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Abstract

In this paper, we develop and apply Bayesian inference for an extended Nelson-

Siegel (1987) term structure model capturing interest rate risk. The so-called

Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in

the underlying yield factors. We propose a Markov chain Monte Carlo (MCMC)

algorithm to efficiently estimate the SVNS model using simulation-based inference.

Applying the SVNS model to monthly U.S. zero-coupon yields, we find significant

evidence for time-varying volatility in the yield factors. This is mostly true for

the level and slope volatility revealing also the highest persistence. It turns out

that the inclusion of stochastic volatility improves the model’s goodness-of-fit and

clearly reduces the forecasting uncertainty particularly in low-volatility periods.

The proposed approach is shown to work efficiently and is easily adapted to alter-

native specifications of dynamic factor models revealing (multivariate) stochastic

volatility.
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1 Introduction

Modelling the term structure of interest rates is of importance in many areas in fi-

nancial economics and macroeconomics. In finance, information revealed by the yield

curve is important for the pricing of bonds and interest rate derivatives, for portfolio

management and asset allocation. In macroeconomics, the yield curve carries impor-

tant information for the state of the economy and business cycles. While traditional

approaches as, e.g., Vasicek (1977), Cox et al., (1985) or Hull and White (1990) focus

on equilibrium or no-arbitrage relationships, interest rate dynamics are typically cap-

tured in terms of factor models as, for instance, proposed by Nelson and Siegel (1987).

Diebold and Li (2006) re-formulate the Nelson-Siegel model in terms of a state-space

representation which allows for a two-step estimation of the factors and dynamics in

the factor loadings. Koopman et al. (2010) and Hautsch and Ou (2008) extend the

Nelson-Siegel model to allow for time-varying volatility. While Koopman et al. (2010)

allow for a common volatility component in all yield processes, Hautsch and Ou (2008)

propose capturing stochastic volatility in the underlying yield factors associated with

level volatility, slope volatility and curvature volatility. While it is shown that the

so-called Stochastic Volatility Nelson Siegel model – henceforth SVNS model – is a

powerful approach to parsimoniously capture dynamics in yields and corresponding

volatilities, statistical inference for such a model is not straightforward since both yield

factors and volatility factors are unobservable.

In this paper, we show how to efficiently estimate the SVNS model using Bayesian

techniques and propose a specific Markov chain Monte Carlo (MCMC) approach. We

illustrate the importance of accounting for stochastic volatility in the Nelson-Siegel

model and show how to extract the unobservable volatility components from the data.

Though the estimation procedure is specifically designed for the SVNS model, it is
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easily adapted to alternative factor specifications. In this sense, the proposed algorithm

provides a general framework for the estimation of dynamic factor models revealing

(multivariate) stochastic volatility. In an empirical application to U.S. bond yields,

we illustrate that the proposed procedure works well and allows to efficiently extract

unobservable time-varying volatility components.

The exponential components factor model proposed by Nelson and Siegel (1987) is

a workhorse for the estimation and prediction of yield curves and is extensively used in

financial practice and central banks. Its main power stems from the fact that it is easy

to implement and is sufficiently flexible to capture a wide range of possible shapes of

the yield curve. Though it is neither an equilibrium nor a no-arbitrage model, many

banks use this framework to construct zero-coupon yield curves. Various extensions of

the Nelson-Siegel model have been proposed, see, e.g., Björk and Christensen (1999),

Rudebusch and Wu (2008), Diebold et al. (2005) and Diebold et al. (2006). Diebold

and Li (2006) propose a dynamic version of the Nelson-Siegel model by allowing the

underlying factor loadings to vary over time following a vector autoregressive (VAR)

structure. As shown by Diebold and Li (2006) and Diebold et al. (2006), the model is

able to capture interest rate dynamics and to successfully predict future yield curves.

These contributions opened up a new way to model interest rate dynamics using factor

models and complement the class of non-arbitrage affine models (Vasicek, 1977, Cox

et al. 1985, Duffie and Kan, 1996 or Dai and Singleton, 2000, among others).1

Figure 1 gives an illustration of time series plots of yields with different maturities

stemming from the data underlying this study. We observe that yields with different

maturities are closely related and tend to move together. Also, we find evidence for

time-varying volatility in the interest rate series. Particularly in the 1980s, yields for all

maturities are very volatile. However, capturing time-varying volatility in yield curves

is challenging due to their high dimensionality. Koopman et al. (2010) extend the

dynamic Nelson-Siegel model by allowing for a common volatility component jointly

affecting the yield processes for all maturities. A common volatility component can

be associated with the volatility of an underlying bond market portfolio in the spirit

of Engle et al. (1990). However, such a specification is not flexible enough to capture

specific maturity-dependent volatilities. As a more flexible but still parsimonious alter-

native, Hautsch and Ou (2008) propose modelling stochastic volatility in the yield curve

factors directly. Then, the time-varying volatilities in individual yields are captured by

yield factor volatilities. These volatilities are naturally interpreted as the volatilities

of underlying bond portfolios associated with short-term, medium-term and long-term

1See Piazzesi (2003) for a survey on affine models in continuous time.
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Figure 1: Time series plots of U.S. zero coupon yields, Jan 1964 to Dec 2003. Maturities: 12,
24, 36, 48, 60 months, respectively.

maturities.

However, extracting the latent factors as well as their time-varying volatility compo-

nents is challenging. By proposing an efficient MCMC algorithm to conduct Bayesian

inference in the SVNS model, we contribute to the literature on the estimation of (ex-

tended) multivariate dynamic factor models. To extract the factors, we use the Kalman

filter algorithm imbedded in an MCMC procedure. The unobservable time-varying

volatilities are extracted using an approximating re-weighting approach proposed by

Kim et al. (1998) and Chib et al. (2002). Using the suggested MCMC algorithm, all

latent yield factors, stochastic volatilities and parameters can be sampled at once in a

few blocks. Using MCMC diagnostics, we show that the proposed procedure is compu-

tationally quite efficient and is clearly superior to an element-by-element sampling of

the underlying parameters and latent factors as, e.g., used in Hautsch and Ou (2008).

The latter procedure requires an enormous amount of Monte Carlo drawings making

the model intractable if the sample size is high. In this sense, the procedure proposed

in the present paper is a contribution to make inference in this class of models feasible

and tractable.

Applying the model to monthly zero-coupon yields covering a period from 1964 to

2003, we show that the SVNS model is able to successfully capture the dynamics in

time-varying yields and volatilities thereof. We find strong evidence for time-varying

volatility in interest rates. All yield volatilities reveal a quite high persistence. To
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explain the volatilities in the underlying yield curve, the level and slope volatility are

particularly important. To evaluate the model’s goodness-of-fit, we compute posterior

predictive p-values. Results show that the explicit inclusion of stochastic volatilities in

level, slope and curvature factors improves the fit compared to the basic specification.

More importantly, it turns out that the incorporation of stochastic volatilities clearly

reduces parameter uncertainty. Analyzing model forecasts for three selected periods

we show that the SVNS specification yields a significantly smaller variance of the fore-

cast density. In this sense, the proposed approach produces more exact interest rate

forecasts.

The remainder of the paper is organized as follows. Section 2 presents the Stochastic

Volatility Nelson-Siegel model. Section 3 illustrates the underlying MCMC procedure to

estimate the model. Section 4 presents the empirical results while Section 5 concludes.

2 The Stochastic Volatility Nelson-Siegel (SVNS) Model

Let t denote calendar time and pt(τi) denote the price of a τi-period discount bond at

month t with τi, i = 1, . . . , N , representing the maturity. Moreover, yt(τi) is the contin-

uously compounded zero-coupon nominal yield to maturity with pt(τi) = exp[−τiyt(τi)].
Then, the instantaneous nominal forward rate curve is given by ft(τi) = −p′t(τi)/pt(τi)
or correspondingly yt(τi) = τ−1

i

∫ τi
0 ft(u)du. Nelson and Siegel (1987) propose mod-

elling the forward rate curve as

ft(τi) = f1,t + f2,te
−λτi + f3,tλe

−λτi ,

where e−λτi and λe−λτi denote Laguerre polynomials whose shapes are determined by

λ. Small (large) values of λ produce slow (fast) decays and a better fit of the curve at

long (short) maturities. Correspondingly, f1,t, f2,t and f3,t denote time-varying factors

capturing the dynamic behaviour of the forward curve.

The corresponding yield curve is given by

yt (τi) = f1,t + f2,t

[
1− e−λτi
λτi

]
+ f3,t

[
1− e−λτi
λτi

− e−λτi
]
. (1)

Diebold and Li (2006) suggest interpreting the parameters f1,t, f2,t and f3,t as three

latent dynamic factors with loadings 1, (1−e−λtn)/λtn, and {(1−e−λtn)/λtn}−e−λtn,

respectively. Accordingly, f1,t is associated with a long-term factor whose loading is

constant for all maturities. Since shocks in f1,t affect all yields simultaneously, f1,t is

commonly referred to as a level factor. Conversely, the loading of f2,t starts at one for
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τi = 0 and decays monotonically to zero. Consequently, shocks in f2,t predominantly

affect only short-term yields and thus induce variations in yield spreads. Therefore, f2,t

is referred to as a slope factor. In Rudebusch and Wu (2008), the level factor is related

to inflation expectations, whereas movements in the slope factor are linked to cyclical

variations in inflation and output gaps. Finally, f3,t is interpreted as a medium-term

factor since its loading is zero for τi = 0, increases for mid-term maturities but decays

to zero in the limit. Correspondingly, shocks in f3,t dominantly affect the yield curve’s

curvature. Diebold et al. (2006) report negligible responses of macroeconomic variables

to shocks in the curvature factor. Conversely, Mönch (2006) argues that a flattening

of the yield curve associated with changes in the curvature factor can be linked to a

slow-down of the economy.

The Nelson-Siegel model can be seen as a parsimonious parametric factor model,

which is flexible enough to capture a wide range of different shapes. Moreover, the

model implies desirable limiting behaviours of forward and yield curves. For τi → 0,

the short rate is lim
τi→0

yt (τi) = f1,t + f2,t. Correspondingly, we have lim
τi→∞

yt (τi) = f1,t.

Diebold and Li (2006) propose re-formulating the Nelson-Siegel model – henceforth

Diebold-Li Nelson-Siegel (DLNS) model – in terms of a state-space system
yt (τ1)

yt (τ2)
...

yt (τN )

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2
...

...
...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN




f1,t

f2,t

f3,t

+


εt (τ1)

εt (τ2)
...

εt (τN )

 , (2)

where the time-varying coefficients f1,t, f2,t, and f3,t are interpreted as latent factors

following a vector autoregressive process (VAR) given by
f1,t − µ1,f

f2,t − µ2,f

f3,t − µ3,f

 =


φ11,f φ12,f φ13,f

φ21,f φ22,f φ23,f

φ31,f φ32,f φ33,f




f1,t−1 − µ1,f

f2,t−1 − µ2,f

f3,t−1 − µ3,f

+


η1,t

η2,t

η3,t

 . (3)

By defining yt = {yt (τ1) , yt (τ2) , . . . , yt (τN )}′, φf = [φij,f ] as a (3 × 3) parameter

matrix, and Λ as the matrix of factor loadings and denoting

ft = {f1,t, f2,t, f3,t}′ ,

µf = {µ1,f , µ2,f , µ3,f}′ ,
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εt = {εt (τ1) , εt (τ2) , . . . , εt (τN )}′ ,

ηt = {η1,t, η2,t, η3,t}′ ,

(2) and (3) can be written as

ft − µf = φf (ft−1 − µf ) + ηt, (4)

yt = Λft + εt. (5)

To limit the computational burden and to keep the model parsimonious, we assume

φf = diag {φ11,f , φ22,f , φ33,f} to be a diagonal matrix.

For the joint distribution of εt and ηt, we assume(
ηt

εt

)
∼ N

([
0

0

]
,

[
ΣηΣ′η 0

0 ΣεΣ′ε

])
, (6)

with Ση and Σε denoting the corresponding Cholesky factors of the covariance matrices

of ηt and εt, respectively. The covariance matrix ΣεΣ′ε is assumed to be diagonal

indicating that the measurement errors are contemporaneously uncorrelated.

To allow for conditional heteroscedasticity in the yield processes, Koopman et al.

(2010) propose capturing yield curve volatility by allowing for a common variance

component jointly affecting all individual yields. This factor can be interpreted as the

volatility of an underlying bond market portfolio in the spirit of Engle et al. (1990)

and Engle and Ng (1993). However, such a specification does not allow for different

volatilities in individual yield processes. As a more flexible alternative, Hautsch and

Ou (2008) propose allowing for stochastic volatility in the yield factors ft directly.

Consequently, ΣηΣ′η is assumed to vary over time, with Ση,tΣ′η,t to be specified as

diag
(
ln Ση,tΣ′η,t

)
=


h1,t

h2,t

h3,t



h1,t+1 − µ1,h

h2,t+1 − µ2,h

h3,t+1 − µ3,h

 =


φ11,h 0 0

0 φ22,h 0

0 0 φ33,h



h1,t − µ1,h

h2,t − µ2,h

h3,t − µ3,h

+


σ1ε1,t

σ2ε2,t

σ3ε3,t

 , (7)

where εj,t
i.i.d.∼ N (0, 1). Correspondingly, with ηt = {η1,t, η2,t, η3,t}′, the model can be

re-written as
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η1,t

η2,t

η3,t

 =


eh1,t/2 0 0

0 eh2,t/2 0

0 0 eh3,t/2




ζ1,t

ζ2,t

ζ3,t

 , (8)

where ζj,t
i.i.d.∼ N (0, 1) with j = 1, 2, 3.

Hence, hj,t with j = 1, 2, 3, are (unobservable) stochastic volatility processes and

can be summarized in the 3 × 1 vector ht = {h1,t, h2,t, h3,t}′. Correspondingly, by

defining

eht/2 = diag
{
eh1,t/2, eh2,t/2, eh3,t/2

}
,

σ = diag {σ1, σ2, σ3} ,

µh = {µ1,h, µ2,h, µ3,h}′ ,

φh = diag {φ11,h, φ22,h, φ33,h} ,

ζt = {ζ1,t, ζ2,t, ζ3,t}′ ,

εt = {ε1,t, ε2,t, ε3,t}′ ,

eq. (8) can be re-written as

ηt = eht/2ζt, (9)

ht+1 − µh = φh (ht − µh) + σεt. (10)

The components h1,t, h2,t and h3,t can be interpreted as factor volatilities associated

with time-varying uncertainty in the yield curves’ level, slope and curvature. Since

h1,t is a common variance component it is in the spirit of the joint volatility factor

in Koopman et al. (2010) and can be seen as a model implied proxy of bond market

volatility as used in Engle et al. (1990). The factor h2,t captures time-variations in

yield spreads and thus can be interpreted as yield curve slope volatility. Similarly, h3,t

is related to the volatility of a bond portfolio dominated by mid-term maturities and

thus captures uncertainties associated with the curvature of the yield curve.

To reduce the computational burden we rule out cross-dependencies between the

individual volatility components. This is in the spirit of a low-dimensional factor struc-

ture capturing high-dimensional dynamics in volatility. Unconditional moments of this

specification are derived in Hautsch and Ou (2008).
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3 Bayesian Inference

3.1 Estimation Algorithm

The key idea is to estimate the highly correlated latent variables in terms of sev-

eral blocks using the Kalman filter together with a simulation smoother (de Jong and

Shephard, 1995) within an MCMC algorithm. With models in a state-space form, the

simulation smoother allows to simulate the underlying states while avoiding degenerate

sampling problems. For more details, see de Jong and Shephard (1995). Define

Hj,t = (hj,1, . . . , hj,t)
′ ,

hj = (hj,1, . . . , hj,T )′ ,

hj,−t = (hj,1, . . . , hj,t−1, hj,t+1, . . . , hj,T )′ ,

F ∗j,t =
(
f∗j,1, . . . , f

∗
j,t

)
,

f∗j =
(
f∗j,1, . . . , f

∗
j,T

)
.

Then, following Kim et al. (1998), using eq. (9), we can rewrite eq. (3) as

f∗j,t = hj,t + zj,t, j = 1, 2, 3, (11)

where f∗j,t = ln
{

[fj,t − µj,f − φj,f (fj,t−1 − µj,f )]2 + c
}

, and zj,t = ln
(
ζ2
j,t

)
. The offset

parameter c is typically set to a small value, e.g., 0.001, see also Fuller (1996). Then,

the state-space system can be re-written as

f∗j,t = hj,t + zj,t

hj,t+1 − µj,h = φj,h (hj,t − µj,h) + σjεj,t

allowing the use of the Kalman filter and a simulation smoother. As shown below, this

allows to sample the entire block hj at once.

To make eq. (11) linear, Kim et al. (1998) propose approximating the distribution

of zj,t by a mixture of normal densities,

zj,t | st ∼ fN
(
mst , ν

2
st

)
, (12)

where st ∈ {1, 2, . . . , 7} is an index indicator with

Pr (st = i) = qi, i ≤ 7, t ≤ T,

9



Table 1: Parameters of a seven-component Gaussian mixture to approximate the distribution
of zt, Kim et al. (1998).

st qi mst ν2
st

1 0.00730 −11.40039 5.79596
2 0.10556 −5.24321 2.61369
3 0.00002 −9.83726 5.17950
4 0.04395 1.50746 0.16735
5 0.34001 −0.65098 0.64009
6 0.24566 0.52478 0.34023
7 0.25750 −2.35859 1.26261

and the parameters
{
qi,mst , ν

2
st

}
given in Table 1.

Due to this approximation, f∗j | s, µj,h, φj,h, σj with s = (s1, . . . , sT )′ becomes Gaus-

sian, which induces substantial computational efficiency gains in the MCMC algorithm

shown below. The minor approximation error can be removed by re-weighting the

posterior samples afterwards.

In the following, we develop an MCMC algorithm based on eight parameter blocks.

By denoting the error precision matrix as Hε = (ΣεΣ′ε)
−1 and using squared brackets

[·] to indicate blocks of parameters, we collect all parameters of interest in θ, where

θ = {λ,Hε, [µj,f , φj,f ] , [µj,h, φj,h, σj ]} with j = 1, 2, 3.

The priors are chosen as following: (i) λ is assumed to follow a Uniform distribution

with λ ∼ U (λ|aλ, bλ). (ii) ΣεΣ′ε follows an Inverted Wishart distribution ΣεΣ′ε ∼
IW

(
ΣεΣ′ε | A−1

ε , νε
)
. Then, by construction, the precision matrix Hε follows a Wishart

distribution Hε ∼W (Hε | Aε, νε). (iii) By restricting the yield factors to be stationary,

we elicit truncated normal priors with support (−1, 1) for φj,f ∼ TN
(
φj,f |µj,fφ , V j,fφ

)
·

1 (|φj,f | < 1), where 1 (·) is the indicator function. The specific choices of the resulting

set of hyper-parameters
{
aλ, bλ, Aε, νε, µj,f , V j,f

}
are given in the Appendix.

Denote y = {y1, . . . , yT }′. According to the model specification given by eq. (4),

(5) and (7), the likelihood function can be written as

p (y, f,h | θ) =
T∏
t=1

3∏
j=1

p (yt | θ, fj,t, hj,t) p (fj,t | Fj,t−1,Hj,t−1, θ) p (hj,t | Hj,t−1, θ) .

(13)

With the priors elicited above and employing Bayes’ theorem, the joint posterior is

proportional to the product of the likelihood and priors,

p (θ, f ,h | y) ∝ p (y, f ,h | θ) p (θ) .

10



The underlying MCMC algorithm is summarized as follows:

1. Initialize θ = {λ,Hε, [µj,f , φj,f ] , [µj,h, φj,h, σj ]} and the latent variables fj and hj
with fj,0 = µj,f and hj,0 = µj,h for j = 1, 2, 3.

2. Run a Gibbs sampler for steps (a) - (d) using S replications, where the initial S0

draws are discarded:

(a) Sample Hε from Hε|y, λ, [µj,f , φj,f ] , [µj,h, φj,h, σj ] , fj , hj , j = 1, 2, 3.

(b) Sample λ from λ|y,Hε, [µj,f , φj,f ] , [µj,h, φj,h, σj ] , fj , hj using a Griddy-Gibbs

sampling method as illustrated in Appendix A.

(c) Sample [µj,f , φj,f ] , fj from [µj,f , φj,f ] , fj |y, λ,Hε, hj using a simulation smoother

as illustrated in Appendix A.

(d) Run (i)-(iv) 3 times to estimate hj | fj , with j = 1, 2, 3, respectively:

(i) Compute f∗j and run the loop (ii)-(iv) 2000 times. Discard the results

from the initial 500 loops.

(ii) Sample s|f∗j , hj .

(iii) Sample hj |f∗j , s, [µj,h, φj,h, σj ] using a simulation smoother.

(iv) Sample [µj,h, φj,h, σj ] |f∗j , hj using the Metropolis-Hastings algorithm

proposed by Chib et al. (2002) choosing a multivariate t-density as the

proposal density. See Appendix A for more details.

To estimate the DLNS model, step (d) is straightforwardly simplified to allow for a

constant covariance matrix ΣηΣ′η. In step 2 (d) (iv), as an alternative to a multivariate

t- density, an adaptive mixture of Student-t can be used as a candidate distribution,

see Ardia et al. (2009).

This MCMC algorithm is obviously more efficient than an element-by-element draw-

ing algorithm. Due to the blocking of highly correlated variables, the Gibbs sampler

can quickly move to regions of high posterior probability. Conversely, if we draw latent

variables one by one, an enormous number of draws is needed as the latent variables

and thus the Gibbs draws are highly correlated. These high correlations induce a slow

convergence of the chain (Chib and Greenberg, 1996). Consequently, the number of

iterations required in an element-by-element algorithm is significantly higher. For in-

stance, in Hautsch and Ou (2008), 2,500,000 iterations are required with a burn-in

period of 500,000 iterations. Using the MCMC algorithm introduced above, we can

reduce the number of iterations to 20,000. This makes the model significantly more

flexible and applicable, particularly, if the sample size becomes large.
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3.2 Evaluating the Model Fit using Posterior Predictive p-values

Comparing two models Mi and Mj in a Bayesian framework can be performed by

calculating the posterior model probabilities p (Mi | y) and p (Mj | y) and computing

the posterior odds ratio POij = p (Mi | y) /p (Mj | y). Alternatively, one could com-

pute the Bayes Factors BFij = p (y |Mi) /p (y |Mj) based on the marginal likelihoods

p (y |Mi) and p (y |Mj). Computing the latter is not straightforward in the given

context. However, in this paper, we are particularly interested in an evaluation of the

model’s goodness-of-fit yielding information to which extent the specification is able to

reproduce the characteristics of the data.

In an MCMC setting, this is conveniently evaluated using so-called posterior pre-

dictive p-values (ppp-values). Suppose we have S hypothetical sample series ypret ,

t = 1, . . . , T , which are generated by a specific model. Then, the ppp-value gives the

(tail) probability to observe more extreme values than in the actually observed data.

Hence, if the model fits the data well, the observed data, yobst , and the simulated data,

ypret , should not be too different and thus the ppp-value should be high. See also

Meng (1994) and Gelman and Meng (1996) for more details. Denote θ as the vector of

parameters, then p
(
g (ypret ) | yobst

)
can be calculated as (see Koop, 2003)

p
(
g (ypret ) | yobst

)
=
∫
p
(
g (ypret ) | yobst , θ

)
p
(
θ | yobst

)
dθ

=
∫
p (g (ypret ) | θ) p

(
θ | yobst

)
dθ. (14)

The second equality holds since conditional on θ, ypret is independent of yobst and thus

p
(
g (ypret ) | yobst , θ

)
= p (g (ypret ) | θ). Suppose we have S draws of θ from the posterior

density p
(
θ | yobst

)
, where each draw of θ is denoted as θ(i), the ppp-value can be

calculated as the proportion of cases in which the simulated g (ypret ) exceeds the realized

value g
(
yobst

)
ppp = Pr

[
g (ypret ) ≥ g

(
yobst

)]
=

1
S

S∑
i=1

1
[
g (ypret ) ≥ g

(
yobst

)]
, (15)

where 1 (·) denotes the indicator function. The function g (·) is typically chosen as a

sample statistic. Given the normality assumption for εt, we choose g(·) as E (Kurt | y)

and E (Skew | y) with Kurt and Skew denoting the sample kurtosis and skewness,

respectively. Using the MCMC algorithm proposed in Section 3.1, we simulate S draws

12



of ypre(i)t and thus g
(
y
pre(i)
t

)
| θ(i). In particular, ypre(i)t | θ is simulated by

hj,t | hj,t−1, µj,h, φj,h, σ
2
j ∼ fN

{
µj,h + φj,h (hj,t − µj,h) , σ2

j

}
, j = 1, 2, 3, (16)

ft | ft−1, ht, θ ∼ fN
{
ft + φf (ft−1 − µf ) ,Ση,tΣ′η,t

}
, (17)

yt | ft, hj,t, θ ∼ fN
{

Λft,ΣεΣ′ε
}
, (18)

yielding simulated data y
pre(i)
t , f

(i)
j , h

(i)
j . Then, the sample skewness and kurtosis in

draw (i) is computed from ε
obs(i)
t = y

obs(i)
t − Λ(i)f

(i)
t and ε

pre(i)
t = y

pre(i)
t − Λ(i)f

(i)
t .

Taking the average of the S draws,
{
Skewobs(1), . . . , Skewobs(S)

}
, produces an estimate

of E
(
Skew | yobst

)
. Then, the ppp-value is computed according to (15).

As noted in Koop (2003), the ppp-value can be used as a measurement of model

fit as well as for model comparisons. A small ppp-value indicates that the model is

unlikely to generate data sets with more extreme properties than the data observed.

4 Empirical Results

4.1 Estimation and MCMC diagnostics

We use monthly unsmoothed Fama-Bliss zero coupon yields from January 1964 to De-

cember 2003 with maturities from one up to five years, i.e. τi = {12, 24, 36, 48, 60} in

months. The data is available from the Centre for Research in Security Prices (CRSP)

and is constructed using the method of Fama and Bliss (1987) based on end-of-month

data of U.S. taxable, non-callable bonds for annual maturities up to 5 years. This data

is used in Cochrane and Piazzesi (2005) and also in Hautsch and Ou (2008) and thus

makes our results comparable to previous studies. In particular, since Hautsch and Ou

(2008) use a Gibbs sampling algorithm based on an element-by-element drawing, a com-

parison of results provides insights to which extent the use of a computationally more

efficient MCMC algorithm is also reflected in parameter estimates and uncertainties.

To be able to directly compare estimates of the DLNS and SVNS model, we also

estimate the DLNS model using the suggested MCMC procedure. The proposed Gibbs

sampler is run using 20,000 iterations with the first 5,000 iterations discarded. The

algorithm is programmed in Ox building on the stochastic volatility package SvPack

2.0 (Koopman et al., 2002).2 The estimation results including the estimated posterior

means, posterior standard deviations, and 95% posterior density intervals (HPIV) are

2The algorithm is run on a machine with Intel(R) Core(TM)2Duo E8500 processor, 3.16GHz, 3.25GB
RAM, and WinXP 32bit OS. For the basic model 25, 000 iterations take 12 minutes, 11.01 seconds.

13
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Figure 2: Latent Yield Factors Implied by the DLNS Model. Top left: level factor fL; Top
right: slope factor fS ; Bottom left: curvature factor fC ; Bottom right: underlying yields Jan,
1964 - Dec, 2003.

given by Table 4 in Appendix B. We also report Numerical Standard Errors (NSE) as a

measure of approximation errors in MCMC estimates, the Relative Numerical Efficiency

(RNE) to evaluate the efficiency of the algorithm, and Convergence Diagnostics (CD)

as proposed by Geweke (1992). Taking the non-i.i.d. nature of MCMC draws into

account, we calculate modified NSEs and RNEs (NSEq and RNEq ) accounting for

correlations up to lags of q% of the size of the retained MCMC sample. According to

the reported diagnostics, we do not find any indications for a lack of convergence in

the Markov chain. Moreover, the RNE values indicate that the MCMC algorithm is

quite effective.

Figure 2 plots the estimated latent yield factors. It turns out that all factor dynam-

ics are highly persistent confirming also the results by Koopman et al. (2010). This is

particularly true for the level factor which is virtually estimated as an integrated com-

ponent. As shown below, this result is obviously induced by the fact that time-varying

volatilities in levels are ignored driving the autoregressive parameter of the level factor

toward one. Nevertheless, it is shown that the long-term factor f1,t nicely captures

the overall interest rate level, while f2,t picks up variations in yield spreads. Also from

the plots it is evident that time-varying variances are obviously only captured by the

slope and curvature factor but not by the level factor. Using the posterior draws of the

covariance ΣηΣ′η, we compute the error correlations ρik = Corr (ηi,t, ηk,t), i 6= k, i ≤ 3,

k ≤ 3. Figure 3 shows the posterior distributions of (ρ12, ρ13, ρ23) with averages of

14



0.006, 0.005 and 0.276, respectively. Hence, apart from a distinct correlation between

f2,t and f3,t, the mutual dependencies between the factors are comparably low widely

confirming the appropriateness of modelling ΣηΣ′η as a diagonal matrix.
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Figure 3: Posterior Distributions of Error Term Correlations based on the DLNS model.

The SVNS model is estimated using 18,000 runs of the Gibbs sampler with 8, 000

draws used for the burn-in period. Table 2 gives the estimates of the parameters as well

as the corresponding diagnostics. It turns out that – in comparison to the DLNS model

– the persistence in yield factors is slightly reduced and obviously partly captured by

the (high) autocorrelations in factor volatilities. Nevertheless, the persistence in the

yield factor is still very high supporting the findings by Koopman et al. (2010) and

Hautsch and Ou (2008). Conversely, the persistence in the curvature factor is clearly

reduced. As for the DLNS model, the reported MCMC diagnostics indicate a proper

convergence of the underlying Markov chain.

We find significant evidence for strong autocorrelations in factor volatilities with

highest persistence in the level and slope volatility as represented by (mean) estimates

of φh,L = 0.89 and φh,S = 0.96. Hautsch and Ou (2008) report a higher persistence

which might be due to a slower convergence of the Markov chain in an element-by-

element drawing approach. The plots of the estimated yield factors shown in Figure

4 reveal quite similar patterns as those shown in Figure 2. However, it is evident

that the SVNS model reveals also substantial volatility in the level factor which is

not true in the DLNS model. These results illustrate that the inclusion of underlying

stochastic volatility captures also a non-trivial part of parameter uncertainty. This will
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Figure 4: Latent Yield Factors Implied by the SVNS Model. Top left: level factor fL; Top
right: slope factor fS ; Bottom left: curvature factor fC ; Bottom right: underlying yields Jan,
1964 - Dec, 2003.

be confirmed by the analysis of forecasting uncertainties induced by both models shown

in Section 4.2.

Figure 5 depicts the corresponding volatilities ehj associated with the level, slope

and curvature, respectively. The highest variations in volatility are shown for the level

and slope factor. The level volatility seems to be positively related to the underlying

(interest rate) level. Hence, in periods of high (low) interest rates we also observe higher

(lower) volatility. Two main spikes are observable in 1980 and 1984 where overall inter-

est volatility has been obviously high. In the same period, also the slope volatility has

been extremely high. In contrast, during the remaining period, slope volatilities have

been virtually zero reflecting comparably low fluctuations in yield spreads. Similarly,

curvature volatility is widely constant through the sample period. While the time series

patterns of level and slope volatilities are similar to those reported by Hautsch and Ou

(2008) using the same data, the pattern of the curvature volatility is different. While

in Hautsch and Ou slope and curvature volatility seem to be positively related, the

present estimates seem to disentangle the individual components more clearly. Since

both the underlying data and model are the same, these differences in results must be

induced by the underlying MCMC sampling algorithm which is clearly more efficient

in the present study. This finding indicates that the sampling of latent volatilities

in a latent factor model is a challenging task and definitely requires computationally

efficient algorithms as proposed in this paper.
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Table 2: Estimation results for the SVNS model and MCMC diagnostics including means, standard deviations and 95% posterior density intervals.
cd: Geweke convergence diagnostic values, nse: numerical standard errors, rne: relative numerical efficiency calculated based on lags covering q%
of the retained sample, with q = [4, 8, 15].

V ariable µf,L µf,S µf,C φf,L φf,S φf,C µh,L µh,S µh,C φh,L φh,S φh,C

mean 1.0129 0.9596 0.7895 0.9913 0.9803 0.4900 0.2925 0.1026 0.0295 0.8983 0.9678 0.7236
std 1.0595 1.0515 0.8204 0.0120 0.0194 0.4498 0.0136 0.0170 0.0004 0.0118 0.0099 0.0197
HPIV lo −0.6911 −0.7387 −0.5559 0.9781 0.9482 −0.4617 0.2743 0.0866 0.0291 0.8852 0.9641 0.7001
HPIV up 2.8055 2.7606 2.1339 0.9994 0.9987 0.9689 0.3155 0.1368 0.0300 0.9097 0.9712 0.7545

cd 0.6067 0.9823 −1.2593 0.5208 −0.0749 −0.0156 1.6743 −0.2232 0.0502 0.7655 0.7489 0.1170
nse 0.0106 0.0105 0.0082 0.0001 0.0002 0.0045 0.0001 0.0002 0.0000 0.0001 0.0001 0.0002
nse.04 0.0100 0.0090 0.0156 0.0001 0.0002 0.0058 0.0002 0.0002 0.0000 0.0001 0.0001 0.0003
nse.08 0.0088 0.0078 0.0143 0.0001 0.0002 0.0055 0.0002 0.0002 0.0000 0.0001 0.0001 0.0003
nse.15 0.0081 0.0063 0.0102 0.0001 0.0001 0.0048 0.0002 0.0002 0.0000 0.0001 0.0001 0.0002
rne.04 0.8583 1.1638 0.2959 1.1630 1.0442 0.5864 0.6956 0.5225 0.7630 0.8663 1.1117 0.5422
rne.08 1.0318 1.1777 0.3016 1.2972 1.0528 0.5242 0.7619 0.5481 0.7355 0.8506 1.1457 0.5608
rne.15 1.7384 1.2998 0.3096 1.4081 1.1060 0.5084 0.6369 0.8704 0.7289 0.7668 1.1713 0.7677

σ2

1,ε σ2

2,ε σ2

3,ε σ2

4,ε σ2

5,ε σ2

1,h σ2

2,h σ2

3,h λ

mean 0.0399 0.0217 0.0352 0.0336 0.1708 0.2049 0.3166 0.0065 0.0674
std 0.0061 0.0042 0.0128 0.0122 0.0541 0.0248 0.0265 0.0012 0.0073
HPIV lo 0.0323 0.0171 0.0223 0.0233 0.1196 0.1640 0.2720 0.0056 0.0554
HPIV up 0.0512 0.0291 0.0611 0.0594 0.2886 0.2435 0.3554 0.0089 0.0788

cd −0.4623 −0.7554 −1.3177 −1.3757 −1.3802 −1.3615 0.3477 0.0153 0.3391
nse 0.0001 0.0000 0.0001 0.0001 0.0005 0.0002 0.0003 0.0000 0.0001
nse.04 0.0001 0.0000 0.0001 0.0001 0.0006 0.0005 0.0005 0.0000 0.0001
nse.08 0.0001 0.0000 0.0001 0.0001 0.0007 0.0005 0.0004 0.0000 0.0001
nse.15 0.0001 0.0000 0.0001 0.0001 0.0008 0.0006 0.0004 0.0000 0.0000
rne.04 0.3741 1.4531 1.2850 1.1980 1.2128 0.4290 0.3241 0.4286 1.1188
rne.08 0.3779 1.2829 1.2675 1.3299 1.3379 0.4216 0.3469 0.3878 1.3171
rne.15 0.3666 1.1391 1.1942 1.3615 1.7101 0.2863 0.6445 0.4111 1.5010
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Figure 5: Latent Volatilities Implied by the SVNS Model. Top left: level volatility ehL ; Top
right: slope volatility ehS ; Bottom left: curvature volatility ehC ; Bottom right: underlying
yields Jan, 1964-Dec, 2003.

Figures 6 to 8 show the posterior distributions of the individual parameters. In most

cases, the distributions strongly deviate from corresponding normal approximations

which would be used asymptotically. The posterior distribution of λ is simulated using

the Griddy-Gibbs sampler. Interestingly, λ is quite uniformly distributed covering a

relatively small range. This result confirms the argument in Diebold and Li (2006)

that factor loadings Λ are not very sensitive to different values of λ. Therefore, it is

reasonable to fix λ to values around 0.07 as in Diebold and Li (2006), Diebold et al.

(2006) or Yu and Zivot (2008). Indeed, the posterior mean of the Griddy-Gibbs sample

is 0.0674, which implies the curvature loading 1−e−λτi
λτi

− e−λτi to be maximized for a

maturity of τi = 26.6 months. Plots of the underlying MCMC draws as well as of

corresponding correlograms for all parameters are given in Appendix C. It is shown

that in all cases the correlations between the MCMC draws are small indicating a high

efficiency of the MCMC algorithm.

Table 3 reports the posterior predictive p-values for both the DLNS model and the

SVNS model. Both models fit the data well. Neither E
(
Skew | yobst

)
nor E

(
Kurt | yobst

)
fall into the tails of the posterior predictive distribution E (Kurt | ypret ) and E (Skew | ypret ).

Hence, both models are able to replicate the main characteristics of the observed data.

Nevertheless, the SVNS model yields ultimately larger ppp-values. For instance, the

DLNS model yields E
(
Skew | yobst

)
= 0.085 and a ppp-value of 0.435 for maturities

of 60 months. This indicates that 43.5% of the artificial data set generated from the
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Table 3: Posterior Predictive p-values

DLNS SV NS

skewness kurtosis skewness kurtosis
m E (S | yot ) p E (K | yot ) p E (S | yot ) p E (K | yot ) p

12 0.015 0.894 2.696 0.930 0.082 0.993 3.265 0.933
24 0.022 0.839 2.689 0.935 0.104 0.993 3.109 0.931
36 0.037 0.740 2.690 0.931 0.099 0.993 3.019 0.930
48 0.059 0.585 2.695 0.924 0.092 0.993 2.953 0.926
60 0.085 0.435 2.696 0.929 0.090 0.993 2.884 0.928

DLNS model exhibit a greater degree of skewness than the actual data. Conversely,

the corresponding p-values for the SVNS model are virtually one. Moreover, it turns

out that the values of E
(
Kurt | yobst

)
implied by the SVNS model are larger implying

that the latter specification tends to generate data with a greater degree of kurtosis.

This is obviously driven by the stochastic volatility in the yield factors.

4.2 Evaluating the Forecasting Uncertainty

Systematic evaluations of the models’ out-of-sample forecasting power is beyond the

scope of this paper. Nevertheless, we aim at illustrating the importance of accounting

for time-varying volatilities when forecasting densities are considered. This is performed

by selecting three illustrative dates for which we produce one-step-ahead out-of-sample
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forecasts. The underlying forecasting procedure considering parameter uncertainty and

error uncertainty is illustrated in the Appendix. As representative dates we select De-

cember 1980, December 1985 and December 2003. Figure 9 illustrates that these dates

are associated with different volatility regimes. Particularly in December 1980, volatil-

ity (and interest rates themselves) have been high. For all three periods, we compute

one-step-ahead forecasts given the information set available at the previous month.

The forecasts are produced based on parameter estimates employing the corresponding

history of yields prevailing before each date. Sampling from the corresponding simu-

lated posteriors (as shown in the Appendix) provides the full forecast density taking

into account parameter uncertainty and stochastic uncertainty.

Figures 10, 11 and 12 show the corresponding density forecasts generated by the

DLNS model and the SVNS model for the three dates and all maturities. Not surpris-

ingly, the mean forecasts seem to be similar in both specifications. However, the forecast

uncertainty is quite different. In all cases, the forecast uncertainty is lower in the SVNS

model. This is due to the fact that in the SVNS approach, interest rate volatility – and

thus an important component of parameter uncertainty and stochastic uncertainty –

is explicitly taken into account. In the DLNS model, this component is missing which

induces a higher stochastic uncertainty and consequently a higher forecasting uncer-

tainty. This is most striking for December 1985 and December 2003. Both dates are

associated with low volatility regimes. In these situations, the DLNS model induces

a significantly higher forecasting uncertainty stemming from the fact that the ignored
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Figure 10: Density forecasts for maturities of 12m, 24m, 36m, 48m, 60m, respectively, for
December 1980. Realized values indicated by vertical lines.
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Figure 11: Density forecasts for maturities of 12m, 24m, 36m, 48m, 60m, respectively, for
December 1985. Realized values indicated by vertical lines.
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Figure 12: Density forecasts for maturities of 12m, 24m, 36m, 48m, 60m, respectively, for
December 2003. Realized values indicated by vertical lines.

stochastic and parameter uncertainty induced by high-volatility-regimes ‘spread out’ to

low-volatility-regimes. The density plots show that this effect is quite distinct support-

ing the importance of explicitly accounting for underlying stochastic volatility. Only

in December 1980, the forecasting densities are quite similar. This is due to the fact

that in such a high-volatility-period both models face higher stochastic and parameter

uncertainties.

5 Conclusions

We propose MCMC-based Bayesian inference for a so-called Stochastic Volatility Nelson-

Siegel (SVNS) model. The SVNS model has been introduced by Hautsch and Ou (2008)

and extends a dynamic version of the original Nelson and Siegel (1987) model as pro-

posed by Diebold and Li (2006) to allow for stochastic volatility in the underlying yield

factors. This framework allows to capture yield curve volatility in a flexible but still

parsimonious way.

The model can be re-presented in a state space form with the factors in the transi-

tion equation revealing stochastic volatility and the volatility components themselves

following latent dynamic processes. Our results show that the filtering of latent volatil-

ities of latent (dynamic) variables is not straightforward and requires a high sampling

precision. Therefore, we propose estimating the model using a MCMC algorithm build-

ing on the Kalman filter together with a simulation smoother. This allows to sample
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the unknown parameters as well as factors block-wise making the algorithm computa-

tionally quite efficient.

Our estimation results provide evidence for distinct time-varying stochastic volatil-

ities in yield factors. In particular, the level and slope volatilities contribute most to

the volatility of the yield curve. We show that the incorporation of stochastic volatility

captures an important part of stochastic uncertainty and parameter uncertainty. Ana-

lyzing the model’s goodness-of-fit using posterior predictive p-values we show that the

inclusion of stochastic volatility improves the model’s explanatory power. Moreover,

based on several illustrative examples we find that the SVNS model produces a sig-

nificantly smaller forecasting uncertainty compared to a specification where variances

are assumed to be constant. Actually, it turns out that ignored stochastic volatility

substantially increases parameter uncertainty resulting in forecasting densities with a

significantly higher variance.

Though the model is specifically designed for the modelling of yield curves it can be

seen as a member of a more general class of multivariate dynamic latent factor models

revealing (multivariate) stochastic volatility. Such approaches might be attractive not

only for term structure dynamics but in all applications where high-dimensional het-

eroscedastic systems have to be modelled and forecasted. Since the proposed MCMC

approach is easily adapted to alternative specifications it provides a convenient frame-

work for statistical inference for this class of models.
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A Derivations of Conditional Posterior Distributions

In the following, we derive the corresponding conditional posterior distributions and

show how to sample from them.

1. Sample Hε from a Wishart conditional posterior, Hε ∼W
(
Hε|Aε, νε

)
, where

νε = T + νε,

A
−1
ε = A−1

ε +
T∑
t=1

(yt − Λft) (yt − Λft)
′ ,

and the hyper-parameters to be selected as νε = 0.001 and A−1
ε = 0N×N associ-

ated with non-informative priors. Then ΣεΣ′ε can be calculated from the inverse

of Hε.

2. To sample λ, we use a Griddy-Gibbs sampler posterior based on 30 grid points.

Hence, with y collecting the data and f and h collecting the time series of all

yield factors and factor volatilities, respectively, we have

p (λ | y, f, h) ∝
T∏
t=1

p (yt | θ, ft, ht) p (λ)

∝
T∏
t=1

p (yt | θ, ft, ht, Hε)
1

bλ − aλ
I(aλ,bλ) (λ)

∝ 1
bλ − aλ

|Hε|
T
2

(2π)
T
2

exp

{
−1

2

T∑
t=1

(yt − Λft)
′Hε (yt − Λft)

}
I(aλ,bλ) (λ) ,

where I(aλ,bλ) (λ) denotes an indicator function, and λ ∈ (aλ, bλ). The hyper-

parameters bλ and aλ are chosen in line with previous literature. For instance,

in Diebold and Li (2006), λ = 0.0609 maximizes the curvature factor loading at

a 30-month maturity. Other studies find similar results showing that λ is most

likely in a range between 0.06 and 0.07. Accordingly, we choose bλ = 0.08 and

aλ = 0.055.

3. Sample [µf , φf ] and f , using the sampled λ.

(a) Fitting eq. (4) and (5) into a state-space form, we can sample f using the

Kalman filter with a simulation smoother. With ft = (f1,t, f2,t, f3,t)
′ and
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yt = {yt (τ1) , yt (τ2) , . . . , yt (τN )}′, the time-varying state-space form is(
ft+1

yt

)
= δt + Φtft + ut ut

i.i.d.∼ N (0,Ωt) , t = 1, . . . , T.

Initial conditions are

δt =

(
dt

ct

)
=

(
µf − µfφf

0N×1

)
: (3 +N)× 1,

Φt =

(
Tt

Zt

)
=

(
diag (φ11,f , φ22,f , φ33,f )

Λ

)
: (3 +N)× 3,

Ωt =

(
Ση,tΣ′η,t 0

0 ΣεΣ′ε

)
: (3 +N)× (3 +N) .

As shown in in Kim et al. (1998), we obtain

νt = yt − ct − Ztft : (N × 1) ,

Ft = ZtPtZ
′
t + ΣεΣ′ε : (N ×N) ,

Kt =
(
TtPtZ

′
t

)
F−1
t : (3×N) ,

ft+1 = dt + Ttft +Ktνt : (3× 1)

Pt+1 = TtPtT
′
t + Ση,tΣ′η,t −KtFtK

′
t : (3× 3) ,

where a′0 = (µf )′ using the previous draws from the Gibbs sampler and

P = I3 × 106 with Ip denoting a p-dimensional identity matrix. Then, the

Kalman filter returns the vector
{
νt,Kt, F

−1
t

}
and the simulation smoother

(de Jong and Shephard, 1995) can be used to get draws {f1, f2, . . . , fT } | y, θ,
where θ collects all parameters in the SVNS model. Setting fT = 0 and

NT = 03×3, and define

Dt = F−1
t +K ′tNtKt : (N ×N) ,

nt = F−1
t νt −K ′tft,
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we run for t = T, . . . , 1,

Ct = ΣεΣ′ε −
(
ΣεΣ′ε

)
Dt

(
ΣεΣ′ε

)
,

kt ∼ N (0, Ct) ,

ft−1 = Z ′tF
−1
t νt + (Tt −KtZt)

′ ft − V
′
t C
−1
t kt,

Vt =
(
ΣεΣ′ε

) (
DtZt −K ′tNtTt

)
,

Nt−1 = Z ′tF
−1
t Zt + (Tt −KtZt)

′Nt (Tt −KtZt) + V
′
t C
−1
t Vt.

Then, yt − (ΣεΣ′ε)nt − kt is a draw from Ztft | y, θ, Zt+1ft+1, . . . ZT fT . The

smoothed factors {f1, f2, . . . , fT } | y, θ can be obtained using the simulation

smoother described above. Note that sampling {f1, f2, . . . , fT } , θ | y directly

is not possible because of degeneracies (see Koopman et al., 1999).

(b) Sampling [µf , φf ]. The likelihood is given by

p (y, f,h | θ) =
T∏
t=1

3∏
j=1

fN
(
yt | Λft,ΣεΣ′ε

)
×fN (fj,t | µj,f + φj,f (fj,t−1 − µj,f ) , exp (hj,t))

×fN
(
hj,t | µj,h + φj,h (hj,t−1 − µj,h) , σ2

j

)
.

With a prior µ
j,f

= 0 and V j,f = 104, the posterior of µj,f is derived as

µj,f ∼ N
(
µj,f |µj,f , V j,f

)
, where

V j,f =

[
T∑
t=1

(1− φj,f )2

exp (hj,t)
+

1
V j,f

]−1

and

µj,f = V j,f

[
T∑
t=1

(1− φj,f ) (fj,t − φj,ffj,t−1)
exp (hj,t)

+
µ
j,f

V j,f

]
.

Similarly, with a truncated normal prior for φj,f , the posterior conditional

can be derived as φj,f ∼ TN
(
φj,f | µj,fφ , V j,fφ

)
1 (|φj,f | < 1) where

V j,fφ =

[
T∑
t=1

(fj,t−1 − µj,f )2

exp (hj,t)
+

1
V j,fφ

]−1
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and

µj,fφ = V j,fφ

[
T∑
t=1

(fj,t − µj,f ) (fj,t−1 − µj,f )
exp (hj,t)

+
µ
j,fφ

V j,fφ

]
.

4. Using the draws of f , we can calculate f∗ from

fj,t − µj,f = φj,f (fj,t−1 − µj,f ) + exp
(
hj,t
2

)
ζj,t, j = 1, 2, 3,

and f∗j,t = ln
{

[fj,t − µj,f − φj,f (fj,t−1 − µj,f )]2 + c
}

, where c = 0.001. Then, we

estimate [φj,h, σj , µj,h] and hj following Kim et al. (1998):

(a) Sample s from s|f∗j , hj , where s = {st} for t = 1, ..., T , using Table 1 and

the following probability mass function

Pr
(
st = i | f∗j,t, hj,t

)
∝ qifN

(
f∗j,t | µst + hj,t, ν

2
st

)
.

(b) Sampling hj |f∗j , s, [µh,j , φh,j , σj ] can be achieved in one block using the Kalman

filter and simulation smoother. The procedures are similar to those in Step

3(a). We treat the sampled fj , j = 1, 2, 3, as three univariate time series,

running step 4 three times to estimate and extract the stochastic volatilities

from the series fj . Since f∗j and hj can be fitted in a state-space form, it is

straight forward to apply Kalman filter and simulation smoother. Extract-

ing the log-volatilities terms hj is with the same manner as we draw the

smoothed factor {f1, f2, . . . , fT } | y, θ in Step 3(a). For matrix calculus as

stated in Step 3(a), the representations of δt, Φt and time varying Ωt are

given as the following:(
hj,t+1

f∗j,t

)
= δt + Φthj,t + ut ut

i.i.d.∼ N (0,Ωt) , t = 1, . . . , T.

Under stationary initial conditions we have

P =

σ2
j /
(

1− φ2
j,h

)
µj,h

 ,

δt =

(
dt

ct

)
=

(
µj,h − µjhφj,h

0

)
,
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Φt =

(
Tt

Zt

)
=

(
φj,h

1

)
,

ut =

(
σjεj,t

zj,t

)
,

where zj,t|st ∼ N
(
mst , ν

2
st

)
.

Ωt =

(
σ2
j 0

0 ν2
st

)

(c) Sampling [µj,h, φj,h, σj ] is achieved using the Metropolis-Hasting algorithm

(Chib and Greenberg, 1995). Following Chib et al. (2002), we use a

multivariate-t density with υ degrees of freedom as the proposal candidate

density. We have chosen υ = 5 to cover a fat tailed distribution. For details

in step (b) and (c), see Chib et al. (2002) for details.

B Forecasting

Once all the parameters are estimated, h-step ahead point forecasts can be obtained

using the posterior means/ modes. In the Bayesian context, density forecasts are easily

achievable directly using the MCMC draws. Hence,

f̂t+h = µ̂f + φ̂f

(
f̂t − µ̂f

)
, (19)

ŷt+h = Λ̂f̂t+h, (20)

where Λ̂ is calculated using the draws of λ, denoted as λ̂. The density forecast incorpo-

rating parameter uncertainty can be conducted as follows: Denote each retained sample

from the MCMC procedure as draw(s), for s = 1, . . . , S, we can produce S h-step ahead

forecast samples for f̂t+h with each forecast sample denoted by f̂ (s)
t+h. Hence,

f̂
(s)
t+h = µ̂

(s)
f + φ̂

(s)
f

(
f̂

(s)
t − µ̂

(s)
f

)
,

and

ŷ
(s)
t+h = Λ̂(s)f̂

(s)
t+h.

For S →∞, we obtain an approximation of the forecast density of yt+h. In the resulting

forecast density parameter uncertainty is naturally taken into account.
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To account also for stochastic uncertainty we proceed as follows: Suppose we have

a random draw of Σ(s)
η and Σ(s)

ε from the posterior conditionals, we generate a ran-

dom sample η̂(s)
t+h = Σ(s)

η uη,t+h and ε̂
(s)
t+h = Σ(s)

ε uε,t+h, where uε,t+h and uη,t+h are i.i.

standard normally distrbuted. Then, forecasts incorporating stochastic uncertainties

are

f̂
(s)
t+h = µ̂

(s)
f + φ̂

(s)
f

(
f̂

(s)
t − µ̂

(s)
f

)
+ η̂

(s)
t+h,

ŷ
(s)
t+h = Λ̂(s)

(
f̂

(s)
t+h + η̂

(s)
t+h

)
+ ε̂

(s)
t+h,

where the stochastic uncertainty is induced by the errors in both the measurement

equation, εt+h, and the transition equation, ηt+h. In this paper, we consider a one-

step-ahead out-of-sample forecast, i.e. h = 1, taking both parameter and stochastic

uncertainty into account.

C Tables and Figures
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Figure 13: MCMC draws, Correlograms, and Posterior Densities for µL,f , µS,f , µC,f based
on the SVNS model.
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Table 4: Estimation results for the DLNS model and MCMC diagnostics including means,
standard deviations and 95% posterior density intervals. cd: Geweke convergence diagnostic
values, nse: numerical standard errors, rne: relative numerical efficiency calculated based on
lags covering q% of the retained sample, with q = [4, 8, 15].

µf,L µf,S µf,C φf,L φf,S φf,C λ

mean 0.9215 0.5602 0.7113 0.9996 0.9647 0.9607 0.0673
std 1.0100 0.9919 0.9615 0.0071 0.0304 0.0319 0.0075
HPIV lo −0.7360 −1.0469 −0.8615 0.9990 0.9080 0.9006 0.0554
HPIV up 2.5784 2.2138 2.3040 1.0000 0.9975 0.9969 0.0788

cd −0.0917 0.4947 −1.6099 1.0064 −0.1886 0.5634 −0.6325
nse 0.0071 0.0070 0.0068 0.0001 0.0002 0.0002 0.0001
nse.04 0.0075 0.0059 0.0064 0.0000 0.0002 0.0002 0.0000
nse.08 0.0077 0.0055 0.0065 0.0000 0.0001 0.0002 0.0000
nse.15 0.0074 0.0056 0.0063 0.0000 0.0001 0.0002 0.0000
rne.04 0.8986 1.4322 1.1204 1.0157 1.7524 1.3548 2.2903
rne.08 0.8603 1.6149 1.1021 1.0118 2.1974 1.6534 2.4579
rne.15 0.9281 1.5971 1.1683 1.0106 2.8375 1.5616 1.9414

σ2
1,ε σ2

2,ε σ2
3,ε σ2

4,ε σ2
5,ε σ2

1,η σ2
2,η σ2

3,η

mean 0.0806 0.1346 0.1886 0.1863 0.4372 0.0723 2.6367 3.5332
std 0.0263 0.0110 0.0330 0.0172 0.0796 0.0047 0.5873 0.5013
HPIV lo 0.0530 0.1198 0.1462 0.1656 0.3473 0.0647 1.9515 3.7767
HPIV up 0.1382 0.1552 0.2534 0.2219 0.5948 0.0801 2.9000 4.4955

cd 1.0729 1.1482 0.9230 1.2209 1.1315 −0.7834 1.1983 −1.2735
nse 0.0002 0.0001 0.0002 0.0001 0.0006 0.0000 0.0042 0.0035
nse.04 0.0002 0.0001 0.0001 0.0001 0.0006 0.0000 0.0036 0.0032
nse.08 0.0002 0.0001 0.0001 0.0001 0.0007 0.0000 0.0036 0.0031
nse.15 0.0002 0.0001 0.0001 0.0002 0.0007 0.0000 0.0034 0.0028
rne.04 1.2068 1.5358 4.6890 0.8652 0.9136 0.6370 1.3262 1.2427
rne.08 1.0198 1.5421 4.1658 0.6803 0.7065 0.5778 1.3575 1.3390
rne.15 0.8990 1.5775 4.3326 0.6210 0.5892 0.5297 1.5189 1.6420
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Figure 14: MCMC draws, Correlograms, and Posterior Densities for φL,f , φS,f , φC,f based
on the SVNS model.
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Figure 15: MCMC draws, Correlograms, and Posterior Densities for µL,h, µS,h, µC,h based
on the SVNS model.
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Figure 16: MCMC draws, Correlograms, and Posterior Densities for φL,h, φS,h, φC,h based
on the SVNS model.

E:\work\workingpaper\TS\Pics\lambdasv1.emf  12/14/09 00:14:53

Page: 1 of 1

0 5 10

-0.5

0.0

0.5

1.0 Correlogram

0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085

20

40

60
Posterior Density of 

0 25 50 75 100 125

0.25

0.50

0.75

1.00

Figure 17: Correlograms, and Posterior Densities for λ based on the SVNS model.
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