γ

)
+ βY

x Yt + εd
x,t . (9)

Of course, this equation implies the same data-generating process as Equation (1), even
though we have β̃κ

x ≡ βκ
xγ and κ̃t ≡ κt/γ with different scale or sign than before. To solve

these indeterminacies we need additional constraints. Following the Lee–Carter model, we
impose

∑T
t=0 κk

t = 0 and
∑A

x=0 βk
x = 1 for all k ∈ {1, . . . ,K}. In the case of K > 1 an

additional rotational indeterminacy occurs, because appropriate rotations yield

dx,t = dx +
(
βxP ′) (Pzt) + εd

x,t ,

9Set α0 ≡ −1, α̃i ≡ −α(q/2)−i

αq/2
for i ∈ {− q

2
, . . . , q

2
}, x̃ ≡ x− q

2
, and ε̃β

x̃ ≡ − εβ
x

αq/2
.

7



where

P =
[

A B
0 I

]
is an orthogonal matrix with ˜̃

βx ≡ βxP ′ and ˜̃zt ≡ Pzt, implying the same data-generating
process as Equation (1). Sufficient conditions for unique identification are to set the lower
K ×K block of βκ

x to a diagonal matrix and the lower K ×N block of βY
x to zero.10

4 Predictive Densities

In order to derive analytically distributional statements on the probabilities of outcomes
we describe the posterior predictive densities corresponding to the future path of the demo-
graphic variables up to horizon H. In this context we find it useful to define

dH
x ≡ [dx,T+1 . . . dx,T+H ] ,

dT
x ≡ [dx,1 . . . dx,T ] ,

z ≡ [z1 z2 . . . zT ] ,

β ≡ [β0 β1 . . . βA]′ ,

Ψ ≡
{
(c, φ1, φ2, . . . , φp,Σz), (α1, α2, . . . , αq,Σβ), (σ2

d)
}

.

Thus the posterior predictive density can be expressed as

p
(
dH

x |dT
x

)
=

∫ ∫ ∫
p

(
dH

x |z, β,Ψ, dT
x

)
p

(
z, β,Ψ, |dT

x

)
dz dβ dΨ .

In order to obtain values for the future path of the observations we draw εz
T+i from N (0,Σz)

for i = 1, . . . ,H and iterate on

zT+i = c + φ1zT+i−1 + φ2zT+i−2 + · · ·+ φpzT+i−p + εz
T+i . (10)

Following this, we use the values from Equation (10), draw εd
x,T+i from N (0, σ2

d), and iterate
on

dx,T+i = dx + βxzT+i + εd
x,T+i

to get draws from the joint posterior distribution of dH
x .

5 Priors

We introduce priors on the VAR parameters via dummy observations by simulating an ar-
tificial dataset with certain assumed properties and add it to our actual dataset. This goes
back to the mixed estimation procedure suggested by Theil and Goldberger (1961)
and was recently applied by Sims and Zha (1998) and Del Negro and Schorfheide
(2004). We generate dummy observations, implying that the series produced include a

10This is similar to the dynamic factor literature. See, among others, Geweke and Zhou (1996) and
Bernanke et al. (2005).
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random walk process. We do this by centering the probability mass for the first lagged
coefficient around 1 and for all subsequent lags around 0, while we subsequently decrease
the uncertainty that the coefficients are zero for more distant lags.

We consider the following model:

Z∗ = X∗Φ∗ + ε∗ , (11)

where

Z∗ ≡
[

λ1σ̂
0M(p−1)×M

]
and

X∗ ≡


λ1σ̂ 0 · · ·
0 2λ1σ̂ 0
... 0

. . .
0 · · · 0

0
...
0

pλ1σ̂

 ,

with

σ̂ ≡


σ̂1 0 · · ·
0 σ̂2 0
... 0

. . .
0 · · · 0

0
...
0

σ̂M

 ,

where λ1 is called the overall tightness of beliefs around the random walk prior and
σ̂1, σ̂2, . . . , σ̂M are the empirical standard deviations taken from the first p observations.
Increasing values for λ1 imply that we are more certain concerning our prior and hence
the prior gets more weight in comparison to information emerging from the dataset via
the likelihood function. Taken values for Σz as given, the dummy observations imply the
following conjugate prior for our VAR parameters:

Φ∗|Σz ∼ N
(
vec(Φ̂∗),Σz ⊗ (X∗′X∗)−1

)
. (12)

The prior for the AR parameters in Equation (3) is similar to the one specified for the VAR
parameters with λ2 as the overall tightness of beliefs of the prior. For the variance of the
disturbance in Equation (1) we assume an inverted gamma distribution IG( τ1

2 , τ2
2 ).

6 Estimation

We estimate our model using MCMC methods; more precisely, we apply the Gibbs sampler.
This method enables us to draw from the joint distribution P(Ψ, z, β) by subdividing it into
the conditional distributions P(Ψ | z, β), P(z | Ψ, β), and P(β | Ψ, z) and draw iteratively
from them. Taking initialized values for z(0) and β(0) as given, we sample in the ith iteration
Ψ(i) from P(Ψ | z(i−1), β(i−1)), z(i) from P(z | Ψ(i), β(i−1)), and β(i) from P(β | Ψ(i), z(i))
successively. Under weak conditions and for i → ∞ the Gibbs sampler converges and
we obtain samples from the desired joint distribution P(Ψ, z, β).11 For a more detailed
description of the estimation procedure see Appendix A.

11Cf. Geman and Geman (1984).
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7 Data

We apply our model to age-specific total (combining female and male) mortality data from
the United States with 91 individual age classes from 0 to 90 as shown in Figure 1 as
specification of the demographic variable dx,t.12 These time series provided by the Human
Mortality Database span the period 1933–2005, of which we use the post-World War II
period.13 We add macroeconomic time series of real GDP per capita and of unemployment,
which are displayed in Figure 2. The data for real GDP per capita are expressed in loga-
rithms of chained 2000 Dollars, and the unemployment rate is measured as the number of
unemployed as a percentage of the civilian labor force.14

1930 1940 1950 1960 1970 1980 1990 2000 2010
8

9

10

11
Log GDP (1933−2005)

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

10

20

30
Unemployment (1933−2005)

Figure 2: Logarithmized GDP and unemployment rate for the United States 1946–2005.

8 Results

We apply our model to mortality data from the United States in the period 1946–2005 and
gradually vary the model specification. With the objective of comparing with the Lee–
Carter results, we first assume κt to consist of only one unobserved time series, which may
be called mortality index, and abstain from using covariates. Afterward, the macroeconomic
time series are included as covariates.

12Unlike Lee and Carter (1992), where each age class comprises 5 years, we refrain from age grouping
and keep the detailed information of single age classes.

13C.f. Human Mortality Database (2008). In the Human Mortality Database raw data are corrected
for obvious mistakes and, for the calculation of life tables, death rates for the age classes 80 and above are
smoothed by fitting a logistic function according to Thatcher et al. (1998) if the number of observations
becomes too small. Wilmoth et al. (2007) supply a detailed method protocol. In the case of the United
States, population estimates for 1940–1969 are adjusted to exclude the Armed Forces overseas and to correct
for the inclusion of Alaska and Hawaii. Moreover, owing to the lack of data for the age classes 75 and above
in the period 1933–1939, the extinct cohort method is applied as supposed by Kannisto (1994).

14Although the pre-1947 unemployment figures refer to persons aged 14 and above, whereas the post-1947
figures refer to persons aged 16 and above, this minor change causes no jump in 1947, when both definitions
yield the same number. With respect to GDP and the unemployment rate, see the U.S. Census Bureau
(2007).
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8.1 Preliminaries

For the results we used a lag length of p = 4 for the z’s and q = 4 for the β’s. The prior
specifications, which we describe in Section 5, are λ1 = 5 for the VAR parameters of z and
a flat prior λ2 = 0 for the AR parameters of β.15 For the variance of the disturbances in
Equation (1) we choose τ1 = 0.01 and τ2 = 3.

The estimation results may be affected by the choice of time period and age span under
consideration. To check whether our results depend on the initial β parameters we conduct
the following exercise. We leave out mortality of the youngest age classes and estimate
our model with βs, . . . , βA, where s > 0. We obtain very similar results to the full model
βs, . . . , βA, suggesting that the choice of initial values for the β’s does not bias our results.
With respect to the time period we mainly focus on the postwar era 1946–2005 to base
the analysis and forecasts on circumstances relatively close to the present and to avoid the
influence of very high unemployment after the Great Depression and possible distortions
from World War II. Nevertheless, we also test for specifications that span the entire period
1933–2004 and get very similar results for the forecasts.

To ensure that our Gibbs sampler converges we restart the algorithm several times, each
time using different starting values drawn from an overdispersed distribution. The results
for all these different chains are very similar. Our sampler already reaches convergence after
a few thousand draws. Furthermore, to keep the starting values from influencing our results
we discard the first half of the chain as the burn-in phase.

8.2 One Kappa but No Covariates (K = 1, N = 0)

First we present the simplest version, with only one latent variable κ and no covariates.
Figure 3 shows the estimated κ and the corresponding coefficient matrix β, which reveals
how close the mortality of particular age classes is associated with development of the latent
variable κ. The age classes 0–15 are higher than average exposed to κ; however, all age
classes are positively related to the latent variable.
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Figure 3: Estimated κ and β. The small gray shaded area around the blue median represents

90% of the posterior probability mass regarding both parameter and random term uncertainty.

15λ1 = 5 is also used by, among others, Sims and Zha (1998).
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In Figure 4 we show different in-sample forecasts for κ over a 15-year horizon from 1991
onward, that can be compared with the ”realized” developing (red line), which means the
median of the estimated κ for the entire period.

1940 1950 1960 1970 1980 1990 2000 2010

−40

−20

0

20

Estimated kappa (1946−2005)

1940 1950 1960 1970 1980 1990 2000 2010

−40

−20

0

20

Forecast regarding both kinds of uncertainties

1940 1950 1960 1970 1980 1990 2000 2010

−40

−20

0

20

Forecast regarding only parameter uncertainty
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Figure 4: Panel with in-sample forecasts of κ with respect to different sources of uncertainty

for the period 1991–2005. The red line always displays the median estimation of κ based on

the observations for the whole period 1946–2005. The blue line displays the median forecast

of κ based only on the information up to 1990. The entire gray shaded area represents 90% of

the posterior probability mass and each of the different gray shaded bands represents 10% of

the posterior probability mass. Note that the innermost band is largely covered by the blue

line.

Additionally, we show in Figure 5 out-of-sample forecasts for a longer horizon up to the
year 2050. These forecasts are of course subject to different kinds of uncertainty. In each
case, we give an overview of forecasts, where either only the uncertainty due to the random
terms ε, only the uncertainty due to the estimation of the parameters of the model, or both
kinds of uncertainty are considered. The resulting distributional features of the forecasts
are illustrated by the probability mass around the medium forecast. In all cases, accounting
only for the random term uncertainty results in quite close forecasts which have the form of
a parabola and widen only a little over time. In contrast to this, the forecasts accounting
only for parameter uncertainty start very narrow but widen faster than they do linearly.
The forecasts with respect to both sources of uncertainty are of course the widest. In this
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case, the overall accuracy of the forecast is dominated by the effect of the random term in
the short run and by the effect of the parameter estimation in the long run.16 This result
demonstrates the extent to which presentations of forecasts can be misleading by giving
rise to an illusion of sureness if important sources of uncertainty are ignored. Moreover,
even the most precautious versions of our plots give only lower bounds for the real forecast
uncertainty, which can be even larger, because the specification of the model (model choice)
and the estimation of κ in the observation period (starting point for the forecast) are also
nondeterministic.
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Figure 5: Panel with long-run forecasts of κ with respect to different sources of uncertainty

for the period 2006–2050. The red line displays the median estimation of κ based on the

observations in the period 1946–2005. The blue line displays the median forecast of κ based

on this information. The entire gray shaded area represents 90% of the posterior probability

mass and each of the different gray shaded bands represents 10% of the posterior probability

mass. Note that the innermost band is largely covered by the blue line.

8.3 Improving Forecasts, with Covariates (K = 1, N = 2 and K = 2, N = 2)

In order to improve our predictions we extend our model by including logarithmized real
GDP per capita and the unemployment rate as covariates and, in a further step, by adding
a second latent variable κ2 to the specification with the two covariates. Figure 6 shows

16Lee and Carter (1992) mention a dissenting relationship in their Appendix B.
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the estimated coefficients β related to κ1 and κ2, GDP, and unemployment, revealing the
extent to which age-specific mortality is affected by the latent variables and covariates. Of
course, this paves the way for structural analysis of the systematic interactions of mortality
and covariates using impulse responses analyses, which is presented in detail in Reichmuth
and Sarferaz (2008).

1940 1950 1960 1970 1980 1990 2000 2010
−50

0

50
kappa 1 (1946−2005)

1940 1950 1960 1970 1980 1990 2000 2010
−50

0

50
kappa 2 (1946−2005)

0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02
beta 1 (related to kappa 1)

0 10 20 30 40 50 60 70 80 90
−0.01

0

0.01

0.02

0.03
beta 2 (related to kappa 2)
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Figure 6: Estimated κ’s and β’s for the model specification with two latent variables and

GDP and unemployment as covariates. The entire gray shaded area around the blue median

represents 90% of the posterior probability mass and the dark gray shaded area represents 68%

of the posterior probability mass regarding both parameter and random term uncertainty.

For the simplest specification without covariates, Figure 7 shows the median out-of-sample
forecasts of age-specific mortality about the middle and at the end of the forecast period in
comparison to actual observations. As can be seen, the overall level of mortality declines
steadily but the shape stays more or less the same. Figure 8 shows different out-of-sample
forecasts for the longer horizon until 2050, where the error bands widen by time. As can
be seen in the first and second rows of Figure 8, including macro variables as covariates
improves the forecasts for the higher age classes, whereas the forecasts for the age classes
15–40 deteriorate. This leads us to the conclusion that covariates have to be chosen very
carefully in general, as they might help predict particular age classes but at the same time
worsen the forecasts of others. The third row of Figure 8 shows that adding κ2 to the
specification with two covariates improves the forecasts again. For the age classes below 15
or above 40, they are the best of all specifications.
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Figure 7: Observations and forecasts of age-specific mortality mx,t at different points in

time. The lines for the years 2030 and 2050 display the median forecasts regarding both

parameter and random term uncertainty.

The figures discussed in this section demonstrate the smooth transition along the age di-
mension as described in Section 3.4. Admittedly, the difference to the Lee–Carter results is
not so obvious owing to their previous age grouping, but note that we prevent divergence
for single age classes in the long-run independent of the choice of all-cause mortality.

The forecast errors presented in this paper can be interpreted differently, depending on
the particular research interest of the reader. For example, overestimating future mortality
may jeopardize pension schemes, whereas underestimating is a danger for life insurance
calculations. In both cases major misjudgments have more severe consequences for the
stakeholders than smaller ones. This means that not only mean and variance but also
higher moments (skewness and kurtosis) of the distribution of predicted mortality matter
for the risk assessment. Our Bayesian presentation of the forecast results with a detailed
allocation of probability masses provides the information needed.

Moreover, the relatively wide dispersion of our forecasts assigns only a rather low prob-
ability for realizations close to the median, which further challenges traditional forecast
methods with misleadingly tight error bands.
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Figure 8: Panel with forecasts of age-specific mortality mx,t 25 and 45 years ahead for

different model specifications. The first row shows the specification for K = 1, N = 0, the

second row for K = 1, N = 2, and the third row for K = 2, N = 2. The entire gray shaded

area around the blue median represents 90% of the posterior probability mass and the dark

gray shaded area represents 68% of the posterior probability mass regarding both parameter

and random term uncertainty.
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8.4 Life Tables

Life tables deliver some intuitively interpretable variables such as surviving probabilities and
life expectancies, which can be calculated from a complete set of age-specific mortalities.
For this purpose, we use the simplest specification of our model with one latent variable κ
and no covariates to forecast mortality for all age classes up to 110+.17 We do so for female
and male mortality separately, because the resulting life tables are quite different and would
not be represented adequately by a version for ”total” mortality. Finally, we compute the
respective period life tables up to the year 2050 and present the results for females. The
detailed calculations are given in Appendix B. Note that the life table variables depend
nonlinearly on a whole set of mortalities at different ages. Thus, to get proper percentiles for
the forecasts of these variables, we do not use percentiles of age-specific mortality directly
but compute the life tables from the particular mortalities for the second half of 30,000
independent draws separately. Once again, the error bands with respect to both parameter
and error term uncertainty are the widest.
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Figure 9: Probabilities lx,t of surviving up to the exact age x for females based on period

life tables for different points in time. The figures for the years 1946–2005 are calculated

from observations. The thick magenta line displays the median forecast of lx,2050. The

entire magenta shaded area represents 90% of the posterior probability mass and each of the

different magenta shaded bands represents 10% of the posterior probability mass regarding

both parameter and random term uncertainty. Note that the innermost band is largely

covered by the thick line for the median.

17The inclusion of very high ages is necessary for the best possible calculation of remaining life expectancies.
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Figure 9 displays the hypothetical birth-time probabilities lx,t of surviving up to the exact
age x if a female were subject to the age-specific mortalities of one particular period over
her whole life cycle. During the observation period 1946–2005 the curves consistently move
upward and to the right. First, reductions of child mortality mainly shift the curve upward,
whereas later on reductions of old-age mortality shift it to the right. The forecast for 2050
shows that this trend will probably continue, though the error bands show the relatively
high uncertainty about the future survival curve. However, the forecast accuracy of the life
table variables, which depend in particular on old-age mortality, can also be improved by
the inclusion of covariates.
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Figure 10: Probabilities dx,t of dying at age x for females based on period life tables for

different points in time. The figures for the years 1946–2005 are calculated from observations.

The thick magenta line displays the median forecast of dx,2050. The entire magenta shaded

area represents 90% of the posterior probability mass and each of the different magenta shaded

bands represents 10% of the posterior probability mass regarding both parameter and random

term uncertainty. Note that the innermost band is largely covered by the thick line for the

median.

Figure 10 displays the corresponding birth-time probabilities dx,t of dying at age x. Of
course, the values rise over most of the lifetime and peak somewhere in old age before they
fall again.18 Remarkably, these probabilities not only shift to the right but also concentrate
increasingly on a smaller age range. With respect to the survival curve, this corresponds to
a transformation toward a long relatively flat initial course followed by a steep fall, which
is known as rectangularization.

18In today’s industrialized countries child mortality is no longer a major threat.
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Finally, in Figure 11 we present time series of life expectancies at different ages for the
whole observation plus the forecast period 1946–2050. Life expectancy always means the
remaining life expectancy for those who have already achieved a particular age. In our
application, the life expectancies of older people are always lower than those of younger
people, because there is no phase of life with such a high mortality that survivors of this
phase would have a higher remaining life expectancy than younger people prior to this
phase. The life expectancies for all age classes increase quite evenly over time. The rise for
the younger people is the strongest, because they benefit from the mortality reduction at all
age classes lying ahead of them. Our forecasts clearly show that the trend of increasing life
expectancies at all age classes will continue with high probability. For example, the median
forecast of the gain in female life expectancy based on period life tables between 2005 and
2050 is about 4.5 years for a newborn and 2.8 years for a 60-year-old. Once again, the error
bands of the forecasts can be further reduced by including covariates.

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
0

10

20

30

40

50

60

70

80

90

100

re
m

ai
ni

ng
 li

fe
 e

xp
ec

ta
nc

y 
in

 y
ea

rs

 

 
age =   0
age =  10
age =  20
age =  30
age =  40
age =  50
age =  60
age =  70
age =  80
age =  90

Figure 11: Remaining life expectancies ex,t for females of different age classes based on

period life tables. The thick lines display figures calculated from observations in the period

1946–2005 and median forecasts for ex,t in the period 2006–2050. For each age class the

entire shaded area represents 90% of the posterior probability mass and the different shaded

bands represent 10% of the posterior probability mass regarding both parameter and random

term uncertainty. Note that some of the bands are largely covered by the thick lines for the

medians.
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9 Conclusion

In this paper we present an alternative approach to modeling age-specific mortality. We
build on the model introduced in Lee and Carter (1992) and extend it in several dimen-
sions. We incorporate covariates and model their dynamics jointly with the latent variable
underlying mortality of all age classes by a VAR process. Furthermore, we resolve the short-
comings in the age dimension from which previous models suffered by connecting adjacent
age groups through an AR process. Our new modeling approach thus allows for consistent
forecasts of age-specific mortality and the other variables.

We develop an appropriate MCMC algorithm, which enables us to estimate the parameters
and latent variables jointly in an efficient one-step procedure. With our Bayesian approach
we formalize priors for the parameters and thus include information into our model in a
formal way. Additionally, we are able to assess uncertainty intuitively by constructing error
bands for our forecasts.

We apply our model to U.S. mortality for 1946–2005 and test its forecast ability by means of
in-sample and out-of-sample forecasts up to the year 2050. Our model performs well, that is,
the forecasts exhibit smoothness along the age dimension with sufficiently tight error bands.
Comparing different specifications, it turns out that covariates can indeed help improve the
forecasts for particular age classes. Moreover, we demonstrate that uncertainty stemming
from the error term is more important in the short run, whereas parameter uncertainty is
very important for long-run forecasts. This points to the danger that existing forecasting
methods for age-specific mortality, which ignore certain sources of uncertainty, may yield
misleadingly sure predictions.

The link we provide between age-specific mortality and covariates can be exploited in a
more structural way than is pursued in this present paper. An analysis of this relationship
is conducted in Reichmuth and Sarferaz (2008).
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A Gibbs Sampler

A.1 Sampling from P(Ψ | z, β)

To calculate the parameters summarized in Ψ we condition on values for z and β. However,
for notational convenience we will not state this explicitly throughout the section.

VAR Parameters

We derive the posterior for the VAR parameters by using the prior specified in Section 5
and by combining them with the likelihood function described in this section. To make the
description of the estimation procedure more convenient we rewrite Equation (2) as

Z = XΦ + εz , (13)

where Z ≡ [zp+1 z1 . . . zT ]′ is a T − p×M matrix, Φ ≡ [φ1 φ2 . . . φp c]′ is a Mp + 1×M
matrix, and

X ≡


z′p z′p−1 · · ·

z′p+1 z′p · · ·
...

...
. . .

z′T−1 z′T−2 · · ·

z′1 1
z′2 1
...

...
z′T−p 1


is a T − p ×Mp + 1 matrix including lagged Z‘s. Thus its likelihood function conditional
on the first p observation can be expressed as

L(Φ,Σz) ∝ |Σz|−
T−p

2 exp
{

tr

{
−1

2
Σ−1

z (Z −XΦ)′(Z −XΦ)
}}

, (14)

where tr is the trace operator. The likelihood function can be decomposed into

L(Φ,Σz) ∝ |Σz|−
T−p

2 exp
{

tr

{
−1

2
Σ−1

z

(
Ŝ +

1
2
(Φ− Φ̂)′X ′X(Φ− Φ̂)

)}}
, (15)

where Ŝ ≡ (Z−XΦ̂)′(Z−XΦ̂) is the squared sample error matrix, with Φ̂ ≡ (X ′X)−1X ′Z.
Furthermore we subdivide it into the conditional density for Φ, taking values for Σ−1

z as
given,

F(Φ|Σz) ∝ |Σz|−
M
2 exp

{
−1

2

(
vec(Φ)− vec(Φ̂)

)′ (
Σ−1

z ⊗X ′X
) (

vec(Φ)− vec(Φ̂)
)}

(16)

and the marginal density for Σ−1
z

F(Σz) ∝ |Σz|−
T−M−p

2 exp
{

tr

{
−1

2
Σ−1

z Ŝ

}}
. (17)

Expression (16) is a normal density and Equation (17) a Wishart density. Thus the likeli-
hood function can be described as a product of a normal density for Φ conditional on Σz

and an inverted Wishart density for Σz,

L(Φ,Σz) ∝ N
(
vec(Φ̂),Σz ⊗X ′X−1

)
IW

(
Ŝ, TA− pM

)
, (18)
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where for the inverted Wishart density Ŝ serves as the scale matrix and TA − pM as the
degrees of freedom. Combining the likelihood function with the conjugate prior described
in Section 5, we obtain the following normal posterior for Φ,

Φ|Σz ∼ N
(
vec(Φ),Σz ⊗X

′
X

−1
)

, (19)

where Φ ≡ X
′
X

−1(X∗′Y ∗ + X ′Y ) with X
′
X ≡ (X∗′X∗ + X ′X) and, as we assume

an improper prior on Σz, the posterior is proportional to the second term described in
Equation(18).

AR Parameters

As the error terms in equation (3) are independent of each other, we can estimate the AR
parameters equation by equation. We rewrite Equation (3) as

βi = Giαi + εβi
for i = 1, . . . ,M , (20)

where βi ≡ [βi
q βi

q+1 . . . βi
A]′ is an (A − q + 1) × 1 vector, αi ≡ [αi

1 αi
2 . . . αi

q]
′ is a q × 1

vector, εβi ≡ [εβ
q

i
εβi

q+1 . . . εβ
A

i
]′, which is (A− q + 1)× 1 vector, and

Gi ≡


βi

q−1 βi
q−2 · · ·

βi
q βi

q−1 · · ·
...

...
. . .

βi
A−1 βi

A−2 · · ·

βi
0

βi
1
...

βi
A−q


is an (A − q + 1) × q matrix. Because we assume a flat prior for the AR parameters, the
posterior of the AR parameters is proportional to the likelihood function. We can apply a
similar decomposition as in Section A.1 and obtain the following normal inverted gamma
posterior

P
(
αi, σi

β

)
= F

(
αi|σi

β

)
F

(
σi

β

)
. (21)

The posterior for αi conditional on the variance σi
β is

αi|σi
β ∼ N

(
α̂i, σi

β(Gi′Gi)−1
)

, (22)

where α̂i is the ordinary least squares (OLS) estimate and the marginal posterior for σi
β is

the inverted gamma distribution

σi
β ∼ IG

(
ŝ

2
,
(A− q)

2

)
, (23)

where ŝ = (βi −Giαi)′(βi −Giαi) is used as the scale parameter and A− q as the degrees
of freedom.
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Variance

We assume the variances of the disturbances in Equation (1) to be the same for the di-
mensions x = 0, 1, . . . , A and t = 1, 2, . . . , T . Hence the posterior can be expressed as the
inverted gamma distribution

σ2
d ∼ IG

(
TA + τ1

2
,
ŝd + τ2

2

)
, (24)

where ŝd =
∑T

t=1

∑A
x=0

(
dx,t − dx − βxzt

)2.

A.2 Sampling from P(z | Ψ, β)

To calculate the latent z we condition on values for Ψ and β. However, for notational
convenience we will not state this explicitly throughout the section. As z contains latent
variables, we set up a state space system, which we will describe in the following.

We rewrite Equation (2) into its canonical form and use it as our state equation

Zt = Φ̃Zt−1 + ε̃z
t , (25)

where Zt ≡ [zt zt−1 . . . zt−p+11]′ is (Mp+1)×1, which is the state vector, ε̃z
t ≡ [εz

t 0 . . . 0]′,
which is a an (Mp + 1)× 1 vector, and

Φ̃ ≡

 φ1 . . . φp

IM(p−1)×M(p−1)

0 . . . 0

c
0M(p−1)×(M+1)

1

 ,

which is an (Mp + 1)× (Mp + 1) matrix, where I is the identity matrix.

To derive our observation equation we first rewrite Equation (1) as

Dt = βzt + εd
t , (26)

with

Dt ≡
[

Dt −D
Yt

]
,

which is an (A + N) × 1 matrix, with Dt ≡ [d0,t d1,t . . . dA,t]′, D ≡ [d0 d1 . . . dA]′, where
both are A× 1 vectors, εd

t = [εd
0,t εd

1,t . . . εd
A,t 01×N ]′ is a (A + N)× 1, and

β ≡
[

βκ βY

0N×K IN×N

]
,

which is an (A + N) × M matrix, with βκ ≡ [(βκ
0 )′ (βκ

1 )′ . . . (βκ
A)′]′, which is an A × K

matrix, and βY ≡
[
(βY

0 )′ (βY
1 )′ . . . (βY

A )′
]′, which is an A×N matrix.
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We rewrite Equation (26) to match the state equation and finally obtain our observation
equation

Dt = HZt + εd
t , (27)

where H ≡ [β 0A+N×M(p−1)+1] is an (A + N)× (Mp + 1) matrix.

To calculate z we apply the algorithm suggested by Carter and Kohn (1994) and
Frühwirth-Schnatter (1994).19 With this procedure we draw z from its joint dis-
tribution

P(z|D) = P
(
zT |DT

) T−1∏
t=1

P
(
zt|zt+1, D

t
)

, (28)

where D = [D1 D2 . . . DT ] and Dt = [D1 D2 . . . Dt]. Because the disturbances in
Equations (25) and (27) are Gaussian, Equation (28) can be rewritten as

P(z|D) = N (zT |T , PT |T )
T−1∏
t=1

N (zt|t,zt+1
, Pt|t,zt+1

) , (29)

with

zT |T = E(zT |D) , (30)
PT |T = Cov(zT |D) , (31)

and

zt|t,zt+1
= E(zt|zt+1, D) , (32)

Pt|t,zt+1
= Cov(zt|zt+1, D) . (33)

We obtain zT |T and PT |T from the last step of the Kalman filter iteration and use them
as the conditional mean and covariance matrix for the multivariate normal distribution
N (zT |T , PT |T ) in order to draw zT . In the following we will describe the Kalman filter
procedure.

We begin with the prediction steps

zt|t−1 = Φ̃zt−1|t−1 , (34)

Pt|t−1 = Φ̃Pt−1|t−1Φ̃ + Q , (35)

where

Q ≡
[

Σz 0M×M(p−1)+1

0M(p−1)+1×M(p−1)+1 0M(p−1)+1×M

]
,

which is an (Mp + 1)× (Mp + 1) matrix. Accordingly, the forecast error is

νt = Dt −Hzt|t−1 , (36)

19Cf. also Kim and Nelson (1999).
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with the corresponding variance

Ω = HPt|t−1H
′ + R , (37)

where R ≡ σ2
dIN . The Kalman gain can be expressed as

Kt = Pt|t−1H
′Ω−1 . (38)

Thus the updating equations are

zt|t = zt|t−1 + Ktνt , (39)
Pt|t = Pt|t−1 + KtHPt|t−1 . (40)

To obtain draws for z1, z2, . . . , zT−1 we sample from N
(
zt|t,zt+1

, Pt|t,zt+1

)
, using a backward-

moving updating scheme, incorporating at time t information about zt contained in period
t + 1. More precisely, we move backward and generate zt for t = T − 1, . . . , 1 at each
step while using information from the Kalman filter and zt+1 from the previous step. The
updating equations are

zt|t,zt+1
= zt|t + Pt|tΦ

′P−1
t+1|t(zt+1 − zt+1|t) (41)

and
Pt|t,Ft+1

= Pt|t − Pt|tΦ
′P−1

t+1|tΦPt|t . (42)

A.3 Sampling from P(β | Ψ, z)

To calculate β we take values for Ψ and z as given. The procedure applied here is very
similar to the one described in Section A.2. Hence we will just give a brief overview of
the estimation procedure. However, there is one important difference, namely, that now we
move in the age dimension x = 0, 1, . . . , A and not in t = 1, 2, . . . , T as in Section A.2.
Our state equation can be expressed as

β̃x = α̃β̃x−1 + ε̃β
x , (43)

where β̃x = [βx−1 βx−2 . . . βx−q+1]′ is Mq × 1, which is denoted as the state vector,
ε̃β
x = [εβ

x 0 . . . 0]′ is Mq × 1, and

α̃ =
[

α1 . . . αq

IM(p−1)×M(p−1) 0M(p−1)×(M+1)

]
,

which is an Mq ×Mq matrix. Hence our observation equation can be expressed as

D̃x − dx = Wβ̃x + εd
x , (44)

where D̃x ≡ [dx,1 dx,2 . . . , dx,T ]′ is a T × 1 vector, εd
x ≡ [εd

x,1 εd
x,1 . . . εd

x,1] is a T × 1 vector,
and W ≡ [z′ 0T,M(q−1)] is a T ×Mq matrix. For x = 0, 1, . . . , A instead of t = 1, 2, . . . T ,
Φ̃ ≡ α̃, H ≡ W , R ≡ σ2

dIT , and

Q ≡
[

Σβ 0M×M(q−1)

0M(q−1)×M(q−1) 0M(q−1)×M

]
,

we can apply the procedure described in Section A.2 to calculate β.
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B Life Table Calculations

We use both observed and estimated age-specific death rates mx,t to calculate period life
tables by single years of age and time and present the results for the probability lx,t of
surviving up to the exact age x and the probability dx,t of dying at age x. Both variables
represent birth time probabilities for all born living. Thus they are unconditional. In con-
trast to this, the remaining life expectancy ex,t is conditional on still being alive at exact
age x. The respective calculations are standard.20

The conditional probability of dying before arriving at exact age x + 1 if still alive at
exact age x is

qx,t ≡
mx,t

1 + (1− αx,t)mx,t
.

The factor αx,t reflects the average fraction of a year that people dying at age x still live
after their xth birthday. For infants, with their high mortality in the first weeks, we apply,
according to Preston et al. (2005, pp. 47–48) and Wilmoth et al. (2007, p. 38),
sex-specific values originally proposed by Coale and Demeny (1983):

αmale
0,t ≡

{
0.045 + 2.684mmale

0,t ,mmale
0,t < 0.107

0.330 ,mmale
0,t ≥ 0.107

and

αfemale
0,t ≡

{
0.053 + 2.800mfemale

0,t ,mfemale
0,t < 0.107

0.350 ,mfemale
0,t ≥ 0.107

Consistent values for αtotal
0,t would require information about the total numbers of deaths

for both sexes to weight the respective values for mmale
0,t and mfemale

0,t . Instead of that, when
using the total figures of both sexes combined, we adopt a simple approximation roughly
reflecting the higher infant mortality and higher birth rates of males

αtotal
0,t ≡ 0.56αmale

0,t + 0.44αfemale
0,t ,

which does not perceivably influence the results. The highest recorded age class x̃ is open,
that is, not restricted to 1 year. We set αx̃,t ≡ 1

mx̃,t
resulting in qx̃,t = 1. For all other age

classes 0 < x < x̃ we assume a uniform distribution of cases of death and apply

αx,t ≡ 0.5 .

The conditional probability of surviving up to exact age x + 1 if still alive at exact age x is

px,t ≡ 1− qx,t .

20Cf. Preston et al. (2005, pp. 38–54) or Wilmoth et al. (2007, pp. 35–39). Unlike the life table
calculations of the Human Mortality Database, we do not smooth observed death rates mx,t for the higher
age classes at the beginning of the calculations.
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For all born living the unconditional probability of surviving up to exact age x is

lx,t ≡ l0,t

x−1∏
i=0

pi,t = lx−1,tpx−1,t

and the unconditional probability of dying at age x is

dx,t ≡ l0,t

x−1∏
i=0

pi,tqx,t = lx,tqx,t .

We normalize l0,t ≡ 1 to get values for lx,t and dx,t interpretable as probabilities for the life
table population. The alternative choice of l0,t ≡ 100000 would result in the numbers lx,t

and dx,t of survivors and deaths out of 100, 000 live births.

The person-years lived at age x and from age x onward are

Lx,t ≡ lx,t − (1− αx,t)dx,t

and

Tx,t ≡
x̃∑

i=x

Li,t .

Finally, we get the conditional remaining life expectancy if still alive at exact age x

ex,t ≡
Tx,t

lx,t
.

Note that all variables in a period life table refer to the same point in time t and reflect its
time-specific conditions. Variables such as lx,t, dx,t, and ex,t that are aggregated from the
basic variables of several age classes are synthetic measures for this period. They mix up
the values of the different age classes belonging to different cohorts because they correspond
to a cross section of the Lexis diagram. Hence the aggregated variables of a period life table
do not describe the conditions for the members of any real age cohort, who pass through
many different periods but are always subject to the mortality of their very own cohort.
To analyze these conditions along the life cycle, cohort life tables, which are calculated
from data of a single cohort, are adequate and correspond to diagonal sections of the Lexis
diagram. Unfortunately, they can only be accurately calculated retrospectively. Of course,
short-run fluctuations that last only a few periods but affect many age classes have a greater
effect on period life tables than on cohort life tables. The latter exhibit, in general, less
volatility, because time-specific anomalies are not wrongly extrapolated but on the contrary
often counterbalanced later on.
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