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Abstract

We develop Bayesian techniques for estimation and model comparison in a novel

Generalised Stochastic Unit Root (GSTUR) model. This allows us to investigate

the presence of a deterministic time trend in economic series, while allowing the

degree of persistence to change over time. In particular the model allows for shifts

from stationarity I(0) to nonstationarity I(1) or vice versa. The empirical analysis

demonstrates that the GSTUR model provides new insights on the properties of

some macroeconomic time series such as stock market indices, inflation and ex-

change rates.
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1 Introduction

Application of econometric tests indicates that many macroeconomic time series contain
unit roots and are therefore nonstationary I(1) processes. Some of these results are in con-
tradiction with economic theories that imply the stationarity of some series (e.g. Purchasing
Power Parity). Further development in some nonlinear models, such as TAR (Caner and
Hansen 2001), STAR (van Dijk et al. 2002), ESTAR (Kapetanios et al. 2003), and al-
ternative forms of stationarity, such as ARFIMA (Koop et al. 1997), have been proposed
for reconciling the empirical evidence to economic theory. This paper develops Bayesian
techniques to test for a deterministic time trend while allowing changes in the degree of per-
sistence over time. For this purpose we use a Generalised Stochastic Unit Root (GSTUR)
model:

�t = yt � �t� 
 (1.1)

�t = exp(�t)�t�1 +
lP
i=1

�i 4 �t�i + "t (1.2)

�t = �0 + �1�t�1 + � � �+ �p�t�p + �t (1.3)

where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
. This is a generalization of the STUR

model proposed by Granger and Swanson (1997):

yt = exp(�t)yt�1 + "t (1.4)

�t = �0 + �1�t�1 + �t (1.5)

where "t is i:i:d:N(0; �2") and �t is i:i:d:N
�
0; �2�

�
.

One main distinctive feature of the STUR model is that it allows for the persistence of
macroeconomic series to vary with time. This time-varying persistence could be a charac-
teristic of series that appear to be nonstationary after di¤erencing or detrending. There
is empirical evidence that persistence changes over time in some U.S. macroeconomic time
series (Kim 2000, Kim 2002, Busetti and Taylor 2004, Harvey et al. 2006). Thus, tests
for a deterministic time trend hypothesis that ignore changes in persistence might lead to
wrong conclusions. Therefore, previous evidence as to whether a macroeconomic series is
trend stationary (TS) or di¤erence stationary (DS) or neither (see Newbold et al. 2001)
needs to be reconsidered. The crucial questions are: 1. how sure are we that economic
time series have a deterministic trend when the persistence is time-varying and 2. whether
the variations of persistence correspond with historical events. As the STUR model, the
GSTUR model allows for a time-varying degree of persistence. This allows the process to
be I(1) at some periods of time and I(0) at others. Furthermore, the GSTUR generalizes
the STUR model by allowing for a deterministic trend and a more complex lag structure in
the measurement equation and transition equation.
While modelling the changes in persistence as a stochastic process seems attractive, the

estimation involved presents computational challenges. One motivation of using Bayesian
techniques is that estimations for this highly parameterized model can be achieved by
Markov Chain Monte Carlo (MCMC) techniques. Granger and Swanson (1997) used two
methods to estimate the parameters in a STUR model (equations 1.4 and 1.5), which pro-
duced �wild estimates�that are �fairly imprecise�. Simulations via MCMC techniques, after
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passing some diagnostic tests (e.g. Carlin and Chib 1995, Geweke 1989), can shed light on
the posterior distribution properties for any feature of interest. Jones and Marriott (1999)
provided a Bayesian method for parameter estimations for the STUR model. In this paper,
Bayesian techniques for estimation and model comparison in a GSTUR model are developed.
The remainder of the paper is organized as follows. Section 2 describes the methods

for Bayesian estimation and model selection. Section 3 presents the empirical results using
Nelson and Plosser�s S&P 500 series, the U.K. /U.S. long run exchange rates and UK
in�ation rates. Section 4 brie�y concludes.

2 Bayesian Inference

Equation 3 de�nes the time-varying persistence parameter �t as an AR(p) process, which
we assume to be stationary. Thus the unconditional mean �� of the stationary process �t
is:

�� =
�0

1�
pP
j=1

�j

Let
�t = exp(�t) (2.1)

We begin by introducing some notation: Ft denotes the history of yt up to time t,
Ft = (y1; � � � ; yt)0, y denotes the whole sample of observations with a sample size of
N , y = (y1; y2; � � � ; yn)0. Let us also de�ne � = (�1�p; � � � ; �0; �1; � � � ; �T�1; �T )0 as
the vector containing all unobserved stochastic roots over the time T period. Similarly
de�ne the vector � =

�
�1�p; � � � ; �0; �1; � � � ; �T�1; �T

�0
associated with �. De�ne also

�initial = (�1�p; � � � ; �0)0, � =
�
�1; � � � ; �p

�0
and � = (�1; � � � ; �l)0. The error precisions

are denoted as h" = ��2" and h� = ��2� . � =
�

; �; �; �; ��; �

2
"; �

2
�

�
stands for the vector

containing all the parameters of interest. Note that �t determines the degree of persistence
and varies stochastically in the GSTUR process.
Note that the process is stationary (I(0)) if �t < 1 and not stationary if �t � 1. Note

also that the random walk (RW) model is nested within the GSTUR model at the point
where �� = 0 and �2� = 0, such that �t will be always equal to 1. Hence, (��; �t; �) are
parameters of special interest.

2.1 Bayesian Model Estimation

With few exceptions detailed below, we adopt the prior speci�cation proposed in Jones

and Marriott (1999) (JM hereafter): �� � N
�
�
�
; V �

�
, f
; �g � N

�
�


; V 


�
and � �

N
�
�
�
; V �

�
. Since �t is restricted to be a stationary AR(p) process, the inverse character-

istic roots of the polynomial:

� (z) = 1� �1z � � � � � �pzp

should all lie outside of the unit circle. Let 1 (kz�k > 1) be an indicator function for the
event that �i : i = 1; � � � ; p jointly satisfy the stationarity condition. The prior density of
� is p(�) = (C)�1 fN

�
�
�i
; V �i

�
1 (kz�k > 1), where fN (:) is a multivariate normal density
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and C is the normalizing constant. The prior densities for error precisions are chosen as

p(h") = f�"

�
�"; �"

�
and p(h�) = f��

�
��; ��

�
;where f� (�) denotes the density of the

Gamma distribution.
Table (1) shows our choice for prior parameters in the empirical application. The pa-

rameter �� varies around ln 0:9 with a small variance V � and is independent of �
2
� (unlike

in JM, where ��j�2� s fN (0; �2�)). Besides, JM selected �di¤use�priors for �2" and �
2
� that

merely indicate that 0 < �2" <1 and 0 < �2� <1. Instead, we want a prior that captures
the prior belief that �t varies slowly over time. Accordingly, the prior for �

2
� puts most of

the probability mass on small values. We �x the prior parameters of �2" so that the prior
probability of extremely large values is small.

Table 1: Summarized Prior Properties in GSTUR
parameters Selected Values in the Prior
�� �

�
ln 0:9 V � 0:12

�i �
�i

1 V �i 0:1

h" �" 1:1 �
"

0:2

h� �� 1:5 �
�

2:5


 �



�
0
0

�
V 
 104eye(2)

� �
�

(0; � � � ; 0)0 V � 104eye(i)

Given the above prior information, we are able to derive the conditional posterior dis-
tributions that can be used in the MCMC algorithm. To facilitate computations, we will
work with the augmented likelihood, such that the posterior for � can be written as:

p (�; � j y) / p(�; �)
N

�
t=2
p (yt j �; �; Ft�1)

All conditional posterior densities have standard forms and can be sampled directly,
except for that corresponding to �t, which is non-standard (see Appendix for the detail
form of this density). JM applied a ratio of uniforms method (see Devroye, 1986) to sample
�t. As the posterior conditional of �t is similar to a normal density, the Metropolis-Hastings
(M-H) algorithm can be implemented to draw values of �t. As shown in the empirical section,
the proposed Metropolis-within-Gibbs algorithm exhibits fast convergence. The following
MCMC procedure can be used to simulate from the posterior distribution in the GSTUR
model. The exact expressions for the parameters of the conditional posteriors can be found
in the appendix.
Algorithm 1: Posterior Simulator of GSTUR-Implementations of Gibbs and

MH Sampling Algorithms

1. Give initial values for �2"; �
2
�; ��; �;�; �;


2. Repeat the steps a� g during S iterations.

(a) Sample �2" from
�
�2" j y;
; �; �; �; ��; �2�

�
, which has density f�1�"

�
�"; �"

�
(b) Sample �2� from

�
�2� j y;
; �; �; �; ��; �2"

�
, which has density f�1��

�
��; ��

�
(c) Sample �� from

�
�� j y;
; �; �; �; �2"; �2�

�
, which has density fN

�
��; V ��

�
4



(d) Sample � from
�
� j y;
; �; �; ��; �2"; �2�

�
, which has density fN

�
��; V �

�
trun-

cated to the stationary region. If � satis�es the stationary condition kzjk > 1,
continue to step e. Otherwise draw the whole vector � again.

(e) Sample �t from p
�
�t j y;
; �; �; ��; �2"; �2�; ��t

�
using the independent chain M-

H algorithm, in which a univariate t-density is chosen as the candidate generating
density. Note that we use the notation ��t = (�1�p; :::; �t�1; �t+1; :::; �T�1; �T )

0

(f) Sample � from � j y;
; �; �; ��; �2"; �2�, using the density fMN

�
��; V �

�
(g) Sample 
 from 
 j y; �; �; �; ��; �2"; �2�, using the density fMN

�
�
; V 


�
2.2 Bayesian Model Comparison

The most important aspects in model speci�cation relate to the existence of a deterministic
time trend (whether � = 0), the time variation in � (whether � is time-invariant) and
the number of lags in the measurement equation (the value of l). The Bayesian approach
provides a compelling framework to tackle model uncertainty (e.g. Kass and Ra¤rey, 1995)
and over-parameterization (e.g. Koop and Potter, 1999). According to Kass and Raftery
(1995), the Bayes Factor Bij that compares model Mi and model Mj is expressed as

Bij =
p (yjMi)

p (yjMj)
(2.2)

where p (yjMi) is the marginal likelihood in modelMi. The strength of evidence in favour of
model Mi versus Mj can be evaluated following the recommendations of Kass and Ra¤rey
(1995), which are summarized in Table (2):

Table 2: Bayes factor scale comparing model i with model j
log10Bij Bij Evidence against model j
0� 1 1� 3 Not worth more than a bare mention
1� 3 3� 20 Positive
3� 5 20� 150 Strong
> 5 > 150 Very Strong

As the GSTUR model is highly dimensional, the marginal likelihood of the GSTUR
model cannot be obtained with a straightforward analytical integration method. In the
case where a Gibbs Sampler is already implemented and all the full posterior conditional
densities are known, it is possible to approximate the marginal likelihood of each competing
model using the posterior draws and the approach introduced by Chib (1995).
The idea of the Chib method starts from the basic �marginal likelihood identity�. The

marginal density of y = (y2; :::; yn)
0 can be written as:

p(y) =
p(�)

n

�
t=2
p(yt j �)

p(� j y) (2.3)

where the numerator is the product of the sampling density and the prior density (including
the integrating constant C) and the denominator is the posterior density of �. The constant
C can be evaluated by simulating from the untruncated prior of �, and calculating the
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proportion of times that the draws verify the stationarity condition (e.g. Judge et al. (1985,
pp.128)). The conditional posterior density of � is also subject to truncation and so we
explain how to calculate the corresponding normalizing constant. As the above �marginal
likelihood identity�holds for any �, say ��, the log marginal likelihood can be approximated
as:

ln p(y) /
nX
t=2

ln p(yt j ��; Ft�1) + ln [p(��)]� ln [p(�� j y)] (2.4)

where p(��) is easily obtained by evaluating the prior densities at ��1 . For greater accuracy
�� should be a point of high posterior density. In this paper it is chosen to be the posterior
mean. The posterior ordinates ln p(�� j y) can be obtained using a marginal/conditional
decomposition together with the outputs from the original and subsequent �reduced MCMC
runs�. Using the marginal/conditional decomposition:

p(��; ���; h
�
�; 


���; ��; h�" j y) / p (��� j y) p
�
h�� j y; ���

��

�; �� j y; ���; h��

�
p(�� j y; ���; h

�
�; 


���)

p(h�" j y; ���; h
�
�; 


���; ��)p(�� j y; ���; h��; 
���; ��; h�") (2.5)

The �rst term p (��� j y) in Equation (2.5) can be estimated from the MCMC algorithm
outputs as

p (��� j y) '
1

S

SP
s=1
p(��� j y; �(s); �(s)� ; h(s)� ;
(s); �(s); h(s)" ; �(s)) (2.6)

The same calculation is done to obtain p
�
h�� j y; ���

�
, but the draws come from a reduced

MCMC run. The reduced MCMC run consists in running again Algorithm 1, but �xing
�� to be equal to the posterior mean �

�
� in every iteration. The other components on the

right hand of Equation (2.5) can be approximated in an analogous manner using draws
from reduced MCMC runs with the appropriate variables �xed to the corresponding values
in ��. The normalizing constant p(�� j y; �; ���; h��; 
�; ��; ��; h�") can be approximated by
the number of draws that verify the stationarity restriction.
As shown in appendix B, the method of auxiliary particle �ltering (APF) (Pitt and

Shephard (1999)) can be adapted to estimate the value of the likelihood
nP
t=2
ln p(yt j ��; Ft�1).

Thus, the marginal likelihood identity (2.3) allows us to estimate the log marginal likelihood
of the GSTUR model with or without restrictions. We also would like to compare the simpler
linear Random Walk (RW) model with the GSTUR model. The marginal likelihood of the
RW model can be evaluated analytically:

pRW (y) =

Z
p(yj�2")p(�2")d�2" (2.7)

In the RW model, �2" is the only parameter that has to be estimated. If h" = �
�2
" and the

prior chosen for h" is a Gamma distribution h" s �"
�
�"; �"

�
, the marginal likelihood of

the RW model would depend only on the values of �" and �". For the purpose of model
comparison, it is sensible to choose the same prior in competing models for the common
parameters. Thus, the values of �" and �" will be chosen to be the same as those for �

�2
"

in the GSTUR model (see Table 1).

1The exact mathematical expression for the prior densities can be found in the Appendix.
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3 Empirical Illustrations with Generalised STUR

An application to the series of Standard & Poor 500 indices (S&P500) indicates that, once
we allow for stochastic unit roots, a deterministic time trend might exists in the S&P500
series. A further application to U.K. /U.S. long-run exchange rate indicates that changes
in persistence coincide with monetary events. Finally, using the UK in�ation series, we
demonstrate that the GSTUR captures well the in�ation dynamics and we assess the out-
of-sample prediction error.

3.1 Empirical Results with Stock Price

We use the S&P500 annual data set, measured in logarithms, for the period 1877 to 1988.
This data set has been previously tested for an exact Unit Root, deterministic time trend and
changing persistence (see Nelson and Plosser 1982, Kwiatkowski et al. 1992, Gil-Alana and
Robinson 1997). This data set has also been used by Jones and Marriott (1999) to estimate
the original Stochastic Unit Root model (the simplest form of the GSTUR in equation 1.4
and 1.5). Here, in addition to estimate the more general GSTUR model, we test hypotheses
using posterior probabilities.

3.1.1 Estimation

To ensure that the e¤ects of the starting values in the MCMC algorithms are insigni�cant,
we take 25; 000 draws after discarding the initial 5; 000. The MCMC convergence diagnostic
results from the Numerical Standard Errors (NSE)2 and the Convergence Diagnostic values
(CD) show that the number of iterations used is more than su¢ cient. The correlogram (au-
tocorrelation function) plots serial correlations of the draws from the posterior simulator.
Fig (1 and 2) indicate that, for all the parameters of interest, there is no signi�cant auto-
correlation at lag lengths larger than 15. Thus, the quick decaying autocorrelation indicates
quick movements in the sampled draws and fast convergence.

Table 3: Estimates: GSTUR with an Application to SP500
Prior Posterior

Mean StDev Mean StDev CD NSE15 Median :95HPDI
�� ln 0:9 0:12 �0:1176 0:0678 �0:1168 0:0031 �0:1155 �0:2315 �0:0104
�2� - - 0:0382 0:0122 0:2324 0:0002 0:0360 0:0227 0:0613

�2" - - 0:1160 0:0159 �0:6118 0:0001 0:1147 0:0926 0:1445
�1 y y 0:1079 0:1321 �1:2492 0:0008 0:1096 �0:109 0:3234

 0 106 0:7649 0:3969 �0:2616 0:0035 0:7709 0:107 1:4092
� 0 106 0:0345 0:0057 0:192 0 0:0346 0:0252 0:0438
�1 0 106 0:2528 0:2109 �0:1585 0:0021 0:2516 �0:0931 0:6003

y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A
� : see Table (1) for prior descriptions

The summary statistics of Table (3) reports the estimated results and e¢ ciency diag-
nostics of the MCMC algorithm. According to the CD value and NSE values, the MCMC
algorithm converges for all the parameters of interest. The posterior estimates show that

2The number of lags used to calculate NSE is 15% of the size of the sample.
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Figure 1: SP500 with GSTUR: Posterior Draws of ��, �
2
" and �

2
�
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Figure 2: SP500 with GSTUR: Posterior Draws �1,
, �, and �1
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Figure 3: log Marginal Likelihood of RW with an Application of SP500

parameters are substantially di¤erent from zero. A negative �� and small �
2
� suggests that

the S&P500 series could be a process with Stochastic Unit Roots.

3.1.2 Model Selection

Imposing � = 0 or 
 = � = 0 a¤ects the estimates of stochastic roots signi�cantly. As
pointed out by Koop (1994), restricting the deterministic time trend to be zero forces any
trend behavior to manifest itself stochastically, biasing the tests in favour of stochastic
nonstationarity. Considering the problem of over-parameterization, it is also important to
decide which parameters should be included in a good �tting model. Table (4) presents
the estimated log marginal likelihood values. For a given value of l (the lag length in the
measurement equation (1.2)), these values do not vary much with p (the lag length in the
transition equation (1.3)). In contrast, log marginal likelihood values vary substantially
with l for a given p. Thus, the lag length in the measurement equation is more important
than the lag length in the transition equation.
To compare the highly parameterized nonlinear GSTURmodel with the simple linear RW

model, we calculate the marginal likelihood for the RW model. Because the marginal likeli-

hood from the RWmodel depends on the values of �" and �" in the prior (�
�2
" ��"

�
�"; �"

�
),

we choose a range of values of �" and �" to calculate the marginal likelihood for a simple
prior robust analysis. Both �" and �" start from 0:1 to 5 with a step of 0:01.
From Fig (3), the log marginal likelihood of a Random Walk model is maximized at

46:2606 with �" = 5 and �
"
= 5. If the values are chosen as �" = 1:1 and �

"
= 0:2,

which are the same as those in the prior of ��2" �f�"
�
�"; �"

�
in the GSTUR model, the

log marginal likelihood is �34:413. Given that, as argued above, we choose the same prior
for the common parameter ��2" , the Bayes Factors between the RW and the GSTUR model
(with l = 1, � 6= 0) with a deterministic time trend (� 6= 0) can be calculated as:

BFRW :GSTUR =
p(MRW )

p(MGSTUR)
=
exp(�34:413)
exp(�0:2384) = 1: 439 3� 10

�15

According to Table (2), there is very strong evidence in favour of the GSTUR model when

10



compared to the RWmodel. We may conclude that the sample series has a 99.9% probability
of being a stochastic unit root process.
To visualize the changes in persistence over the sample period (t = 1878 � 1988), the

estimated time-varying roots �t from the GSTUR model are plotted below the S&P 500
data. The estimates of the roots �t vary under di¤erent speci�cations of the constant 
 and
the deterministic time trend �. Fig (4) plots the estimated stochastic roots for the GSTUR
(p = 1; l = 1) model with deterministic trend (� 6= 0) but no constant (
 = 0). Fig (5) plots
the same for the unrestricted GSTUR (p = 1; l = 1) model (� 6= 0; 
 6= 0).

1878 1888 1898 1908 1918 1928 1938 1948 1958 1968 1978 1988

2

3

4

5

Annual Stock Price: SP500

1878 1888 1898 1908 1918 1928 1938 1948 1958 1968 1978 1988
0.7

0.8

0.9

1

ρt Plot with p=1 l=0 δ ≠ 0

Figure 4: GSTUR with � 6= 0 : Time-Varying Roots of SP500 1878-1988

In Figures (4 and 5) we observe that the roots go above unity occasionally. That is, the
roots of the Stock prices series vary around E [exp (��)] in the stationary region for most of
the time, but go beyond 1 at certain time points, exhibiting an explosive behaviour. This
may explain why Nelson and Plosser (1982), Kwiatkowski et al. (1992) all �nd signi�cant
evidence in favor of a Unit Root in the S&P 500 series.

3.2 Empirical Results with Long-run Real Exchange Rate

Another empirical application for the GSTUR model is to analyze the real exchange rates.
We use the monthly U.K./U.S. real exchange rates from January 1885 to February 1995,
with a sample size of 1; 322 over a 111-year period. This data has been analyzed by Engel
and Kim (1999) with a state space model. They applied an Augmented Dickey-Fuller (ADF)
test and rejected the unit root at the 5 percent level.
In this section, a restricted GSTUR model (
 = � = 0, p = 1 and l = 1) is used.

The algorithm uses 25; 000 iterations with the �rst 5; 000 discarded. The e¢ ciency of the
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Figure 5: GSTUR with 
 6= 0 � 6= 0 : Time-Varying Roots of SP500 1878-1988

algorithm can be assessed with the CD and NSE values. Table (5) reports the estimated
results and diagnostics of the MCMC.
Figure (6) plots the U.K./U.S. real exchange rates, nominal exchange rates and estimated

roots over the 111 year span. The range of the stochastic unit roots is narrow (from 0:98�
1:015), and the variance of the stochastic unit roots is small. For most of the time the roots
are below one, which indicates the series is stationary. However, at certain time points the
roots jump to or above one. These points are marked with u, and indicate nonstationary
and/or explosive behaviors. Engel and Kim (1999) provide a description of the historical
monetary events within the 111-year span and Figure 6 marks these events with vertical
bars. Note that there is a correlation between the historical events and the u marks.

3.3 Empirical Results with UK in�ation

The third empirical application with the GSTUR model is to analyze the quarterly U.K.
in�ation series. Figure (7) plots the Quarterly UK RPI In�ation series from 1957 Q1 to 2007
Q1. The UK experienced very high in�ation in the 1970�s and 1980�s. The in�ation rates
were controlled to vary within a small range after the introduction of �in�ation targeting�
in the 1990s. The �rst three fourths of samples and the last quarter of samples in the data
series behave quite di¤erently in terms of the mean and variance.
Figure (8) plots the estimated stochastic roots by �tting the in�ation data series with

a GSTUR model without a constant or trend, with a lag length selected at 7. The +
sign on Figure (8) marks the points at which the roots jump above one. The pattern of
the stochastic roots before 1993 looks very di¤erent from that after 1993. Before 1993 the
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Figure 6: U.K./U.S. Long Run Exchange Rates and Estimated Stochastic Unit Roots
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Figure 7: Plot of UK in�ation series: 1957 Q1- 2007 Q1

stochastic roots jump above 1 frequently. However, the roots stayed below unity after 1993.
The result from estimating a GSTUR model with UK in�ation data provides good evidence
of a changing persistence in the in�ation underlying process, which is consistent with the
�ndings of Watson and Stock (2007): �the variance of permanent disturbances to in�ation
has changed considerably over time�. Also, on the plot of the estimated roots a clear break
in 1991 can be observed.
In the out-of-sample forecasting exercise we will compare the GSTUR model with linear

models (i.e. AR and RW models). We will obtain one-step-ahead forecasts for the period
2004 Q4 to 2007 Q1. In the �rst exercise we will calibrate the models using observations
from 1957Q1. In the second we will use only observations after the independence of the Bank
of England, which is the period when in�ation dynamics are simpler and could potentially
be captured by a linear stationary model (e.g. AR model).
We also construct density forecast for each model. The density forecasts are represented

graphically as a set of prediction intervals covering 10, 20,..., 90 percent of the probability
distribution, with lighter shades for the outer bands. They are constructed in such a way
that the boundaries of the intervals are the 5th, 10th,...,95th percentiles. Note that intervals
are not always symmetric around the mode, which is represented with the darkest blue.
With multiple-step ahead forecasts, the forecast intervals �fan out�as the forecast horizon
increases. Since we focus only on one-step ahead forecasts, there are no fan out e¤ects.

3.3.1 Full sample

We present the descriptive statistics of the forecast distributions in tables, which include
the mean, mode, median, variance and 95% percentile of the forecast distributions. The
marginal likelihood of each model is calculated conditional on the observations before the
forecast. With lag length �xed at 7, Tables 6, 7,8 and 9 show the forecasts and marginal
likelihood values for the GSTUR model subject to alternative restrictions on the constant
and trend. Table (10) shows the same for the RW model.
Table (11) presents the MSFE for all entertained models with di¤erent speci�cations.

The GSTUR model with lag length 7 and a constant with no trend receives the highest
marginal likelihood and provides the best point forecast in terms of MSFE. It is signi�cant

14
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Figure 8: Simulated Roots Using the GSTUR model with No Constant or Trend with lag
length at 7

that almost all speci�cations for the GSTUR model have substantially lower MFSFE than
the RW model.
Figures 9.a, 9.b and 9.c show the density forecast plots for 3 models3 : GSTUR with

constant and lag length of 7, GSTUR with trend and lag length of 7, and RW model. From
Figure 9.a and Figure 9.b, a GSTUR model with trend generates larger forecast variances
than a model with a constant. From the forecast results, the GSTUR with a constant and
trend does not improve forecast accuracy over two of the restricted GSTUR models (i.e.
without constant or without trend). Moreover, the forecast variances from the GSTUR
models with constant and trend are 3 times larger than those from the GSTUR model with
only a constant. Thus, forecast variance and Mean Square Forecast Error (MSFE) values
point in the same direction as the marginal likelihood values. Therefore, the posterior model
probability of the unrestricted GSTUR model will be low and it might be better to exclude
it from the forecasting averaging in this case.

3Density forecasts for other models are in the Appendix.
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3.3.2 Small sample

We carry out exactly the same exercise as in Section 3.3.1 but using only observations from
1999Q4. For example, to forecast in�ation in 2004 Q4 we estimate the models using the
period (1999 Q4 - 2004 Q3), which is a sample size of 20. The one-step ahead forecasting is
carried out repeatedly 10 times with a rolling window to achieve 10 forecasts for the period
2004 Q4 to 2007Q1.
Tables (12) and (13) provide descriptive statistics of the forecast distributions using the

GSTUR without a constant or trend at lag 4, and the RW model. Figures 10.a, and 10.b
plot the forecast densities for the GSTUR without constant or trend at lag 5, and the RW
model.
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Figure 10.a: Small Sample with GSTUR no CT,
lag=5
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Figure 10.b: Small sample RW

According to the MSFE value in Table (14), a GSTUR without a constant or trend
and 4 lags provides the best point forecasts. Thus, although the data series exhibit simple
dynamics that could potentially be well capured by a linear model, the nonlinear GSTUR
model still provides better point forecasts than a RW model or a stationary AR(5) model.
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This indicates that the GSTUR model could capture the underlying dynamics of in�ation
not only when the data exhibits nonlinear dynamics, but also when the data dynamics are
linear. However, using the small sample as opposed to the full sample does not improve on
the point forecast accuracy of the GSTUR model (see Tables (11) and (14)), but it does
improve the performance of the RW model.
If we look into Figure 10.a and Table (12), the variance of the forecast distribution is very

large in the �rst 2-3 forecast periods. The big variances indicate big forecast uncertainties.
However, after the size of sample increases slightly, the forecasting variances decrease. Thus,
the big forecast uncertainty may be due to the small size of the sample. Compared to results
in Table (9), where the same model speci�cation was applied to a larger sample, the forecast
variances are much larger.
Therefore, the GSTUR outperforms the RW model in both the full sample and short

sample case. In the case of forecasting using the GSTUR model, it seems better to estimate
the model using a large sample even if it contains a structural break. That is, using a small
but more homogeneous sample might result in big forecasting uncertainties and errors.

4 Conclusions

The GSTUR is a �exible nonlinear model which can sucessfully capture the properties of
some macroeconomic time series. It allows for changes in persistence and therefore can
provide a better understanding on the sources of macroeconomic �uctuations as well as help
to identify structural breaks. In this paper we have developed an MCMC algorithm for
Bayesian parameter estimation and model comparison4 and found that these computational
methods worked satisfactorily when applied to real data. In particular the methods can
be used to assess the evidence in favour of a deterministic trend, which is important for
forecasting purposes.
This paper revisits the dispute concerning the existence of a deterministic time trend in

the S&P 500 series, which is part of the extended Nelson and Plosser�s data set. An analysis
using the GSTUR model suggests that the persistence has shifted over time. Among the
competing models, the GSTUR with a deterministic time trend has the highest marginal
likelihood, which indicates a support for the deterministic time trend. Therefore, excluding
the possibility of a deterministic trend may provide misleading inference. We propose that
the underlying process of the S&P 500 series should be modelled with a more realistic
approach, such as a combination of a deterministic time trend and a time varying persistence
with roots varying stochastically.
A simple analysis of the monthly U.K./U.S. long run real exchange rates over the 111-year

span suggests that a GSTUR model may help to resolve the PPP puzzle. The estimated time
varying stochastic roots of the series suggest that important monetary events are connected
to the shifts in the persistence of the real exchange rates.
Lastly, using UK in�ation data the GSTUR class models are better in providing out-of-

sample forecasts than the RW model. Using di¤erent sample sizes and periods to calibrate
the model, the GSTUR model outperforms the RW model in terms of out-of-sample fore-
casting accuracy. Hence, the nonlinear GSTUR models are not only resilient to shifts or
shocks in the economic system, but are also able to capture the dynamics in the underly-
ing process of in�ation. In this sense, we propose modelling the in�ation dynamics using

4The Matlab code for estimation, model comparison, MCMC diagnosis, likelihood evaluation and esti-
mation of � is available from the authors upon request.
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a GSTUR process as it may be able to accommodate breaks in persistence and provide
accurate forecasts.

A Prior and Posterior Densities

According to the elicited priors, prior densities are expressed as follows
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Then, we are able to develop the full conditional densities for the parameters of interest.
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From the joint posterior density function, it is easy to get the full conditional density of
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The derivations are all the same for i = 1; � � � ; p.

6. The posterior conditionals for h�
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7. The remaining conditionals that are needed for the �t are described as follows:

The conditional densities for �t are nonstandard and given by the following expression
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� (�t) is a function of ��; �i; ��t; p and t

Derivations are as follows:

p (�t j �; ��t; y) / exp
(
� 1

2�2"

�
�t �

lP
i=1

�i 4 �t�i � e�t�t�1
�2)

A

� exp
(
� 1

2�2�

nP
t=2

�
(�t � ��)�

pP
i=1

�i (�t�i � ��)
�2)

B
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Next, we can rearrange it to make it looks nicer, rearrange into the form in Marriott�s
paper

A / �
�2t�1
2�2"

0BBB@e�t �
�t �

lP
i=1

�i 4 �t�i

�t�1

1CCCA
2

when p = 1

B / � 1

2�2�

nP
t=2
[(�t � ��)� �1 (�t�1 � ��)]

2

For t from 2 to n� 1

B / [(�t � ��)� �1 (�t�1 � ��)]
2
+ [(�t+1 � ��)� �1 (�t � ��)]

2
+ � � �

/ �2t
�
1 + �21

�
� 2�t

h
�� (1� �1)

2
+ �1 (�t�1 + �t+1)

i
/ �2t# (�t)� 2�t � � (�t)

where
# (�t) = 1 + �

2
1

and
� (�t) = �� (1� �1)

2
+ �1 (�t�1 + �t+1)

For t = n

B / [(�t � ��)� �1 (�t�1 � ��)]
2

/ �2t# (�t)� 2�t � � (�t)

where
# (�t) = 1

and
� (�t) = �1�t�1 + �� (1� �1)

When p � 2, the whole derivation procedure is the same and we summarize it in Tables
15 and 16, which are also available in Jones and Marriott (1999)
Since part B can be approximated using a t-density, we used Independent Chain M-H

algorithm to sample �t. To generate draws with high acceptance probabilities, the selected
candidate generating density should have tails at least as fat as that of the posterior. We
have chosen the degree of freedom as � = 1 in the t-density, which allows the t-density to
have very fat tails.

B EVALUATION OF THE LIKELIHOOD

According to Equation (1.4), yt is a function of latent variable �t, thus ln p(yt j ��; Ft�1)
evolves calculation of

p (yt j ��; Ft�1) =

Z
p(yt; �t j ��; Ft�1)d�t (b.1)

=

Z
p (yt j �t; ��; Ft�1) p (�t j ��; Ft�1) d�t
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As �t is non-observable, the exact integrals are hard to obtain. However, with the help of
Monte Carlo averaging p (yt j �t; ��; Ft�1) over the large sample of draws of �1t ; :::; �Mt from
p (�t j ��; Ft�1), we could have an approximation of p (yt j ��; Ft�1) from the following:

p (yt j ��; Ft�1) '
1

M

MX
g=1

p
�
yt j �(g)t ; ��; Ft�1

�
(b.2)

However, a sample of size M (�1t ; � � � ; �Mt ) from p (�t j ��; Ft�1) can be obtained using a
sample (�1t�1; � � � ; �Mt�1) from p (�t�1 j ��; Ft�1) as

p (�t j ��; Ft�1) =
Z
p (�t j �t�1; ��; Ft�1) p (�t�1 j ��; Ft�1) d�t�1 (b.3)

An Auxiliary Particle Filter (APF) method introduced in Pitt and Shephard (1999) is
applied here to get samples from p (�t�1 j ��; Ft�1).
The algorithm to evaluate the likelihood can be described as:
Algorithm: Estimate the log Likelihood for the marginal likelihood using

Auxiliary Particle Filter
First, at time t, we call the lags of �t as �t = (�t�1; � � � ; �t�p)

0. The lags of �2 denoted
as �(g)2 : g = 1; � � � ;M , which are the initial values that can be either set as a M � p zeros
matrix or a sample of M draws (�(1)2 ; � � � ; �(M)

2 )0 from the conditional prior p(�2j��). In
our empirical application, �(g)2 : g = 1; � � � ;M is set as a M � p zeros matrix and M is set
as 3; 000.

1. t starts from 2.

(a) For each �(g)t , g = 1; � � � ;M , sample a value �4(g)t using the transition density:

�
4(g)
t � fN (�(g)t �; �2�� )

Note that �4(g)t is a draw from p(�tj��; �t).
(b) An estimate of the likelihood ordinate p(ytj��; Ft�1) is given by:

p̂(ytj��; Ft�1) =
1

M

MX
g=1

p(ytj��; �4(g)t ; F t�1) (b.4)

2. For each g = 1; � � � ;M de�ne �̂gt = E(�
g
t j�

g
t ) = �

g
t� and calculate:

wg = p(ytj�̂gt ; ��; Ft�1)

�g =
wgPM
j=1 wj

�g are the �rst-stage weights. Get R draws (k1; � � � ; kR) from the discrete distribution
de�ned on the integers (1; � � � ;M) with probabilities �1; � � � ; �M , where R is set as larg
as 5M . This step is to get R samples from the importance function g (�t; k j ��; Ft)
by simulating the index with probability �g. Note that each value of kr is used to
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indicate a value of �(kr)t (and of �̂krt ) and kr. Explicitly, step 2 is using the importance
function g (�)

g (�t; k j ��; Ft) / p
�
yt j Ek�tj�t ; �

�; Ft�1

�
p
�
�t j ��; �kt

�
�k

k = 1; � � � ;M

to get a sample of R draws.

3. For each �(kr)t , r = 1; � � � ; R, draw a scalar ��(r)t using the transition density p(�tj��; �t)
with

�
�(r)
t � fN (�krt �; �2�� ) (b.5)

Note that
�
�
�(r)
t : r = 1; � � � ; R

�
and (kr : r = 1; � � � ; R) is a sample from the joint

density g(�t; krj��; Ft; �t)

4. Resample the R � 1 vector
�
�
�(r)
t : r = 1; � � � ; R

�0
M times with probabilities �r de-

�ned as:

w�r =
p(ytj��; Ft�1; ��rt )
p(ytj��; Ft�1; �̂krt )

(b.6)

�r =
w�rPM
r=1 w

�
r

�r is the second-stage weights. Then, the resampledM �1 vector, which contains val-
ues (�(1)t ; � � � ; �(M)

t )0 is (approximately) distributed as p(�tj��; Ft; �t). These second-
stage weights are associated with the conditional likelihood by the importance function
g (�). Stacking this sampled (�(1)t ; � � � ; �(M)

t )0 on �(g)t : g = 1; � � � ;M . We have the
updated lags of �gt+1 =

�
�
(g)
t ; �

(g)
t�1; � � � ; �

(g)
t�(p�1)

�
: g = 1; � � � ;M

5. Fix t = t + 1 go to step 1(a) to get �4(g)t+1 from �gt+1 in step 4. Note that �
4(g)
t+1

are samples from p(�
4(g)
t+1 j�

�; Ft; �
g
t+1) and following 1(b) to get p̂(yt+1j�

�; Ft)
5 , until

t = n.

6. Finally, the estimate of the log likelihood is

log bp (y j ��) = NX
t=2

log bp (yt j ��; Ft�1) (b.7)

5An estimate of p(yt+1j��; Ft) is given by:

p̂(yt+1j��; Ft) =
1

M

MX
g=1

p(yt+1j��; Ft; �4(g)t+1 )
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Table 4: log Marginal Likelihood with a GSTUR class of Models

 6= 0; � 6= 0 
 6= 0; � = 0 
 = 0; � 6= 0 
 = � = 0

(a) p = 3
l = 0 -25.1406 -27.935 -4.7795 -66.5449
l = 1 -29.1619 -31.2879 -8.9852 -75.0414
l = 2 -36.9802 -39.3019 -16.77 -82.308
l = 3 -45.9399 -47.1458 -24.9254 -91.1269
(b) p = 2
l = 0 -23.9927 -26.4499 -2.7145 -62.7711
l = 1 -28.3142 -30.2792 -7.3366 -71.3285
l = 2 -35.5217 -37.6665 -14.7954 -79.0727
l = 3 -44.2955 -45.3416 -22.3381 -87.3335
(c) p = 1
l = 0 -21.6808 -23.4512 -0.2384� -58.3054
l = 1 -26.0272 -27.51 -4.6843 -66.8312
l = 2 -33.4339 -34.7273 -11.6567 -74.8015
l = 3 -41.5651 -42.8262 -20.1654 -83.4481

Table 5: Estimates: GSTUR with U.K./U.S.Real Exchange Rates
Prior Posterior

Mean St:Dev Mean St:Dev CD NSE:15 Median 95%Posterior Band
�� ln 0:9 0:12 �0:0211 0:0510 0:0204 0:0006 �0:0090 �0:1330 0:0276
�2� � � 0:0002 0:0002 �0:1093 0:0000 0:0001 0:0000 0:0006

�2" � � 0:0507 0:0020 �0:2337 0:0000 0:0506 0:0475 0:0540
�1 y y 0:4375 0:4855 �0:3223 0:0112 0:5488 �0:5100 0:9812
�1 0 106 0:9461 0:0555 1:0901 0:0018 0:9553 0:8416 1:0204

y : �1� fN (0; 1) 1 (kzjk > 1) where 1 (A) is the indicator function for the event A
� : see Table (1) for description

Table 6: Full Sample: Forecast of In�ation Rates with GSTUR p=1 lag=7, with Cons but
no trend

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4473 3.4641 3.4678 2.3629 0.3503 6.4170 -352.3575
05Q1 3.17 3.6497 3.4105 3.6404 2.3106 0.6555 6.5878 -353.0102
05Q2 3.01 3.0566 2.9506 3.0788 2.3005 0.0463 6.0156 -354.2753
05Q3 2.77 2.8924 3.1352 2.9094 2.2411 -0.1031 5.8153 -354.7319
05Q4 2.38 2.7027 2.6055 2.7053 2.2093 -0.2603 5.6205 -355.5625
06Q1 2.39 2.4528 2.1412 2.4615 2.3062 -0.5945 5.3539 -355.3517
06Q2 2.93 2.5122 2.4391 2.5308 2.2691 -0.4665 5.4442 -356.4967
06Q3 3.44 3.2976 3.4792 3.3287 2.2441 0.3076 6.1903 -357.4588
06Q4 3.99 3.8949 3.8879 3.8882 2.2007 1.0022 6.8075 -358.1957
07Q1 4.55 4.2758 4.1319 4.2646 2.1512 1.4102 7.1587 -359.5171
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Table 7: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with Trend but no
constant

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.4579 3.7104 3.4859 5.0357 -0.9718 7.8211 -353.1912
05Q1 3.17 3.6604 4.3045 3.6745 4.8655 -0.7848 7.9603 -353.3196
05Q2 3.01 3.0333 3.0516 3.0747 4.8347 -1.3921 7.3122 -354.7268
05Q3 2.77 2.9140 2.3840 2.9129 4.9697 -1.4481 7.2283 -355.2979
05Q4 2.38 2.6934 2.1711 2.7160 4.8236 -1.7071 6.9173 -355.7200
06Q1 2.39 2.4618 3.2145 2.5098 4.7927 -1.9426 6.7368 -357.0372
06Q2 2.93 2.4877 2.2645 2.5214 4.8843 -1.9635 6.7197 -356.9981
06Q3 3.44 3.3093 3.3314 3.3162 4.7115 -0.8873 7.4957 -358.2469
06Q4 3.99 3.9386 4.2814 3.9692 4.6509 -0.3474 8.1169 -359.1952
07Q1 4.55 4.2630 4.1427 4.2527 4.6849 -0.0208 8.5130 -359.5879

Table 8: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with Cons and Trend
Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML
04Q4 3.41 3.3710 3.0160 3.3726 5.1045 -1.0801 7.7927 -371.5125
05Q1 3.17 3.5712 3.3444 3.5603 4.8717 -0.7559 7.9076 -371.6482
05Q2 3.01 2.9770 2.9319 2.9936 5.0968 -1.5731 7.3929 -373.0897
05Q3 2.77 2.8352 2.6938 2.8375 4.8633 -1.5448 7.2819 -373.7779
05Q4 2.38 2.6127 2.7139 2.6177 4.8633 -1.7980 6.9545 -374.3405
06Q1 2.39 2.3813 2.6158 2.3939 4.8722 -1.9687 6.8146 -375.0120
06Q2 2.93 2.4049 2.5049 2.4214 4.6854 -1.8906 6.6591 -376.3249
06Q3 3.44 3.2422 3.1517 3.2371 4.6031 -0.9151 7.4469 -376.6760
06Q4 3.99 3.8293 3.2524 3.8079 4.7046 -0.4466 8.1211 -377.4532
07Q1 4.55 4.1903 3.7276 4.1493 4.8626 -0.1740 8.5739 -377.6779

Table 9: Full Sample:Forecast of In�ation Rates GSTUR p=1 lag=7, with no constant and
no trend

Density forecast 95% percentile
TrueV mean mode median var 2.5% 97.5% ML

04Q4 3.41 3.3019 3.2785 3.2873 1.3394 1.0434 5.6003 -371.6062
05Q1 3.17 3.5136 3.4988 3.5027 1.3256 1.2888 5.7846 -372.8042
05Q2 3.01 2.9127 2.9394 2.9143 1.3573 0.6187 5.1845 -373.9598
05Q3 2.77 2.7799 2.8126 2.7943 1.3070 0.5191 5.0124 -374.0565
05Q4 2.38 2.5471 2.7391 2.5524 1.3011 0.2777 4.7503 -374.9762
06Q1 2.39 2.3026 2.3909 2.2996 1.2759 0.0885 4.5290 -376.0596
06Q2 2.93 2.3468 2.3034 2.3451 1.2611 0.1315 4.5934 -376.5732
06Q3 3.44 3.2019 2.9417 3.2035 1.2965 0.9976 5.4668 -377.4902
06Q4 3.99 3.8128 3.7586 3.8165 1.3260 1.5399 6.0955 -378.3621
07Q1 4.55 4.1529 4.2001 4.1578 1.4009 1.8331 6.4591 -379.0650
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Table 10: Full Sample:Forecast of In�ation Rates with RW
Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% MLint
04Q4 3.41 3.0622 3.1431 3.0621 1.7639 0.4768 5.6970 -326.3807
05Q1 3.17 3.3812 3.2015 3.3809 1.7659 0.7460 5.9757 -327.6197
05Q2 3.01 3.1427 3.0835 3.1522 1.7383 0.5364 5.7155 -328.8455
05Q3 2.77 2.9569 3.3010 2.9656 1.7503 0.3468 5.5289 -330.0599
05Q4 2.38 2.7248 2.9000 2.7137 1.7352 0.1650 5.2896 -331.2808
06Q1 2.39 2.3576 2.4409 2.3599 1.6912 -0.1798 4.9368 -332.5264
06Q2 2.93 2.3538 2.1036 2.3551 1.7082 -0.1845 4.9080 -333.7261
06Q3 3.44 2.9042 3.0401 2.8988 1.7034 0.3594 5.4745 -335.0075
06Q4 3.99 3.4046 3.4777 3.4000 1.7146 0.8560 5.9740 -336.2780
07Q1 4.55 3.9267 3.7495 3.9250 1.6873 1.4048 6.4646 -337.5590

Table 11: Full Sample: MSFE of Statistical Forecasting Models
GSTUR: Constant no trend l = 0 l = 1 l = 4 l = 5 l = 7

0.1331 0.0706 0.058 0.0618 0.0578
GSTUR: Trend no constant l = 0 l = 1 l = 4 l = 5 l = 7

0.1302 0.0746 0.0553 0.0609 0.0605
GSTUR: Constant and Trend l = 0 l = 1 l = 4 l = 5 l = 7

0.1386 0.0792 0.0636 0.0627 0.0629
GSTUR: No constant no Trend l = 0 l = 1 l = 4 l = 5 l = 7

0.1539 0.0863 0.0683 0.073 0.0692
RW: 0.1535

Table 12: Forecast of In�ation Rates in Small Sample GSTUR p=1 lag=4 with NO CT
Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML
04Q4 3.41 3.2421 3.2512 2.9327 9.8394 -1.0104 9.3728 -57.6152
05Q1 3.17 3.5453 3.4519 3.2298 11.5308 -0.7222 9.3931 -59.1707
05Q2 3.01 2.8288 2.2086 2.6251 5.3872 -1.0143 7.8445 -59.7249
05Q3 2.77 2.5340 2.2455 2.3474 5.3090 -1.0860 7.1594 -60.9709
05Q4 2.38 2.3056 1.5037 2.1885 4.0578 -1.0392 6.4187 -61.9506
06Q1 2.39 2.0845 1.5565 1.9986 3.2559 -1.1018 5.7060 -63.0631
06Q2 2.93 2.2427 1.8924 2.1438 2.7698 -0.7267 5.7828 -63.4988
06Q3 3.44 3.1293 3.0842 3.0280 3.3382 -0.0801 6.9634 -64.4533
06Q4 3.99 3.7835 2.9821 3.6232 3.9126 0.5318 7.8785 -65.5945
07Q1 4.55 4.2063 3.6027 4.0548 4.0159 0.8269 8.7411 -66.8588
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Table 13: Forecast of In�ation Rates in Small Sample with a RW Model
Density forecast 95% percentile

TrueV mean mode median var 2.5% 97.5% ML
04Q4 3.41 3.1451 3.2226 3.1420 0.2371 2.2008 4.1109 -22.5721
05Q1 3.17 3.4810 3.5361 3.4828 0.2271 2.5568 4.4162 -23.3848
05Q2 3.01 3.2054 3.3324 3.2045 0.2224 2.2774 4.1262 -24.1493
05Q3 2.77 3.0373 3.0795 3.0407 0.2121 2.1385 3.9318 -24.8684
05Q4 2.38 2.7842 2.7233 2.7796 0.2071 1.8956 3.6782 -25.5950
06Q1 2.39 2.3743 2.3500 2.3750 0.2057 1.4912 3.2556 -26.3884
06Q2 2.93 2.3840 2.3264 2.3798 0.1905 1.5343 3.2477 -27.0319
06Q3 3.44 2.9398 2.9109 2.9399 0.2021 2.0505 3.8161 -27.9311
06Q4 3.99 3.4850 3.4733 3.4821 0.1999 2.6054 4.3591 -28.7960
07Q1 4.55 4.0753 4.0877 4.0747 0.2003 3.2104 4.9480 -29.6969

Table 14: Small Sample: MSFE of Statistical Forecasting Models
RW GSnoCT:l = 5 GSnoCT:l = 1 GSnoCT:l = 4 AR(5)
0.1335 0.1268 0.1021 0.0987 0.1879

Table 15: Appendix: Functions for Sampling apha (a)
values for # (�) p = 1

t # (�)

t 2 [2; n� 1] 1 + �21
t = n 1

values for � (��) p = 1
t � (��)

t 2 [2; n� 1] �1 (�t�1+�t+1)+�� (1� �1)
2

t = n �1�n�1+�� (1� �1)
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Table 16: Appendix: Functions for Sampling apha(b)
values for # (�) p > 2

t # (�)

t 2 [2; n� p] 1+
pP
i=1

�i

t 2 (n� p; n� 1] 1+
n�tP
i=1

�i

t = n 1

values for � (��) p > 2
t � (��)

t 2 [2; n� p] �p (�t�p + �t+p)+
p�1P
i=1

 
�i�

p�iP
j=1

�j�i+j

!
(�t�i+�t+i)+��

�
1�

pP
i=1

�i

�2
t = n� 1

�
p�1P
k=1

�
�k��1�k+1

�
�t�k

�
+�p�n�p�1+�1�n+�� (1� �1)

�
1�

pP
i=1

�i

�
t = n

pP
i=1

�i�N�i+��

�
1�

pP
i=1

�i

�
values for � (��) p > 3

t � (��)

t 2 (n� p; n� 2] �n�t�n+�p�t�p+
p�1P
k=1

 
�k�

min(n�t;p�k)P
m=1

�m�k+m

!
�t�k

+
n�t�1P
k=1

�
�k�

n�t�kP
m=1

�m�k+m

�
�t+k+��

�
1�

pP
i=1

�i

��
1�

n�tP
k=1

�k

�
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