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Abstract

In illiquid markets, option traders may have an incentive to increase their portfolio value

by using their impact on the dynamics of the underlying. We provide a mathematical frame-

work within which to value derivatives under market impact in a multi-player framework by

introducing strategic interactions into the model of Almgren and Chriss (2001). Speci�cally,

we consider a �nancial market model with several strategically interacting players that hold

European contingent claims and whose trading decisions have an impact on the price evolution

of the underlying. We establish existence and uniqueness of equilibrium results for risk neutral

and CARA investors and show that the equilibrium dynamics can be characterized in terms

of a coupled system of possibly non-linear PDEs. For the linear cost function used in Almgren

and Chriss (2001), we obtain a (semi) closed form solution. Analyzing this solution, we show

how market manipulation can be reduced.

AMS classi�cation: 91B28, 91B70, 60K10

JEL classi�cation: C73, G12, G13

Keywords: Stochastic di�erential games, illiquidity, market impact, derivative valuation.

1 Introduction

Standard �nancial market models assume that asset prices follow an exogenous stochastic process

and that all transactions can be settled at the prevailing price without any impact on market

dynamics. The assumption that all trades can be carried out at exogenously given prices is

∗We thank Torsten Schöneborn, Mikhail Urusov, seminar participants at various institutions and two anonymous

referees for valuable comments and suggestions. Financial Support through the SFB 649 �Economic Risk� is

gratefully acknowledged.
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appropriate for small investors that trade only a negligible proportion of the overall daily trading

volume; it is not appropriate for institutional investors trading large blocks of shares over a short

time span. Trading large amounts of shares is likely to move stock prices in an unfavorable direction

and often carries signi�cant trading costs. This is a particular challenge for traders that need to

liquidate or acquire large portfolios. In derivative markets the situation is more ambiguous. A

trader that is endowed with a large number of options may have an incentive to utilize her impact

on the price dynamics of the underlying in order to move the option value in a favorable direction1.

Pirrong (2001) write that �a trader with a large long position in a cash-settled contract can drive up

its settlement value by buying excessive quantities [of the underlying]�. Kumar and Seppi (1992)

call such trading behavior �punching the close�. This paper addresses the problem of derivative

valuation in �nancial markets with strategically interacting investors that have an incentive �to

punch the close.� We model the interaction between the investors as a stochastic di�erential game

and establish existence and uniqueness of Markov equilibria for risk neutral and CARA investors.

This allows us to discuss some ideas how manipulation in the sense of punching the close can

possibly be avoided.

Our work builds on previous research in at least three di�erent �elds. The �rst is the mathe-

matical modeling of illiquid �nancial markets. The last few years the role of liquidity as a source

of �nancial risk has been extensively investigated in both the mathematical �nance and �nancial

economics literature. Much of the literature focusses on either optimal hedging and portfolio liq-

uidation strategies for a single large investor under market impact (Çetin, Jarrow, and Protter

(2004), Alfonsi, Fruth, and Schied (2010), Rogers and Singh (2008)), predatory trading (Brun-

nermeier and Pedersen (2005), Carlin, Lobo, and Viswanathan (2007), Schied and Schöneborn

(2007)) or the role of derivative securities including the problem of market manipulation using

options (Jarrow (1994), Kumar and Seppi (1992)). It has been shown by Jarrow (1994), for

instance, that by introducing derivatives into an otherwise complete and arbitrage-free market,

certain manipulation strategies for a large trader may appear, such as market corners and front

runs. Schönbucher and Wilmott (2000) discuss an illiquid market model where a large trader can

in�uence the stock price with vanishing costs and risk. They argue that the risk of manipulation

on the part of the large trader makes the small traders unwilling to trade derivatives any more. In

particular, they predict that the option market breaks down. Our analysis indicates that markets

do not necessarily break down when stock price manipulation is costly as it is in our model. Kraft

and Kühn (2009) analyze the behaviour of an investor in a Black Scholes type market, where

trading has a linear permanent impact on the stock's drift. They construct the hedging strategy

and the indi�erence price of a European payo� for a CARA investor, and show that the optimal

strategy is a combination of hedging and manipulation. In order to exploit her market impact,

the investor over- or underhedges the option, depending on her endowment and the sign of the

impact term.

The second line of research our paper is connected to is the strategic interaction between

large investors and its implications for market microstructure, as discussed in Kyle (1985), Foster

1Gallmeyer and Seppi (2000) provide some evidence that in illiquid markets option traders are in fact able to

increase a derivative's value by moving the price of the underlying.
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and Viswanathan (1996), Back, Cao, and Willard (2000), and Chau and Vayanos (2008), for

instance. Brunnermeier and Pedersen (2005), Carlin, Lobo, and Viswanathan (2007) and Schied

and Schöneborn (2007) consider predatory trading, where liquidity providers try to bene�t from

the liquidity demand that comes from some �large� investor. Vanden (2005) considers a pricing

game in continuous time where the option issuer controls the volatility of the underlying but does

not incur liquidity or spread crossing costs. He derives a Nash equilibrium in the two player,

risk neutral case and shows that �seemingly harmless derivatives, such as ordinary bull spreads,

o�er incentives for manipulation that are identical to those o�ered by digital options� (p. 1892, l.

36). Closest to our setup is the paper by Gallmeyer and Seppi (2000). They consider a binomial

model with three periods and �nitely many risk neutral agents holding call options on an illiquid

underlying. Assuming a linear permanent price impact and linear transaction costs, and assuming

that all agents are initially endowed with the same derivative they prove the existence of a Nash

equilibrium trading strategy and indicate how market manipulation can be reduced.

A third line of research we build on is market manipulation. Di�erent notions of market

manipulations have been discussed in the literature including short squeezes, the use of private

information or false rumours, cf. Kyle (1985), Back (1992), Jarrow (1994), Allen and Gale (1992),

Pirrong (2001), Dutt and Harris (2005), Kyle and Viswanathan (2008). However, it seems to us

that no generally accepted de�nition of �market manipulation� has yet been established. Kyle and

Viswanathan (2008, p. 1) classify a trading strategy as �illegal price manipulation� if it �undermines

economic e�ciency both by making prices less accurate as signals for e�cient resource allocation

and by making markets less liquid for risk transfer�. Our notion of manipulation refers to the

practice of �punching the close�, i.e. moving the stock price in order to increase the payo� of a

given option. Kyle and Viswanathan (2008) call strategies such as punching the close �benign�,

to emphasize that they are not necessarily illegal. Punching the close nonetheless reduces the

accuracy of prices as signals about a stock's fundamental value; we thus argue that it ful�lls at

least the �rst part of Kyle and Viswanathan's de�nition of illegal manipulation.

Most of the aforementioned articles on manipulation are set up in discrete time. We suggest

a general mathematical framework in continuous time within which to value derivative securities

in illiquid markets under strategic interactions. Speci�cally, we consider a pricing game between

a �nite number of large investors (�players�) holding European claims written on an illiquid stock.

Their goal is to maximize expected utility at maturity from trading the stock where their portfolio

value at maturity depends on the trading strategies of all the other players through their impact on

the dynamics of the underlying. Following Almgren and Chriss (2001) we assume that the players

have a permanent impact on stock prices and that all trades are settled at the prevailing market

price plus a liquidity premium. The liquidity premium can be viewed as an instantaneous price

impact that a�ects transaction prices but not the value of the players' inventory. This form of

market impact modeling is analytically more tractable than that of Obizhaeva and Wang (2005)

which also allows for temporary price impacts and resilience e�ects. It has also been adopted

by, e.g. Carlin, Lobo, and Viswanathan (2007) and Schied and Schöneborn (2007) and some

practitioners from the �nancial industry, as pointed out by Schied and Schöneborn (2008).

Our framework is �exible enough to allow for rather general liquidity costs including the linear
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cost function of Almgren and Chriss (2001) and some form of spread crossing costs, cf. Example

2.4. We show that when the market participants are risk neutral or have CARA utility functions

the pricing game has a unique Nash equilibrium in the class of absolutely continuous Markovian

trading strategies; existence results for more general utility functions are given for the single player

case. We solve the problem of equilibrium pricing using techniques from the theory of stochastic

optimal control and stochastic di�erential games. Assuming that players' action sets are given

by a class of absolutely continuous Markovian trading strategies we show that the family of the

players' value functions can be characterized as the solution to a coupled system of non-linear

PDEs. Coupled systems of non-linear PDEs arise naturally in di�erential stochastic games. Since

general existence and uniqueness of solution results for systems of non-linear PDEs on unbounded

state spaces are unavailable much of the literature on stochastic di�erential games is con�ned to

bounded state spaces; see. e.g., the seminal paper of Friedman (1972). Without a priori estimates

it is usually hard to prove the existence of a global solution to a non-linear PDE system. We prove

an a priori estimate Nash equilibria. More precisely we prove that under rather mild conditions

any equilibrium trading strategy is uniformly bounded. This allows us to prove that the PDE

system that describes the equilibrium dynamics has a unique classical solution. The equilibrium

problem can be solved in closed form for a speci�c market environment, namely the linear cost

structure used in Almgren and Chriss (2001) and risk neutral agents.

It is important to know which measures may reduce market manipulation. For instance, Dutt

and Harris (2005) propose position limits; Pirrong (2001) suggests e�cient contract designs. We

use the explicit solution for risk neutral investors to show when �punching the close� is not bene-

�cial. For instance, no manipulation occurs in zero sum games, i.e., in a game between an option

writer and an option issuer. In our model manipulation decreases with the number of informed

liquidity providers and with the number of competitors, if the product is split between them. Fur-

thermore, we �nd that the bid ask spread is important determinant of market manipulation. It

turns out that the higher the spread, the less bene�cial market manipulation: high spread crossing

costs make trading more costly and hence discourage frequent re-balancing of portfolio positions.

This paper is organized as follows: We present the market model in section 2. In section 3, we

formulate the optimization problem, derive a priori estimates for Nash equilibria and prove the

existence of a solution for one player with general utility function. We solve the multi-player case

in section 4 for risk neutral and CARA agents. We use these solutions in section 5 to show how

market manipulation can be reduced. Section 6 concludes.

2 The Model

We adopt the market impact model of Schied and Schöneborn (2007) with a �nite set of agents,

or players, trading a single stock whose price process depends on the agents' trading strategies.

Following Almgren and Chriss (2001) we shall assume that the players have a permanent impact

on asset prices and that all trades are settled at prevailing market prices plus a liquidity premium

which depends on the change in the players' portfolios. In order to be able to capture changes

in portfolio positions in an analytically tractable way, we follow Almgren and Chriss (2001) and
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Schied and Schöneborn (2007) and restrict ourselves to absolutely continuous Markov trading

strategies. A Markov trading strategy for player j ∈ J , {1, ..., N} is a family of mappings

Xj
t : R → R for any time t ∈ [0, T ] where Xj

t (p) denotes the number of stock shares the player

holds at time t, given the stock current price is p. We assume that the strategy Xj belongs to the

class

X , {X : [0, T ]×R 7→ R|X absolutely continuous adapted and X0 = 0} ,

write dXj
t = Ẋj

t dt and call Ẋj the trading speed of player j.

Remark 2.1. We appreciate that it may be considered undesirable to allow for absolutely contin-

uous strategies only. Jumps are naturally captured in discrete time models, such as Kumar and

Seppi (1992) or Gallmeyer and Seppi (2000). However, strategies with absolutely continuous and

jump parts in continuous time would call for methods of singular or impulse control, viscosity so-

lutions, and (systems of) quasi variational inequalities. This is beyond the scope of this article;

we refer the interested reader to Ly Vath, Mnif, and Pham (2007) and Guo and Pham (2005) for

a discussion of investment problems with more general trading strategies. �

2.1 Price dynamics and the liquidity premium

Our focus is on valuation schemes for derivatives with short maturities under strategic market

interactions. For short trading periods it is appropriate to model the fundamental stock price, i.e.,

the value of the stock in the absence of any market impact, as a Brownian Motion with volatility

(σBt). Market impact is accounted for by assuming that the investors' accumulated stock holdings∑N
i=1X

i have a linear impact on the stock process (Pt) so that

Pt = P0 + σBt + λ

N∑
i=1

Xi
t (2.1)

with a permanent impact parameter λ > 0. The linear permanent impact is consistent with the

work of Huberman and Stanzl (2004) who argue that linearity of the permanent price impact is

important to exclude quasi-arbitrage.

A trade at time t ∈ [0, T ] is settled at a transaction price P̃t that includes an additional

instantaneous price impact, or liquidity premium. Speci�cally,

P̃t = Pt + g

(
N∑
i=1

Ẋi
t

)
(2.2)

with a cost function g that depends on the instantaneous change
∑N

i=1 Ẋ
i in the agents' position

in a possibly non-linear manner. The liquidity premium accounts for limited available liquidity,

transaction costs, fees or spread crossing costs, cf. Example 2.4. Spread-crossing costs are of

particular importance and have not been considered in the previous literature on market impact.
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Remark 2.2. In our model the liquidity costs are the same for all traders and depend only on the

aggregate demand throughout the entire set of agents. This captures situations where the agents

trade through a market maker or clearing house that reduces the trading costs by collecting all orders

and matching incoming demand and supply prior to settling the outstanding balance
∑N

i=1 Ẋ
i
t at

market prices. �

We assume with no loss of generality that g is normalized, g(0) = 0, and that g is smooth. The

following additional mild assumptions on g will guarantee that the equilibrium pricing problem

has a solution for risk neutral and CARA investors.

Assumption 2.3. • The derivative g′ is bounded away from zero, that is g′ > ε > 0.

• The mapping z 7→ g(z) + zg′(z) is strictly increasing.

The �rst assumption is a technical condition needed in the proof of Proposition 3.2. It appears

not too restrictive for a cost function. Since the liquidity costs associated with a net change in the

overall position z is given by zg(z), the second assumption states that the agents face increasing

marginal costs of trading. Our assumptions on g are satis�ed for the following important examples:

Example 2.4. Among the cost functions which satisfy Assumption 2.3 are the linear cost function

g(z) = κz with κ > 0, used in Almgren and Chriss (2001) and cost functions of the form

g(z) = κz + s
2
π

arctan(Cz) with s, C > 0.

The former is the cost function associated with a block-shaped limit order book. The latter can

be viewed as a smooth approximation of the map z 7→ κz + s · sign(z) which is the cost function

associated with a block-shaped limit order book and bid ask spread s > 0.

2.2 Preferences and endowments

Each agent is initially endowed with a contingent claim Hj = Hj(PT ), whose payo� depends on

the stock price PT at maturity. Our focus is on optimal trading strategies in the stock, given an

initial endowment. As in Gallmeyer and Seppi (2000) and Kraft and Kühn (2009), we assume

that the agents do not trade the option in [0, T ]. A consistent model for trading an illiquid option

with illiquid underlying in a multiplayer framework in continuous time is not available, to the

best of our knowledge. Our work might be considered a �rst step in this direction. Although it

is not always necessary, we assume that the functions Hj are smooth and bounded with bounded

derivatives Hj
p .

Remark 2.5. We only consider options with cash settlement. This assumption is key. While cash

settlement is susceptible to market manipulation, we show in Corollary 5.4 below that when deals

are settled physically, i.e., when the option issuer delivers the underlying, market manipulation is

not bene�cial: Any price increase is outweighed by the liquidity costs of subsequent liquidation. We

notice that this only applies to �punching the close�. There are other types of market manipulation,

such as corners and short squeezes, which might be bene�cial when deals are settled physically, but

which are not captured by our model, cf. Jarrow (1994) or Kyle and Viswanathan (2008). �
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If the agent j follows an absolutely continuous trading strategy Xj , then the value of her

portfolio at maturity is given by the option payo� Hj(PT ) less the costs of trading −
∫ T

0 Ẋj
t P̃tdt

plus the liquidation value LV j(Xj
T ) of the stock position Xj

T at maturity.

Remark 2.6. De�ning and computing the liquidation value of an asset position in an illiquid

market is currently an active �eld of research, cf. Almgren and Chriss (2001), Obizhaeva and

Wang (2005), Alfonsi, Fruth, and Schied (2010) and Schied and Schöneborn (2008), to mention

only a few. For the special case of a single risk neutral investor the expected liquidation value

under in�nitely slow liquidation equals the expected trading costs in the absence of market impact

so the optimization problem is given by

sup
Xj∈X

E
[
−
∫ T

0
Ẋj
t g
(
Ẋj
t

)
dt+Hj(PT )

]
.

In particular, in optimizing her expected portfolio value the investor can focus entirely on the

tradeo� between increased trading costs (market impact) and increased option payo�s. �

Rigorously de�ning a form of liquidation value in a game-theoretic setting is challenging, even

under risk neutrality. One reason is that all the agents optimize their trading rules against their

beliefs about the other players' assessments of all the portfolio values at maturity. In order to

simplify the analysis, and in order to focus on the interplay between the gain from manipulating

option payo�s and the increase in trading costs that accompanies it, we shall assume that all

agents value their portfolios according to its acquisition costs in the absence of market impact. Of

course, this is just a �rst benchmark, but it nonetheless yields some insight into the structure of

optimal trading under strategic interactions. Without Assumption 2.7, the equilibrium analysis

becomes rather intractable as we illustrate in Appendix C.

Assumption 2.7. All agents optimize their utility assuming that for all j = 1, ..., N

LV j(Xj
T ) =

∫ T

0
Ẋj
t Ptdt. (2.3)

Under the preceding assumption the optimization problems of the individual market partici-

pants reduce to

sup
Xj∈X

E

[
uj

(
−
∫ T

0
Ẋj
t g

(
N∑
i=1

Ẋi
t

)
dt+Hj(PT )

)]
. (2.4)

This optimization problem re�ects each investor's tradeo� between high liquidity costs and an

increased option payo�.2 If there is no market impact, agents do not trade, as we shall see in

Remark 3.1.

De�nition 2.8. We say that a vector of strategies
(
Ẋ1, ..., ẊN

)
is a Nash equilibrium if for each

agent j ∈ J her trading strategy Ẋj is a best response against the behavior of all the other players,

i.e., if Ẋj solves (2.4), given the other players' aggregate trading Ẋ−j ,
∑

i 6=j Ẋ
i.

2The only purpose of trading is an increased option payo� and not, for instance, hedging. For a study on the

interplay of hedging and manipulation we refer the reader to Kraft and Kühn (2009).
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In the following section we derive a priori estimates for equilibrium trading strategies and use

standard results from the theory of stochastic optimization to show that Nash equilibria can be

characterized in terms of a coupled system of partial di�erential equations (PDEs). For the special

case of risk neutral and CARA investors we show that the system of PDEs has a solution so that

a unique (in a certain class) equilibrium exists.

3 Equilibrium Dynamics and A-Priori Estimates

In this section we formulate the optimization problem (2.4) as a stochastic control problem, derive

the associated Hamilton-Jacobi-Bellman-equations, HJB for short, and transform it into a system

of coupled PDEs. To this end, we choose the stock price P and the trading costs Rj of the agent

j ∈ J as state variables. They evolve according to:
dPt = σdBt + λ

N∑
i=1

Ẋi
tdt, P0 = p0

dRjt = Ẋj
t g

(
N∑
i=1

Ẋi
t

)
dt, Rj0 = 0.

For a given time t < T , spot price p and a vector of trading costs r =
(
r1, ..., rN

)
the value

function of the player j, de�ned by

V j(t, p, r) , sup
Xj∈X

Et

[
uj

(
−rj −

∫ T

t
Ẋj
sg

(
N∑
i=1

Ẋi
s

)
ds+Hj(PT )

)
| Pt = p

]
, (3.1)

denotes the maximal expected portfolio value at maturity that the player can achieve by trading

the underlying. The associated HJB-equation is (cf. Fleming and Soner (1993)):
0 = vjt +

1
2
σ2vjpp + sup

cj∈R

λ(cj + Ẋ−j
)
vjp + g

(
cj + Ẋ−j

)cjvj
rj

+
∑
i 6=j

Ẋivj
ri


vj(T, p, r) = uj

(
−rj +Hj(p)

)
(3.2)

The HJB-equation is formulated in terms of the candidate value functions v1, ..., vN instead of

the actual value functions V 1, ..., V N . We �rst need to show existence and uniqueness of a smooth

solution to (3.2) before we can identify vi with V i. Given the aggregate trading strategy Ẋ−j of

all the other agents, a candidate for the maximizer cj = Ẋj in (3.2) should satisfy

0 = λvjp + g
(
cj + Ẋ−j

)
vj
rj

+ g′
(
cj + Ẋ−j

)cjvj
rj

+
∑
i 6=j

Ẋivj
ri

 . (3.3)

Under some mild technical assumption which will all be satis�ed for the case of risk neutral and

CARA investors studied in Section 4 we are now going to turn the individual HJB equations into

a coupled system of non-linear PDE. In terms of this PDE system we shall then characterize a

class of equilibrium trading strategies.
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3.1 The equilibrium PDE system

Let us assume that the matrix
(
vi
rj

(t, p, r)
)
i,j∈J is invertible for any �xed argument (t, p, r). We

will show in Section 4 that this is true for risk neutral and CARA investors. In these cases,(
vi
rj

(t, p, r)
)
i,j∈J is a diagonal matrix. If

(
vi
rj

(t, p, r)
)
i,j∈J is invertible, there exist δ1, ..., δN ∈ R

such that
∑N

i=1 δ
ivi
rj

= 1 for each j ∈ J . Thus, multiplying equation (3.3) with δj and summing

up the equations for j ∈ J yields the following characterization of the aggregate trading speed∑N
i=1 Ẋ

i
t :

0 = λ
N∑
j=1

δjvjp + g

(
N∑
i=1

Ẋi
t

)
N∑
j=1

δjvj
rj

+ g′

(
N∑
i=1

Ẋi
t

)
N∑
j=1

δj
N∑
i=1

Ẋivj
ri

= λ

N∑
j=1

δjvjp + g

(
N∑
i=1

Ẋi
t

)
N∑
j=1

δjvj
rj

+ g′

(
N∑
i=1

Ẋi
t

)
N∑
i=1

Ẋi. (3.4)

We further assume that K ,
∑N

j=1 δ
jvj
rj
≥ 1. Again, this is true for risk neutral and CARA

investors, where δjvj
rj

= 1. Due to Assumption 2.3, z 7→ K · g(z) + z · g′(z) is strictly increasing.

Hence, equation (3.4) admits a unique solution

Ẋ∗ ,
N∑
i=1

Ẋi

which depends on
∑N

j=1 δ
jvjp and

∑N
j=1 δ

jvjrj . Plugging the solution Ẋ∗ back into (3.3) allows to

compute the expression
∑N

i=1 Ẋ
ivj
ri
in terms of Ẋ∗ as

N∑
i=1

Ẋivj
ri

= − 1

g′
(
Ẋ∗
) [λvjp + g(Ẋ∗)vj

rj

]
. (3.5)

This expression is well de�ned since g′ > 0. To conclude, we have turned the family of individual

HJB-equations (3.2) into the following system of coupled PDEs for j = 1, ..., N :
0 = vjt +

1
2
σ2vjpp + λ

(
Ẋ∗ − g(Ẋ∗)

g′(Ẋ∗)

)
vjp −

g(Ẋ∗)2

g′(Ẋ∗)
vj
rj

vj(T, p, r) = uj
(
−rj +Hj(p)

) (3.6)

where the coupling stems from Ẋ∗, which is uniquely de�ned via (3.4). It will become clear in

Section 4 that the state variable r is redundant for risk neutral and CARA investors. In these

cases, the value function is translation invariant (after a suitable transformation), which allows to

drop the variable r.

Remark 3.1. In a market without price impact (λ = 0), manipulation is not bene�cial. To

see this, �rst note that Ẋ∗ =
∑N

i=1 Ẋ
i = 0 is the unique solution to (3.4). From (3.5), we get∑N

i=1 Ẋ
ivj
ri

= 0. On the other hand, we have from (3.1) and (3.2) that vj(t, p, r) = V j(t, p, r) =
Etuj

(
−rj +Hj(PT )

)
, and in particular vj

rj
6= 0 and vj

ri
= 0 for i 6= j. This implies that 0 =∑N

i=1 Ẋ
ivj
ri

= Ẋjvj
rj

and �nally Ẋj = 0 for each j. �
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3.2 A priori equilibrium estimate

Solving the system (3.6) is delicate, to say the least. The problem is the non-linearity coming from

the expressions g(Ẋ∗)

g′(Ẋ∗)
and g(Ẋ∗)2

g′(Ẋ∗)
along with the implicit dependence of Ẋ∗ on the derivatives vip

and vi
ri
, i ∈ J . In Section 4, we show that a unique classical solution to the system (3.6) exists

for risk neutral and CARA investors. The proof uses the following a priori estimates for the

optimal trading strategies. It states that, if an equilibrium exists, then each player's trading speed

is bounded. In particular, there is no equilibrium with unbounded strategies. As a result, the

agents' utilities from trading and the value function associated with their respective HJB equations

along with (as we shall see) their derivatives are bounded.

Proposition 3.2. Let
(
Ẋ1, ..., ẊN

)
be a Nash equilibrium for problem (2.4). Then each strategy

Ẋj satis�es ∣∣∣Ẋj
t

∣∣∣ ≤ N λ

ε

(
max
i

∥∥H i
p

∥∥
∞ + 1

)
,

where ε is taken from Assumption 2.3.

Proof. Let j ∈ J , h , maxi
∥∥H i

p

∥∥
∞ and A ,

{
(t, ω) :

∑N
i=1 Ẋ

i
t(t, ω) ≥ 0

}
be the set where the

aggregate trading speed is nonnegative. Let us �x the sum of the competitors' strategies Ẋ−j . On

the set A the best response Ẋj
t is bounded from above by K , λ

ε (h+ 1). Otherwise the truncated
strategy Ẏ j

t , Ẋj
t ∧K 1A + Ẋj

t 1Ac would outperform Ẋj
t . To see this, let us compare the payo�s

associated with Ẋj and Ẏ j . We denote by P Ẏ
j

T and P Ẋ
j

T the stock price under the strategies Ẏ j

and Ẋj , respectively. The payo� associated with Ẏ j minus the payo� associated with Ẋj can be

estimated from below as

−
∫ T

0
Ẏ j
t g
(
Ẏ j
t + Ẋ−jt

)
dt+Hj(P Ẏ

j

T )

+
∫ T

0
Ẋj
t g
(
Ẋj
t + Ẋ−jt

)
dt−Hj(P Ẋ

j

T )

≥
∫ T

0
Ẏ j
t

(
g
(
Ẋj
t + Ẋ−jt

)
− g

(
Ẏ j
t + Ẋ−jt

))
dt

+
∫ T

0

(
Ẋj
t − Ẏ

j
t

)
g
(
Ẋj
t + Ẋ−jt

)
dt− λ(Xj

T − Y
j
T ) ‖Hp‖∞ .

Note that Ẋj
t + Ẋ−jt ≥ 0 on A and thus g

(
Ẋj
t + Ẋ−jt

)
≥ 0 due to Assumption 2.3. Furthermore,

g
(
Ẋj
t + Ẋ−jt

)
− g

(
Ẏ j
t + Ẋ−jt

)
≥ ε

(
Ẋj
t − Ẏ

j
t

)
, again by Assumption 2.3. The di�erence in the

payo�s is therefore larger than∫ T

0
Ẏ j
t ε
(
Ẋj
t − Ẏ

j
t

)
dt− λh

∫ T

0

(
Ẋj
t − Ẏ

j
t

)
dt

=
∫
Ẋj
t>Ẏ

j
t

(
εẎ j

t − λh
)(

Ẋj
t − Ẏ

j
t

)
dt
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On the set
{
Ẋj
t > Ẏ j

t

}
we have Ẏ j

t = K = λ
ε (h+ 1) and the above expression is strictly positive,

a contradiction. This shows that Ẋj
t is bounded above by K on the set A for each j ∈ J . Still on

the set A, we get the following lower bound:

Ẋj
t =

N∑
i=1

Ẋi
t +

∑
i 6=j
−Ẋi

t ≥ 0− (N − 1)K. (3.7)

A symmetric argument on the set B ,
{

(t, ω) :
∑N

i=1 Ẋ
i
t(t, ω) ≤ 0

}
completes the proof.

In the one player framework we can use a standard result from the theory of stochastic control

to show that (3.6) admits a unique solution. We say that a function ψ satis�es a polynomial

growth condition if there are constants p, C > 0 such that |ψ(x)| ≤ C(1 + |x|p).

Proposition 3.3. Let N = 1. Let u ∈ C 3 be such that u and u′ satisfy a polynomial growth

condition. Then the HJB-equation (3.2) admits a unique classical solution in C 1,2, which coincides

with the value function V .

Proof. Due to the a priori estimates in Proposition 3.2, it is enough to choose the control Ẋ from

a compact set. Thus, we can apply Theorem IV.4.3 in Fleming and Soner (1993), which yields

that (3.2) admits a unique solution in C 1,2, which is of polynomial growth. It remains to apply

the Veri�cation Theorem IV.3.1 from Fleming and Soner (1993) to see that this solution coincides

with the agent's value function V .

Under suitable smoothness conditions on the cost function the PDE system (3.6) always has

a bounded solution with bounded derivatives for small time steps; see Taylor (1997), Proposition

15.1.1. The challenge is to establish a global solution, i.e., a solution on the whole time interval

[0, T ]. The main di�culty stems from the dependence of the players' optimal trading strategies

on the derivative of the value function with respect to the trading costs. If the derivatives vj
ri
are

constant, then our a priori estimate together with the boundedness assumptions on the payo�s

Hj and the characterization (3.5) of the equilibrium aggregate trading speed guarantees that the

value function are bounded with bounded derivatives and hence that an equilibrium exists. This

argument will be made more precise in the following section.

4 Solution for Risk Neutral and CARA Investors

In this section we establish existence and uniqueness of equilibrium results for risk neutral and

CARA investors. For risk neutral investors and linear cost functions the equilibrium strategies can

be given in closed form; if spread crossing costs are involved a closed form solution is not available

and we report numerical results instead.
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4.1 Risk Neutral Agents

Let us assume that all players are risk neutral, i.e. uj(z) = z. In a �rst step we prove existence of

a unique solution to the system (3.6) for general cost functions g. Subsequently we construct an

explicit solution to (3.6) for the linear cost structure used in Almgren and Chriss (2001).

4.1.1 General Cost Structure

Let g be a general cost function which satis�es Assumption 2.3. In the risk neutral case the value

function of player j turns into

V j(t, p, r) = −rj + sup
Xj∈X

Et

[
−
∫ T

t
Ẋj
sg

(
N∑
i=1

Ẋi
s

)
ds+Hj(PT )|Pt = p

]
.

In particular, V j
ri

= −1i=j and the optimal strategies do not depend on the trading costs. In other

words, the state variable r is redundant and we omit it in this section. We write

V j(t, p) , V j(t, p, 0),

and call this function value function, if there is no danger of confusion. The HJB-equation (3.2)

turns into

0 = vjt +
1
2
σ2vjpp + sup

cj∈R

[
λ
(
cj + Ẋ−j

)
vjp − cjg

(
cj + Ẋ−j

)]
(4.1)

where we have used V j
ri

= −1i=j . The optimal trading speed from (3.5) is given by

cj = Ẋj = − 1

g′
(
Ẋ∗
) [−λvjp + g(Ẋ∗)

]
(4.2)

where the aggregate trading speed Ẋ∗ =
∑N

i=1 Ẋ
j is the unique solution to

0 = λ
N∑
i=1

vip −Ng

(
N∑
i=1

Ẋi
t

)
−

(
N∑
i=1

Ẋi
t

)
g′

(
N∑
i=1

Ẋi
t

)
. (4.3)

This is (3.4) with δj = −1. The system of PDEs (3.6) therefore takes the form

0 = vjt +
1
2
σ2vjpp + λ

(
Ẋ∗ − g(Ẋ∗)

g′(Ẋ∗)

)
vjp +

g(Ẋ∗)2

g′(Ẋ∗)
(4.4)

with terminal condition vj(T, p) = Hj(p) for j ∈ J . Systems of the form (4.4) appear naturally in

the theory of di�erential games, but we did not �nd a reference which covers this particular case.

Theorem 1 of Friedman (1972) for instance is valid only on a bounded state space. However, in

view of our a-priori estimates of Proposition 3.2 the proof follows from a general existence result

for nonlinear systems of PDEs stated in Appendix A. The following theorem shows that a unique

solution exists if Hj ∈ C 2
b , i.e. H

j and its derivatives up to order 2 are bounded for each j.
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Theorem 4.1. Let H ∈ C 2
b . Then the Cauchy problem (4.4) admits a unique classical solution

in C 1,2, which coincides with the vector of value functions.

An alternative way of solving the system (4.4) is the following: If we sum up the N equations,

we get a Cauchy problem for the aggregate value function v ,
∑N

i=1 v
i, namely

0 = vt +
1
2
σ2vpp + Ẋ∗

[
λvp − g

(
Ẋ∗
)]

(4.5)

with terminal condition v(T, p) =
∑N

i=1H
i(p). Existence and uniqueness of a solution to this

one-dimensional problem can be shown using Theorem IV.8.1 in Ladyzenskaja, Solonnikov, and

Ural'ceva (1968). Once the solution is known, we can plug it back into (4.4) and get N decoupled

equations. This technique is applied in the following section where we construct an explicit solution

for linear cost functions.

4.1.2 Linear Cost Structure

For the particular choice g(z) = κz (κ > 0) used in Almgren and Chriss (2001) and Schied and

Schöneborn (2007), the solution to (4.4) can be given explicitly.

Corollary 4.2. Let g(z) = κz. Then the solution of (4.4) can be given in closed form as the

solution to a nonhomogeneous heat equation.

Proof. The optimal trading speed from (4.2) and the aggregate trading speed from (4.3) are

Ẋj =
λ

κ

(
vjp −

1
N + 1

N∑
i=1

vip

)
(4.6)

Ẋ∗ =
N∑
i=1

Ẋi =
λ

κ(N + 1)

N∑
i=1

vip =
λ

κ(N + 1)
vp. (4.7)

Let us sum up the N equations from (4.4). This yields the following PDE for the aggregate value

function v =
∑N

i=1 v
i:

0 = vt +
1
2
σ2vpp +

λ2N

κ(N + 1)2
v2
p (4.8)

with terminal condition v(T, p) =
∑N

i=1H
i(p). This PDE is a variant of Burgers' equation, cf.

Rosencrans (1972). It allows for an explicit solution, which we cite in Lemma 4.3. With this

solution at hand, we can solve for each single investor's value function. We plug the solution v

back into the equations (4.6) and (4.7) for the trading speeds, and those into the PDE (4.4). This

yields

0 = vjt +
1
2
σ2vjpp +

λ2

κ(N + 1)2
v2
p

with terminal condition vj(T, p) = Hj(p). This nonhomogeneous heat equation is solved by

vj(T − t, p) =
∫

R
HjdN (p, σt) +

λ2

κ(N + 1)2

∫ t

0

∫
R
v2
p(s, ·)dN (p, σ(t− s))

where v is given in Lemma 4.3 and N denotes the heat kernel.
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In the preceding proof and in Corollary 4.5 we need the solution to a variant of Burgers'

equation. We cite it in the following Lemma.

Lemma 4.3. Let A > 0, B 6= 0 and G : R→ R be smooth and bounded. The PDE

0 = 2vt +Avpp +Bv2
p

with terminal value

v(T, p) = G(p)

is solved by

v(t, p) =
A

B
log
[∫

R
exp

(
B

A
G
(√

Az
))

dN

(
p√
A
, T − t

)]
.

Proof. By means of a linear transformation we can reduce the problem to A = B = 1. This

particular case is solved in Rosencrans (1972).

4.1.3 Numerical Illustrations

In the risk neutral setting, we were able to reduce the system of PDEs from the multi-player setting

to the one-dimensional PDE (4.8) for the aggregate value function. This can be interpreted as the

value function of the representative agent. Such reduction to a representative agent is not always

possible for more general utility functions. In the sequel we illustrate the optimal trading speed

Ẋ(t, p) and surplus of a representative agent as functions of time and spot prices for a European

call option H(PT ) = (PT −K)+ and digital option H(PT ) = 1{PT≥K}, respectively.
3 By surplus,

we mean the di�erence between the representative agent's optimal expected utility v(t, p) and the

conditional expected payo� Et[H(PT )|Pt = p] in the absence of any market impact. It represents

the expected net bene�t due to price manipulation.

We choose a linear cost function, strike K = 100, maturity T = 1, volatility σ = 1 and liquidity

parameters λ = κ = 0.01. We see from Figure 1 that for the case of a call option both the optimal

trading speed and the surplus increases with the spot; the latter also increases with the time to

maturity. Furthermore, the increase in the trading speed is maximal when the option is at the

money. For digital options the trading speed is highest for at the money options close to maturity

as the trader tries to push the spot above the strike. If the spot is far away from the strike, the

trading speed is very small as it is unlikely that the trader can push the spot above the strike

before expiry.

3Note that the cost function in (4.9) is not smooth, and the Call and Digital options are not smooth and

bounded, so Theorem 4.1 does not apply directly. There are two ways to overcome this di�culty: We could either

approximate g and H by smooth and bounded functions. Or we could interpret v not as a classical, but only as a

viscosity solution of (4.1), cf. Fleming and Soner (1993).
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Figure 1: Trading speed and surplus for one risk neutral investor holding a European Call option.
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Figure 2: Trading speed and surplus for one risk neutral investor holding a Digital option.
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Figure 3: Trading speed and surplus for a risk neutral investor holding a European Call option for di�erent
spread sizes s = 0 (black), 0.001 (blue), 0.002 (red), 0.003 (green), 0.004 (brown). The higher the spread,

the smaller the trading speed and the surplus.
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Figure 4: Trading speed and surplus for a risk neutral investor holding a Digital option for di�erent spread

sizes s = 0 (black), 0.001 (blue), 0.002 (red), 0.003 (green), 0.004 (brown). The higher the spread, the

smaller the trading speed and the surplus.
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Figures 3 and 4 illustrate that a high spread makes manipulation unattractive. It shows the

optimal trading speed and the surplus at time t = 0 for the Call and Digital option in the one

player framework. We used the cost function

g(z) = κz + s · sign(z) for di�erent spreads s ∈ {0, 0.001, 0.002, 0.003, 0.004} (4.9)

with the remaining parameters as above. We see that the higher the spread, the smaller the

trading speed and the surplus. This is intuitive as frequent trading, in particular, when the option

is at the money, incurs high spread crossing costs. The same is true for �xed transaction costs

which also discourage frequent trading.

4.2 Risk Averse Agents

A second class which yields explicit results is those of exponential utility functions uj(z) =
− exp

(
−αjz

)
for j = 1, ..., N , where αj > 0 is the risk aversion coe�cient. In this case the

value functions satisfy

V j(t, p, r) = exp
(
αjrj

)
· V j(t, p, 0)

and thus V j
ri

= αjV j1i=j . We suppress the state variable r and write V j(t, p) , V j(t, p, 0). As

above, we �rst show existence and uniqueness of a solution for a general cost structure. In a second

step, we derive the closed form solution for the linear cost function in the single player framework.

4.2.1 General Cost Structure

The HJB-equation (3.2) turns into

0 = vjt +
1
2
σ2vjpp + sup

cj∈R

[
λ
(
cj + Ẋ−j

)
vjp + cjg

(
cj + Ẋ−j

)
αjvj

]
(4.10)

with terminal condition vj(T, p) = − exp
(
−αjHj(p)

)
. We apply the logarithmic transformation

ṽj , − 1
αj

log(−vj) to turn the HJB equation into

0 = ṽjt +
1
2
σ2ṽjpp −

1
2
σ2αj

(
ṽjp
)2 + sup

cj∈R

[
λ
(
cj + Ẋ−j

)
ṽjp − cjg

(
cj + Ẋ−j

)]
(4.11)

with terminal condition ṽj(T, p) = Hj(p). Note that this equation equals the HJB-equation (4.1)

in the risk neutral setting, up to the quadratic term −1
2σ

2αj
(
ṽjp
)2
. As in (4.2), the optimal

trading speeds are

cj = Ẋj = − 1

g′
(
Ẋ∗
) [−λṽjp + g(Ẋ∗)

]
where the aggregate trading speed Ẋ∗ is the unique solution to

0 = λ

N∑
i=1

ṽip −Ng

(
N∑
i=1

Ẋi
t

)
−

(
N∑
i=1

Ẋi
t

)
g′

(
N∑
i=1

Ẋi
t

)
. (4.12)
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If we plug Ẋ∗ and Ẋj back into (4.11), we get

0 = ṽjt +
1
2
σ2ṽjpp −

1
2
σ2αj

(
ṽjp
)2 + λ

(
Ẋ∗ − g(Ẋ∗)

g′(Ẋ∗)

)
ṽjp +

g(Ẋ∗)2

g′(Ẋ∗)
. (4.13)

We can show existence and uniqueness of a solution.

Theorem 4.4. Let Hj ∈ C 2
b for each j ∈ J . The Cauchy problem (4.11) admits a unique solution,

which coincides with the vector of value functions (up to an exponential transformation).

Proof. See appendix A.

4.2.2 Linear Cost Structure, Single Player

For the one player case with linear cost structure, we have an explicit solution:

Corollary 4.5. Let N = 1 and g(z) = κz. Then the Cauchy problem (4.11) admits a unique

solution, which can be given in closed form.

Proof. The maximizer in (4.11) is

c = Ẋ =
λ

2κ
ṽp

and the Cauchy problem (4.13) turns into

0 = ṽt +
1
2
σ2ṽpp +

(
λ2

4κ
− 1

2
σ2α

)
ṽ2
p

with terminal condition ṽ(T, p) = H(p). This is Burgers' equation. Its explicit solution is given

in Lemma 4.3.

4.2.3 Numerical Illustrations

Let us conclude this section with numerical illustrations. We simulated the system (4.10) for

two players. Figure 5 shows the aggregate optimal trading speed and the surpluses vj(0, p) −
E
[
uj (H(PT )) |P0 = p

]
for time t = 0 and di�erent spot prices p ∈ [95, 105] for the European

Call option H(PT ) = (PT −K)+; we assume that Player 1 (blue) is the option writer and Player

2 (red) the option issuer. We chose the strike K = 100, maturity T = 1, volatility σ = 2 and

liquidity parameters λ = κ = 0.01 and risk aversion parameters α1 = 0.01, α2 = 0.01 (solid),

respectively, α1 = 0.001, α2 = 0.1 (dashed). Since Player 1 has a long position in the option, she

has an incentive to buy the underlying; for the same reason Players 2 has an incentive to sell it

(Panel (b)). Our simulations suggest that the dependence of the equilibrium trading speed on the

agents' risk aversion is weak (Panels (b) and (c)) and that overall the option issuer is slightly more

active than the option writer. Furthermore, we see from Panel (d) that the issuer bene�ts more

from reducing her loss than the writer bene�ts from increasing her gains. This e�ect is due to the

concavity of the utility function and increases with the risk aversion.
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Figure 5: Value function, trading speed, aggregate trading speed and surplus for the writer (blue) and

issuer (red) of a European Call option when both agents are risk averse. The solid (dashed) curves display

the case where issuer is about as (more) risk averse than the option writer.
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5 How to Avoid Manipulation

In the absence of market impact, manipulation does not occur, as we saw in Remark 3.1. In this

section, we use the closed form solutions for risk neutral agents derived in subsection 4.1.2 to

illustrate how an option issuer may prevent4 other market participants from trading against her

by using their impact on the dynamics of the underlying. Some of our observations were already

made in Kumar and Seppi (1992) for Futures in a two period model and in Gallmeyer and Seppi

(2000) for Call options in a three period binomial model. We start with the simplest case of a

zero-sum game.

Corollary 5.1. Let all players be risk neutral with o�setting payo�s
∑N

i=1H
i = 0. Then the

aggregate trading speed is
∑N

i=1 Ẋ
i ≡ 0.

Proof. Consider the PDE (4.5) for the aggregate value function with terminal condition zero and

the characterization (4.3) of the aggregate trading speed. Ẋ∗ =
∑N

i=1 Ẋ
i ≡ 0 and v =

∑N
i=1 v

i ≡ 0
is the unique solution to this coupled system.

In a zero-sum game, if all option traders are risk neutral and willing to move the market in

their favor, their combined e�ect cancels. We note that this is no longer true for general utility

functions, as illustrated in �gure 5 for the CARA case.

In reality, some (or all) of the investors might not want to manipulate, e.g. for legal reasons5.

This is why we now look at the following asymmetric situation: The option issuer, Player 0,

does not trade the underlying; her competitor, Player 1, owns the payo� H1 6= 0 and intends to

move the stock price to her favor. In addition, there are N − 1 informed investors without option

endowment in the market. They are �predators� that may supply liquidity and thus reduce the �rst

player's market impact, cf. Carlin, Lobo, and Viswanathan (2007) and Schied and Schöneborn

(2007). Note that Corollaries 5.3 and 5.2 are only valid for the linear cost function, as the proofs

hinge on the closed form solution obtained in Corollary 4.2. The following result states that the

aggregate trading speed is decreasing in the number of players. The more liquidity suppliers, the

less market manipulation. If the number of players goes to in�nity, manipulation vanishes.

Corollary 5.2. Let g(z) = κz. Let H1 ∈ C 2
b be nondecreasing and H i = 0 for i = 2, ..., N . Then

the aggregate trading speed
∑N

i=1 Ẋ
i
t is decreasing in N and

lim
N→∞

N∑
i=1

Ẋi
t = 0.

Proof. See appendix B.

4Let us emphasize again that our results only apply to the practice of �punching the close�, i.e. manipulating the

stock price in order to increase a given option payo�. There are other types of market manipulation not covered

by our setup, such as market corners, short squeezes, the use of private information or false rumours. We refer the

interested reader to Jarrow (1994) and Kyle and Viswanathan (2008).
5A discussion of legal issues is beyond the scope of this paper, but see the discussion in Kyle and Viswanathan

(2008)
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Figure 6: Aggregate trading speed Ẋ∗ at time t = 0 for N = 1 (black), 10 (blue), 100 (red) players each

holding 1/N shares of a Call (left) and Digital (right) option with strike K = 100. The more agents, the

less aggregate manipulation.

Let us modify the preceding setting a little. Again, Player 0 issues a product H and does not

intend to manipulate the underlying, while her competitors do. More precisely, assume that player

0 splits the product H into pieces and sells them to N risk neutral competitors, such that each of

them gets 1
NH. We �nd that their aggregate trading speed

∑N
i=1 Ẋ

i is decreasing in the number

of competitors N . Consequently, the option issuer should sell her product to as many investors as

possible in order to avoid being outsmarted. We illustrate this result in �gure 6, which shows the

aggregate trading speed at time t = 0 of N players each holding 1/N option shares.

Corollary 5.3. Let g(z) = κz. Let H ∈ C 2
b be nondecreasing and H i = 1

NH for i = 1, ..., N .

Then the aggregate trading speed
∑N

i=1 Ẋ
i
t is decreasing in N and

lim
N→∞

N∑
i=1

Ẋi
t = 0.

Proof. See appendix B.

The preceding results indicate how an option issuer can prevent her competitors from manip-

ulation. One strategy is public announcement of the transaction: the more informed liquidity

suppliers on the market, the smaller the impact on the underlying. A second strategy is split-

ting the product into pieces - the more option writers, the less manipulation. Let us conclude

this section with a surprisingly simple way to avoid manipulation: using options with physical

settlement.

Corollary 5.4. Calls, Puts and Forwards with physical settlement do not induce stock price ma-

nipulation.
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Proof. Consider a risk neutral agent who owns Θ > 0 Call options with physical settlement and

strike K. As above, we denote by X her strategy in the underlying. At maturity, she exercises

0 ≤ θ ≤ Θ of her Call options. The optimization problem is

sup
X∈X,0≤θ≤Θ

E
[∫ T

0
−ẊtP̃tdt+ (XT + θ)

(
PT −

1
2
λ(XT + θ)

)
− θK

]
where the �rst term represents the expected trading costs in [0, T ], the second term describes the

liquidation value of θ + XT stock shares in [T,∞) under in�nitely slow liquidation (cf. Almgren

and Chriss (2001)) and θK is the exercise price of θ Call options. Using (2.1), (2.2) and X0 = 0,
it can be shown that this equals

sup
X∈X,0≤θ≤Θ

E
[∫ T

0
−Ẋtg(Ẋt)dt+ θP0 + θσBT −

1
2
λθ2 − θK

]
.

The cost term
∫ T

0 Ẋtg(Ẋt)dt is nonnegative, so the optimal trading strategy in the stock is clearly

Ẋ = 0. A similar argument holds true for Put options and Forward options with physical settle-

ment.

At �rst glance, Corollary 5.4 might contradict Pirrong (2001, p.1). He states that �replacement

of delivery settlement of futures contracts with cash settlement is frequently proposed to reduce

the frequency of market manipulation�. While his notion of market manipulation refers to market

corners and short squeezes (see also Garbade and Silber (1983)), Corollary 5.4 shows that this

is not always true for manipulation strategies in the sense of �punching the close�. The heuristic

argument is the following: It is not bene�cial to drive up the stock price at maturity if the option

is settled physically and the investor needs to liquidate the stocks she receives at maturity. Any

price increase is outweighed by subsequent liquidation and has no positive e�ect, but it is costly.

This con�rms a claim made in Kumar and Seppi (1992, p.1497), who argue that whether �futures

contracts with a `physical delivery' option [are] also susceptible to liquidity-driven manipulation

[...] depends on whether `o�setting' trades can be used to unwind a futures position with little

price impact�.

6 Conclusion

We investigated the strategic behavior of option holders in illiquid markets. If trading the underly-

ing has a permanent impact on the stock price, the possession of derivatives with cash settlement

may induce market manipulation. We showed the existence and uniqueness of optimal trading

strategies in continuous time and for a general cost function; in the one player framework for

general utility functions, and in the multi-player case for risk neutral as well as CARA investors.

Moreover, we showed how market manipulation can be reduced.

Our work may be extended in several directions. Foremost, we derived our results under

Assumption 2.7. This assumption is only satis�ed in the single-player risk-neutral case where the

expected costs of buying a portfolio over a �nite time interval under market impact equals its
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expected liquidation value under in�nitely slow liquidation and does not hold in general. The

problem of de�ning a proper notion of liquidation value under strategic interaction is important

but was not our focus and is left for future research. Furthermore, it would be interesting to

consider American or path-dependent options, more sophisticated market impact models such

as Obizhaeva and Wang (2005) that account for resilience e�ects and, thirdly, trading strategies

which allow for jumps.

A An Existence Result

In this section, we prove Theorems 4.1 and 4.4 where the PDE (4.4) in the risk neutral setting

is a special case of the system (4.11) for risk averse agents, with αj = 0 for each j. In order to

establish our existence and uniqueness of equilibrium result, we adopt the proof of Proposition

15.1.1 in Taylor (1997) to our framework. After time inversion from t to T − t both systems of

PDEs are of the form

vt = Lv + F (vp) (A.1)

for v ,
(
v1, ..., vN

)
, where L is the Laplace-operator

L =
1
2
σ2 ∂

2

∂p2

and F =
(
F 1, ..., FN

)
is of the form

F j(vp) = −1
2
σ2αj

(
vjp
)2 + λ

(
Ẋ∗ − g(Ẋ∗)

g′(Ẋ∗)

)
vjp +

g(Ẋ∗)2

g′(Ẋ∗)
.

Here Ẋ∗ = Ẋ∗(vp) is given implicitly by (4.3). The initial condition is

v(0, p) = H(p) =
(
H1, ...,HN

)
. (A.2)

We rewrite (A.1) in terms of an integral equation as

v(t) = etL +
∫ t

0
e(t−s)LF (vp(s))ds , Ψv(t). (A.3)

and seek a �xed point of the operator Ψ on the following set of functions:

X = C 1
b (R,RN ) ,

{
v ∈ C 1(R,RN ) | v, vp bounded

}
equipped with the norm

‖v‖X , ‖v‖∞ + ‖vp‖∞ .

We set Y , Cb. Note that X and Y are Banach spaces and the semi-group etL associated with the

Laplace operator is strongly continuous on X, sends Y on X and satis�es∥∥etL∥∥
L (Y,X)

≤ Ct−γ
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for some C > 0, γ < 1 and t ≤ 1. Furthermore, the nonlinearity F is locally Lipschitz and belongs

to C∞. Indeed, if we apply the implicit function theorem to Ẋ∗ given by (4.3), we see that the

map a 7→ Ẋ∗(a) is C∞ with �rst derivative

∂

∂vp
Ẋ∗(vp) =

λ

(N + 1)g′(Ẋ∗(vp)) + Ẋ∗(vp)g′′(Ẋ∗(vp))

where the denominator is positive due to Assumption 2.3. The cost function g is C∞ by assump-

tion. In particular, the assumptions of Proposition 15.1.1 in Taylor (1997) are satis�ed.

Before we proceed, we need the following lemma. It states that the value function6 satis�es∥∥V j
∥∥

X ≤ K for each j ∈ J and some constant K, so it su�ces to construct a solution in the

following set:

XK , {v ∈ X | ‖v‖X ≤ K} .

Lemma A.1. There is a constant K such that
∥∥V j

∥∥
X ≤ K for each j ∈ J .

Proof. We proof the assertion for risk neutral agents, the CARA case follows by the same argu-

ments. Our a priori estimates of Proposition 3.2 yield that Ẋj is bounded for each j ∈ J . By the

de�nition of V j(t, p) = V j(t, p, 0), we get that V j is bounded. Equation (3.5) implies that vjp is

bounded, since vj
ri

= −1i=j and Ẋj as well as Ẋ∗ are bounded.

We are now ready to prove existence and uniqueness of a solution to (A.3). In a nutshell, the

argument is the following: Using Proposition 15.1.1 in Taylor (1997), we construct a solution to

(A.1)-(A.2) for a small time horizon [0, τ ], with τ > 0 speci�ed below. The vector v coincides with

the vector of value functions by Theorem IV.3.1 in Fleming and Soner (1993), so by Lemma A.1

the constructed solution is in XK . We apply his argument recursively to extend the solution to

[0, T ].

Proposition A.2. There is τ > 0 such that for each n ∈ N0, the PDE (A.3) with initial condition

(A.2) admits a unique classical, bounded solution in XK on the time horizon [0, nτ ∧ T ]. This

solution coincides with the value function.

Proof. 1. For n = 0, there is nothing to prove. Pick n ∈ N such that nτ < T . By induction,

we can assume that there is a solution v(n) ∈ XK on the time horizon [0, nτ ]. In particular,

the initial condition for the next recursion step h(n) , v(n)(nτ) is in XK .

2. Fix δ > 0. We construct a short time solution on the following set of functions:

Z(n+1) ,
{
v ∈ C ([nτ, (n+ 1)τ ],X) | v(nτ) = h(n),

∥∥∥v(t)− h(n)
∥∥∥

X
≤ δ ∀t ∈ [nτ, (n+ 1)τ ]

}
.

We �rst show that Ψ : Z(n+1) → Z(n+1) is a contraction, if τ > 0 is chosen small enough.

For this, let τ1 be small enough such that for t ≤ τ1 and any v ∈ XK we have∥∥etLv − v∥∥X ≤
1
2
δ.

6By value function, we mean the function V j(t, p) = V j(t, p, 0), where is state variable r is dropped.
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Here we used that etL is a continuous semigroup and ‖v‖X ≤ K. In particular, for v = h(n):∥∥∥etLh(n) − h(n)
∥∥∥

X
≤ 1

2
δ.

For v ∈ Z(n+1), the derivative vp is uniformly bounded in the sense ‖vp‖∞ ≤
∥∥h(n)

∥∥
X + δ ≤

K + δ. Hence, we only evaluate F on compact sets. By assumption, F is locally Lipschitz.

In particular, F is Lipschitz on compact sets. In other words, there is a constant K1 such

that for any v, w ∈ Z(n+1) we have

‖F (vp)− F (wp)‖Y ≤ K1 ‖v − w‖X

This implies, for w = h(n)

‖F (vp)‖Y ≤
∥∥∥F (h(n)

p )
∥∥∥

Y
+K1

∥∥∥v − h(n)
∥∥∥

X

≤ K +K1δ , K2.

This, together with the boundedness assumption on etL, yields∥∥∥∥∫ t

nτ
e(t−y)LF (vp(y))dy

∥∥∥∥
X
≤ t

∥∥etL∥∥ sup
nτ≤y≤t

‖F (vp(y))‖Y

≤ t1−γCK2.

This quantity is ≤ 1
2δ if t ≤ τ2 ,

(
δ

2CK2

) 1
1−γ

.

Finally, it follows that for v ∈ Z(n+1) we have∥∥∥Ψv − h(n)
∥∥∥

X
≤

∥∥∥etLh(n) − h(n)
∥∥∥

X
+
∥∥∥∥∫ t

nτ
e(t−y)LF (vp(y))dy

∥∥∥∥
X

≤ 1
2
δ +

1
2
δ = δ.

This shows that Ψ maps Z(n+1) into itself.

It remains to show that Ψ is a contraction. Let v, w ∈ Z(n+1). Then

‖Ψv(t)−Ψw(t)‖X =
∥∥∥∥∫ t

nτ
e(t−y)L [F (vp(y))− F (wp(y))] dy

∥∥∥∥
X

≤ t
∥∥etL∥∥ sup

nτ≤y≤t
‖F (vp(y))− F (wp(y))‖Y

≤ t1−γCK2 sup
nτ≤y≤t

‖v(y)− w(y)‖X

The quantity t1−γCK2 is ≤ 1
2 if t ≤ τ3 ,

(
1

2CK2

) 1
1−γ

. This proofs that Ψ is a contraction

in Z(n+1), if τ is small in the sense

0 < τ , min{τ1, τ2, τ3}.

Note that the time step τ does not depend on n. It is the same in every recursion step.
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3. It follows that Ψ has a unique �x point v in Z(n+1). In other words, we constructed a

function v ∈ C ([nτ, (n + 1)τ ],X) = C 0,1[nτ, (n + 1)τ ] which solves the PDE (A.3) with

initial condition v(s) = h(n) = v(n)(nτ) on the time interval [nτ, (n+ 1)τ ].

This solution is actually in C 1,2
(
(nτ, (n+ 1)τ ]× R,RN

)
, due to Proposition 15.1.2 in Taylor

(1997). Furthermore, v is bounded by construction. Indeed, ‖v‖∞ ≤
∥∥h(n)

∥∥
X + δ ≤ K + δ.

We de�ne the new solution as

v(n+1) , v(n)1{0≤t≤nτ} + v1{nτ<t≤(n+1)τ}.

By construction, v(n+1) solves (A.3) on the time horizon [0, (n+ 1)τ ] and is bounded and in

C 1,2. Hence, we can apply the Veri�cation Theorem IV.3.1 from Fleming and Soner (1993),

which yields that v(n+1) coincides with the vector of value functions (up to time reversal,

reintroducing rj and an exponential transformation, if αj > 0). Due to Lemma A.1 we

have v(n+1) ∈ XK . In particular,
∥∥v(n+1)((n+ 1)τ)

∥∥
X ≤ K, which is necessary for the next

recursion step.

This completes the proof.

B Proof of Corollary 5.2 and Corollary 5.3

The argument is the same for both corollaries. Fix N ∈ N. The aggregate trading speed for N

players is given from equation (4.7) as

Ẋ∗ =
N∑
i=1

Ẋi =
λ

κ

1
N + 1

vp,

where the aggregate value function v =
∑N

i=1 vi from (4.8) solves Burgers' equation

0 = vt +
1
2
σ2vpp +

λ2

κ

N

(N + 1)2
v2
p (B.1)

with terminal condition v(T, p) =
∑N

i=1H
i(p) = H1(p) , H(p). On the other hand, the aggregate

trading speed for N + 1 players is

Ẏ ∗ =
N+1∑
i=1

Ẏ i =
λ

κ

1
N + 2

wp,

where the aggregate value function w =
∑N+1

i=1 wi solves

0 = wt +
1
2
σ2wpp +

λ2

κ

N + 1
(N + 2)2

w2
p

with terminal condition w(T, p) = H(p). We have to show that Ẋ∗ ≥ Ẏ ∗. To this end, let us

de�ne w̃ , N+1
(N+2)2

(N+1)2

N w. It is enough to show that vp ≥ w̃p, since then
1

N+1vp ≥
1

N+1 w̃p and,

by de�nition, 1
N+1 w̃p ≥

1
N+2wp. This implies Ẋ∗ ≥ Ẏ ∗.
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To show vp ≥ w̃p, �rst note that w̃ is chosen such that it satis�es the same PDE (B.1) as v,

namely

0 = w̃t +
1
2
σ2w̃pp +

λ2

κ

N

(N + 1)2
w̃2
p (B.2)

with a smaller terminal condition: w̃(T, p) = N+1
(N+2)2

(N+1)2

N H(p) , (1− δ)H(p). The solutions to
(B.1) and (B.2) are given in Lemma 4.3 as

v(t, p) = c1 log
∫

R
exp (c2H(c3z)) dN (c4p, T − t)

and

w̃(t, p) = c1 log
∫

R
exp (c2(1− δ)H(c3z)) dN (c4p, T − t)

with constants c1, c2, c3, c4 ∈ R and δ ∈ (0, 1). To verify vp ≥ w̃p, it is enough to show

∂

∂p
log
∫

exp (G) dN (p, 1) ≥ ∂

∂p
log
∫

exp ((1− δ)G) dN (p, 1)

for an increasing function G ∈ C 2
b . This is equivalent to∫

(z − p)eGdN∫
eGdN

≥
∫

(z − p)e(1−δ)GdN∫
e(1−δ)GdN

or ∫
zeδG

e(1−δ)GdN∫
e(1−δ)GdN

≥
∫
z
e(1−δ)GdN∫
e(1−δ)GdN

∫
eδG

e(1−δ)GdN∫
e(1−δ)GdN

or

covQ

(
id, eδG

)
≥ 0

under the measure Q with dQ , e(1−δ)GdN∫
e(1−δ)GdN

. The covariance of two increasing functions is surely

nonnegative. This �nally proofs the assertion Ẋ∗ ≥ Ẏ ∗.
It remains to show limN→∞

∑N
i=1 Ẋ

i
t = 0. We have

Ẋ∗(t, p) =
N∑
i=1

Ẋi
t =

λ

κ

1
N + 1

vp(t, p)

=
∂

∂p

λ

κ

1
N + 1

σ2κ(N + 1)2

2λ2N
log
∫

exp
(

2λ2N

σ2κ(N + 1)2
H(σz)

)
dN

( p
σ
, T − t

)
=

∂

∂p

λ

κ

1
N + 1

σ2κ(N + 1)2

2λ2N
log
∫

exp
(

2λ2N

σ2κ(N + 1)2
H
(
σz +

p

σ

))
dN (0, T − t)

=
λ

κ

1
N + 1

1
σ

∫
Hp

(
σz + p

σ

)
exp

(
2λ2N

σ2κ(N+1)2
H
(
σz + p

σ

))
dN (0, T − t)∫

exp
(

2λ2N
σ2κ(N+1)2

H
(
σz + p

σ

))
dN (0, T − t)

,
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where we used Lemma 4.3 in the second line. This expression is nonnegative, since Hp ≥ 0.
Furthermore, we have ‖Hp‖∞ <∞ by assumption. It follows that

0 ≤
N∑
i=1

Ẋi
t ≤

λ

κ

1
N + 1

1
σ
‖Hp‖∞

N→∞−→ 0.

This completes the proof.

C The system of HJB PDEs without Assumption 2.7

In this section, we illustrate that the optimization problem under consideration becomes rather

intractable without Assumption 2.7. In this case, problem (2.4) takes the form

sup
Xj∈X

E

[
uj

(
−
∫ T

0
Ẋj
t

(
Pt + g

(
N∑
i=1

Ẋi
t

))
dt+Hj(PT ) + LV j(Xj

T )

)]
,

where the �rst term captures the trading costs (fundamental price plus liquidity costs) in [0, T ],
the second term represents the option payo� and the third term the liquidation value of Xj

T stock

shares at maturity. The dynamics of the state variables are

dPt = σdBt + λ

N∑
i=1

Ẋi
tdt, P0 = p0

dRjt = Ẋj
t

(
Pt + g

(
N∑
i=1

Ẋi
t

))
dt, Rj0 = 0

dXj
t = Ẋj

t dt, Xj
0 = 0.

The associated HJB equation for agent j ∈ J is

0 =vjt +
1
2
σ2vjpp + sup

cj∈R

{
λ(cj + Ẋ−j)vjp + cjvj

xj
+ (C.1)

+
∑
i 6=j

Ẋivj
xi

+ cj
[
p+ g(cj + Ẋ−j)

]
vj
rj

+
∑
i 6=j

Ẋi
[
p+ g(cj + Ẋ−j)

]
vj
ri


with terminal condition vj(T, p, r, x) = uj

(
−rj +Hj(p) + LV j(xj)

)
. As above Ẋ−j =

∑
i 6=j Ẋ

i

denotes the opponents' aggregate trading speed. In this general formulation it is not clear that the

a priori estimates from Proposition 3.2 hold. Moreover, the PDE (C.1) is not uniformly parabolic,

so the proof of Theorems 4.1 and 4.4 given in Appendix A is not valid. In particular, we cannot

apply Proposition 15.1.2 of Taylor (1997).
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