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As an asset is traded, its varying prices trace out an interesting time series. The price, at

least in a general way, reflects some underlying value of the asset. For most basic assets,

realistic models of value must involve many variables relating not only to the individual

asset, but also to the asset class, the industrial sector(s) of the asset, and both the local

economy and the general global economic conditions. Rather than attempting to model the

value, we will confine our interest to modeling the price. The underlying assumption is that

the price at which an asset trades is a ”fair market price” that reflects the actual value of

the asset. Our initial interest is in models of the price of a basic asset, that is, not the price

of a derivative asset. Usually instead of the price itself, we consider the relative change in

price, that is, the rate of return, over some interval of time.

The purpose of asset pricing models is not for prediction of future prices; rather the purpose

is to provide a description of the stochastic behavior of prices. Models of price changes

have a number of uses, including, for investors, optimal construction of portfolios of assets

and, for market regulators, maintaining a fair and orderly market. A major motivation for

developing models of price changes of given assets is to use those models to develop models

of fair value of derivative assets that depend on the given assets.
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As an asset is traded, its varying prices trace out an interesting time series. The price, at

least in a general way, reflects some underlying value of the asset. For most basic assets,

realistic models of value must involve many variables relating not only to the individual

asset, but also to the asset class, the industrial sector(s) of the asset, and both the local

economy and the general global economic conditions. Rather than attempting to model the

value, we will confine our interest to modeling the price. The underlying assumption is that

the price at which an asset trades is a ”fair market price” that reflects the actual value of

the asset.

Our initial interest is in models of the price of a basic asset, that is, not the price of a

derivative asset. Usually instead of the price itself, we consider the relative change in price,

that is, the rate of return, over some interval of time.

The purpose of asset pricing models is not for prediction of future prices; rather the purpose

is to provide a description of the stochastic behavior of prices. Models of price changes

have a number of uses, including, for investors, optimal construction of portfolios of assets

and, for market regulators, maintaining a fair and orderly market. A major motivation for

developing models of price changes of given assets is to use those models to develop models

of fair value of derivative assets that depend on the given assets.

The rate of return has a strong stochastic component, and in this chapter, we describe various

stochastic models of the rate of return. We also briefly discuss statistical inference in these

models, and applications of these models for pricing derivative assets. Our presentation is

quite general. We refer to readily-available literature, some in the present volume, for details

on the analysis and applications of the models.

The models we consider in this chapter are for the prices of a single asset, although, of course,

that asset may be a portfolio of individual assets. Pricing models of more than one asset

must take into account the correlations among their prices. Multivariate pricing models are

discussed by Hafner and Manner (2010, this volume).

In most models of asset prices such as those we discuss in Sections 2 through 4, the basic

observable components are the prices themselves, and the stochastic components of interest

are the changes in asset prices. Such models assume rational and independent traders.
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Models of asset prices depend on principles of general economic theory such as equilibrium

and arbitrage.

Another approach to modeling asset prices is based on modeling the stochastic aspects in

terms of behavior of the traders who collectively determine the asset prices. This agent-based

approach allows incorporation of human behavior in the model and so instead of relying

solely on classical economic theory, the results of behaviorial economics can be included in

the model. In the agent-based approach, which we briefly discuss in Section 6, the actions

of the agents include a random component and their actions determine the prices.

In discussing models, it is always worthwhile to recall the dictum, generally attributed to

George Box, “All models are wrong, but some are useful.” The usefulness of models of

asset prices is not because of the opportunity for financial gain, but rather for determining

fair prices, for better understanding of market dynamics, and possibly for regulatory policy

development.

1 Characteristics of Asset Price Data

Asset prices are directly observable and are readily available from the various markets in

which trading occurs. Instead of the prices themselves, however, we are often more interested

in various derived data and statistical summaries of the derived data. The most common

types of derived data are a first-order measure of change in the asset prices in time, and a

second-order measure of the variation of the changes.

The scaled change in the asset price is called the rate of return, which in its simplest form

is just the price difference between two time points divided by the price at the first time

point, but more often is the difference in the logarithm of the price at the first time point

and that at the second time point. The length of the time period of course must be noted.

Rates of return are often scaled in some simple way to correspond to an annual rate. In the

following, when we refer to “rate of return”, we will generally mean the log-return, that is,

the difference in the logarithms. This derived measure is one of the basic quantities we seek

to model.
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The log-return depends on the length of the time interval, and so we may speak of “weekly”

log-returns, “daily” returns, and so on. As the time interval becomes very short, say of the

order of a few minutes, the behavior of the returns changes in a significant way. We will

briefly comment on that high-frequency property in Section 2.5 below.

One of the most important quantities in financial studies is some measure of the variability

of the log-returns. The standard deviation of the log-return is called the volatility.

A standard deviation is not directly observable, so an important issue in financial modeling

is what derived measures of observable data can be used in place of the standard deviation.

The sample standard deviation of measured log-returns over some number of time intervals,

of course, is an obvious choice. This measure is called statistical volatility or realized volatility.

Before attempting to develop a model of an empirical process, we should examine data from

the process. Any reasonable model must correspond at least to the grossest aspects of the

process. In the case of asset prices, there may be various types of empirical processes. We

will just focus on one particular index of the price of a set of assets, the S&P 500 Index.

We will examine some empirical data for the S&P 500. First we compute the log-rate for the

S&P 500 from January 1, 1990, to December 31, 2005. A histogram for this 15 year period

is shown in Figure 1.

With a first glance at the histogram, one may think that the log-returns have a distribution

similar to a Gaussian. This belief, however, does not receive affirmation by the q-q plot in

Figure 2.

Some may argue, however, that data models based on a normal distribution are often robust,

and can accommodate a wide range of distributions that are more-or-less symmetric and

unimodal.

One who is somewhat familiar with the performance of the U. S. stock market will recognize

that we have been somewhat selective in our choice of time period for examining the log-

return of the S&P 500. Let us now look at the period from January 1, 1987, to September

30, 2009. The belief — or hope — that a normal distribution is an adequate model of the

stochastic component is quickly dispelled by looking at the q-q plot in Figure 3.
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Figure 1: Histogram of Log-Rates of Return 1990 to 2005

Figure 3 indicates that the log-rates of the S&P 500 form a distribution with very heavy

tails. We had only seen a milder indication of this in Figures 1 and 2 of the histogram and

q-q plots for the 1990 to 2005 period.

The previous graphs have shown only the static properties of the log-return over fixed periods.

It is instructive to consider a simple time series plot of the rates of log-returns of the S&P

500 over the same multi-year period, as shown in Figure 4.

Even a cursory glance at the data in Figure 4 indicates the modeling challenges that it

presents. We see the few data points with very large absolute values relative to the other

data. A visual assessment of the range of the values in the time series gives us a rough

measure of the volatility, at least in a relative sense. Figure 4 indicates that the volatility

varies over time and that it seems to be relatively high for some periods and relatively

low for other periods. The extremely large values of the log-returns seem to occur in close

time-proximity to each other.

Of course there are many more ways that we could look at the data in order to develop ideas
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for modeling it, but rather than doing that, in the next two sections we will just summarize

some of the general characteristics that have been observed. Many of these properties make

the data challenging to analyze.

1.1 Stylized Properties of Rates of Return

We have only used a single index of one class of asset prices for illustrations, but the general

properties tend to hold to a greater or lesser degree for a wide range of asset classes. From

Figures 1 through 4, we can easily observe the following characteristics.

• Heavy tails. The frequency distribution of rates of return decrease more slowly than

exp(−x2).

• Asymmetry in rates of return. Rates of return are slightly negatively skewed. (Pos-

sibly because traders react more strongly to negative information than to positive

information.)
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Figure 2: Normal q-q Plot of Log-Rates of Return 1990 to 2005
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Figure 3: Normal q-q Plot of Log-Rates of Return 1987 to 2009

• Nonconstant volatility. (This is called “stochastic volatility”.)

• Clustering of volatility. (It is serially correlated.)

These characteristics are apparent in our graphical illustrations, but the detection of other

properties requires computations of various statistics. There are some characteristics that

we could observe by using two other kinds of similar plots. In one approach, we compare

rates of return at different frequencies, and in the other, we study lagged data. Lagged data

is just an additional form of derived measure, much like rate of return itself is a derived

measure, and like rate of return it may also depend on the frequency; that is, the length of

the lag. We will not display plots illustrating these properties, but merely list them.

• Asymmetry in lagged correlations.

• Aggregational normality.

• Long range dependence.
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Figure 4: Rates of Return

• Seasonality.

• Dependence of stochastic properties on frequency. Coarse volatility predicts fine volatil-

ity better than the other way around.

These stylized properties have been observed through analysis of financial data of various

classes over many years. Some of the most interesting of these properties depend on how

the volatility changes. We will now note some more properties of the volatility itself.

1.2 Volatility

A standard deviation is defined in terms of a probability model, so defining volatility as the

standard deviation of the log-return implies a probability model for the log-return. It is this

probability model that is central to more general models of asset prices.

Our preliminary graphical analyses showed that there is a problem with a simple interpreta-
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tion of volatility; it is not constant in time. In some cases, it is clear that news events, that

is, shocks to financial markets, cause an increase in volatility. In fact, it appears that both

“positive” news and “negative” news lead to higher levels of volatility, but negative news

tends to increase future volatility more than positive news does. It also appears that there

are two distinct components to the effect of news on volatility, one with a rapid decay and

one with a slow decay.

Another aspect of volatility, as we mentioned above, it that it is not directly observable, as

is the price of an asset or even the change in price of an asset.

The point of this discussion is that the concept of volatility, despite its simple definition, is

neither easy to model nor to measure.

Volatility, however, is one of the most important characteristics of financial data, and any

useful model of changes in asset prices must include a component representing volatility.

Increased volatility, however it is measured, has the practical effect of increasing the risk

premium on financial assets.

2 The Basic Models

Asset prices and their rates of change are stochastic processes. We will represent the general

form of the stochastic process modeling the asset prices as {Xt : t ∈ I}, for some (well-

ordered) index set I. We assume a general probability space (Ω,F , P ). The specific form of

the stochastic process is determined by the nature of I and (Ω,F , P ), and by the stochastic

relations between Xt and Xs for t, s ∈ I and s < t; that is, relations between Xt and the

sequence {Xs : s ∈ I, s < t}.

In this section we consider various forms of models of asset prices and of changes in asset

prices. We begin with an abstract description. The purpose of this approach is to emphasize

that the models used in conventional financial analyses are just particular choices that are

made to simplify the analysis.

As we discuss pricing models from simple to more complex, we should bear in mind the
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empirical properties discussed in Section 1.1 of the processes we are attempting to model.

We will consider various formulations of models to capture various properties, but in the end

we see that the models do not fully capture all of those stylized properties.

Systematic Factors and Random Perturbations

Many mathematical models of interesting processes take the form of a systematic compo-

nent that involves various measurable factors, plus a random component that represents

unobservable or non-quantifiable factors and/or truly “random” factors:

Y = f(ys) + E. (1)

(Here we are using different notation so as to focus on the abstract model.) The function

f may take on a variety of forms. In preliminary models, it it almost always linear. As

a model is refined, it may assume more complicated forms. The input ys may represent

directly observable variables or it may represent derived variables such as rates. As models

are built or evolve, in addition to changes in the function form of f , the factors included in

the input ys may change. In preliminary models, ys may include a large number of factors

that are of potential interest, and as part of the model-building process, some of these factors

are removed from the model. Alternatively, in preliminary models, ys may include only one

or two factors that are believed to be important, and as part of the model-building process,

other factors are added the model.

In many models, the random component E is the most important term in the model. A

mathematical model may be very precise in the description of E, for example, the model

may state that E ∼ N(0, σ2), or the model may be looser, stating only, for example, that

the expectation of E is 0, and that in set of E’s, they are exchangeable.

Before we can build models of stochastic processes in time {Xt : t ∈ I}, we must address

the nature of the index set I.
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Indexing Time

There are essentially two types of index sets. A “discrete time” index set is countable, and,

hence, can be taken as the set of integers. A “continuous time” index can be taken as an

interval in the reals. These two ways of treating time lead to two general classes of models.

For discrete time, the models evolve from moving average and autoregressive models. The

continuous time models are diffusion processes, possibly in combination with a Poisson pro-

cess. Although discrete time and continuous time may appear to yield completely different

kinds of models, there are various limiting equivalent forms.

For either discrete or continuous time, there are various possibilities for choice of the prob-

ability space. A standard approach, of course, is to use a normal distribution, at least as a

first approximation, as a model for the stochastic component. The important consideration

is the nature of the conditional distribution of Xt given {Xs : s ∈ I, s < t}.

In this chapter we will review the types of models that have been used for changes in asset

prices over time. We first describe these briefly, and then indicate some of the ways in

which the models are inadequate. Several other papers in this Handbook are concerned with

various modifications of these models.

2.1 Discrete Time Series Models

Discrete time series models describe the behavior of a stochastic process in terms of a func-

tional relationship of the general form

Xt = f(Xt−1, . . . , Xt−p, εt, εt−1, . . . , εt−q). (2)

In models of this form, the εi are generally assumed to be random variables, and so if

their effects are additive, this is of the same form as model (1). More specific assumptions

about their distribution allow various methods of statistical inference to be used in making

refinements to the model. In most models of this form, the function f is linear. We will briefly

describe various forms of the model (2). These models are the subject of the well-established

field of time series analysis in the time domain. We begin with a few definitions.
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A white noise process {εt} is one in which for each t, εt ∼ N(0, 1), that is, it has a Gaussian

or normal distribution with mean 0 and variance 1, and for s 6= t, Cov(εs, εt) = 0; that is, εs

and εt are independent (because of normality).

The most useful forms of the function f in equation (2) are linear. A particularly simple

form yields a linear process. We say {Xt} is a linear process if it has the form

Xt = µ+
∞∑

i=−∞

aiεt−i, (3)

where
∑∞

i=−∞ ai <∞ and {εt} is a white noise process.

One of the most important properties of a stochastic process is stationarity, which refers

to a distributional measure remaining constant in time. The mean of the linear process is

stationary: E(Xt) = µ. The linear process is also covariance stationary since

Cov(Xt, Xt+h) =
∞∑

i=−∞

∞∑
j=−∞

aiajI{(i,j)|i+j=h}(i, j) =
∞∑

i=−∞

aiai−h

and V(εt) = 1. Note that covariance stationary means that the covariance between Xs and

Xt depends only on |t− s|.

In general, we say that a process is weakly stationary (or just stationary) if it is mean and

covariance stationary.

If the linear model involves only the εi, that is,

Xt = β1εt−1 + · · ·+ βqεt−q + εt, (4)

it is called a moving average model with q terms. We refer to this model as MA(q). Assuming

{εt} is a white noise process, the MA(q) model is a linear process, and the normality of the

stochastic components allows use of relatively simple statistical analyses. For example, we

can use maximum likelihood methods, which require specification of probability density

functions, and these are particularly straightforward when the stochastic components are

normal.

If the linear model involves only the Xt−j and εt, that is,

Xt = α0 + α1Xt−1 + · · ·+ αpXt−p + εt, (5)
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it is called an autoregressive model with p terms. We refer to this model as AR(p). Again,

specific assumptions about the distributions of

. . . , εt−2, εt−1, εt, εt+1, εt+2, . . .

allow various methods for statistical inference about their distribution and about the pa-

rameters αj.

Combining the MA(q) model of equation (4) with the AR(p) model of equation (5), we have

the autoregressive moving average model of order p and q, that is, ARMA(p, q),

Xt = α0 + α1Xt−1 + · · ·+ αpXt−p + β1εt−1 + · · ·+ βqεt−q + εt. (6)

Assumptions about the relative values of the βj and αk imply certain interesting properties

of the time series.

The usefulness of ARMA models can be greatly extended by applying it to differences of the

time series. If the X’s in equation (6) are replaced by dth-order differences, the “integrated”

model in the same form as equation (6) is called an ARIMA(p, d, q) model. The differences

allow the model to accommodate seasonal effects.

The simple AR, MA, ARMA, and ARIMA models we have just described can be applied to

a time series of prices or to a series of returns. The nature of the series and the assumptions

about the stochastic component determine the kind of analyses. For example, given the price

process {Xy}, an AR(1) model of returns Yt = (Xt − Xt−1)/Xt−1 from equation (5) would

have the form of a pure noise,

Yt = δt. (7)

The random variable δt does not have the same distribution as that of εt. In fact, if {εt} is a

white noise, then δt is a Cauchy process, which has infinite moments of all orders. Clearly,

the specific assumptions about the distributions of {εt} determine the methods for statistical

inference about their distribution and about the parameters in the model.

2.2 Continuous Time Diffusion Models

Differential equations are effective models of continuous change of quantities over time.

Such models are widely used for expressing diffusion of a substance or of energy over a

13



physical space. At a macro level the laws governing diffusion are deterministic. Furthermore,

substances and energy can be treated as ensembles over a physical space, and so the diffusion

model represents an average density. Thus, such a model contains no stochastic component.

Empirical evidence clearly indicates that a deterministic differential equation could not ef-

fectively model price movements of an asset such as a stock.

The first step must be to introduce a stochastic component into the differential equation,

and the simplest way to to this is for the differential to be from a Brownian motion. This is

what Bachelier proposed in 1900 (see, for example, Steele, 2001). In Bachelier’s stochastic

differential equation, the Brownian motion represented the change in price. This model is

dXt = µXtdt+ σXtdWt, (8)

where Wt is a Brownian motion. Clearly, dWt could represent some other type of stochastic

differential, although the existence of a stochastic differential with appropriate properties

would need to be established. (Wiener established this for Brownian motion. See, again for

example, Steele, 2001.)

Samuelson (1965) modified the model (8) to one he called geometric Brownian motion:

dXt

Xt

= µdt+ σdWt. (9)

This is a model for the rate of change of asset prices. Note that this is similar to form-

ing equation (7) from (5), and then changing the assumptions about the distribution of

the random component so that the random variable in the derived equation has a simple

distribution.

The geometric Brownian motion model (9) has been widely used in financial analysis. In the

context of a riskless portfolio of an asset and an option on the asset, the geometric Brownian

motion model leads to the Black-Scholes-Merton differential equation for the fair price P of

an option:
∂Pt
∂t

+ rXt
∂Pt
∂Xt

+
1

2
σ2X2

t

∂2Pt
∂X2

t

= rP, (10)

where r is a risk-free interest rate.
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Detemple and Rindisbacher (2010, this volume) provide a more extensive discussion of dif-

fusion models. We will briefly consider some modifications of the basic diffusion models in

Section 4.

2.3 Accounting for Jumps

Looking at the data in Figure 4, we notice a few extremely large returns, both positive

and negative. These outliers are called “jumps”. Figure 2 and 3 indicate that the presence

of these outliers is inconsistent with the assumption that the underlying random variables

in either model (6) or model (9) have Gaussian distributions. (In model (6) the random

variable is ε, and in model (9) it is dWt.)

In standard statistical analyses, there are two simple ways of accounting for outliers. One

way is to use an “outlier-generating distribution” or “jump process”, that is, a heavy-tailed

distribution, such as stable distribution other than the Gaussian. Figueroa-López (2010,

this volume) describes the use of Lévy processes in diffusion models. Other discussions of

models with non-Gaussian random components are in Jondeau, Poon, and Rockinger (2007)

and Rachev, Menn, and Fabozzi (2005).

Another method of accounting for jumps is to use a mixture of distributions. Even mixtures

of Gaussian distributions result in outlier-generating distributions. Instead of using simple

mixtures of Gaussians, however, a more common approach is to use a mixture of a continuous

distribution, such as a Gaussian, and a discrete Poisson process, possibly associated with

an effect with a random magnitude. Bjursell and Gentle (2010, this volume) and Cont and

Tankov (2004) describe the use of mixtures that include Poisson processes. We will briefly

consider jump-diffusion models in Section 4.2.

Either of these modifications to the models results in more difficult data analyses.
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2.4 Accounting for Stochastic Volatility

The ARMA model of equation (6) incorporates the volatility of the stochastic process in

the standard deviation of the random variables ε, and the diffusion model of equation (9)

incorporates the volatility in the standard deviation of the random variables σdWt. An

assumption of either model is that this standard deviation is constant; hence, a serious

deficiency of either of the two basic models (6) and (9) is that the model does not account

for the stochastic volatility that is apparent in Figure 4.

To be realistic, either type of model must be modified to allow for the volatility to be

nonconstant. Further, as we note from Figure 4, the modification must include a serial

correlation of the volatility.

2.5 Market MicroStructure

Pricing data represent the value exchanged in a specific trade. The price at which a specific

transaction occurs should be exactly the same as the price (within the minimum unit of

money) of the same transaction at the same time. It turns out, for a variety of reasons, that

this is not the case. Tick data, that is, data on each transaction (also called “high-frequency

data”) exhibit characteristics that are different from price data collected less frequently, say

at the close of each trading day.

Some stylized properties of tick data include intraday periodicity; nonsynchronicity, that is, a

sequence of prices over a short time interval do not form an equally-spaced time series; price

clustering; and negative lag-1 autocorrelations. These properties constitute what is called

“market microstructure”. See Lai and Xing (2008) for more discussion of microstructure.

Bjursell and Gentle (2010, this volume) discuss the use of microstructure noise to test for

jumps superimposed on a diffusion model.
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3 GARCH-Type Models

The AR, MA, ARMA, and ARIMA models described in Section 2.1 assume a constant

variance. There are various ways of modifying the model to make the variance change over

time.

For a model of the form (7), we first introduce a scale on the random component:

Yt = σtδt. (11)

Then, following the empirical observation that the standard deviation of a process is propor-

tional to the magnitude (that is, the coefficient of variation is relatively constant), we may

assume a model for the variance of the form

σ2
t = α0 + α1Y

2
t−1. (12)

The variance is conditional on the value of Y 2
t−1, and so this kind of model is called an ARCH

(autoregressive conditionally heteroscedastic) model; specifically the model of equations (11)

and (12) is called an ARCH(1) model (recall that it originated as an AR(1) model).

The ARCH models can be generalized further by modeling the variance as an AR process;

that is, equation (12) may become, for example,

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1. (13)

Such models are called GARCH (generalized autoregressive conditionally heteroscedastic)

models; specifically, the model of equations (11) and (13) is a GARCH(1,1) model, because

both components are lag 1 processes.

Notice that the simple ARCH(1) model of equations (11) and (12) could be reformulated

by squaring both sides of equation (11), then subtracting equation (12) and then rearrange

terms to obtain

Y 2
t = α0 + α1Y

2
t−1 + γt, (14)

in which, if δt is a N(0, 1) random variable, then γt is a scaled and shifted chi-squared random

variable with one degree of freedom.
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The purpose of this re-expression is only to show that the ARCH(1) model is related to

an AR(1) model with a change of distribution of the random component. The ARCH and

GARCH models, while they do incorporate stochastic volatility, if the underlying distribution

of the stochastic component is normal, the models will not display the heavy-tailed and

asymmetric returns that are observed empirically.

Many variations of GARCH models have been studied; see, for example, Christoffersen,

Jacobs, and Ornthanalai (2010, this volume) and Gouriéroux (1997). Most of these variations

are still based on an underlying normal distribution, however.

3.1 GARCH with Jumps

As we mentioned previously, jumps can be modeled either through an outlier-generating

distribution or by superimposition of a jump process. The most common way of incorporating

jumps in a discrete time series model is by use of a heavy-tailed distribution, such as stable

distribution other than the Gaussian. This, of course, presents problems in the statistical

analysis of data using such models.

3.2 Inference on the Parameters

Statistical inference on autoregressive moving average models is usually based on the like-

lihood. Given a distribution for the random components in any such model, it is usually

rather simple to formulate the associated likelihood. The likelihood rarely can be maximized

analytically, but there are efficient numerical methods. These methods are usually two-stage

optimizations, and are similar to methods originally used in the ARIMA models of Box and

Jenkins. Gouriéroux (1997) describes maximum likelihood methods for various GARCH

models.

Just fitting the parameters, of course, is only one part of the problem of statistical inference.

Various assumptions about the distributions of the stochastic components require different

methods for statistical inference such as tests and confidence regions. Even if the underlying

distribution is not assumed to be normal, most inference methods end up using approximate
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normal distributions.

4 Diffusion Models

The basic geometric Brownian motion diffusion model (9),

dXt

Xt

= µdt+ σdWt,

misses most of the salient empirical properties of Section 1.1.

Brownian motion is a rather complex process, and given our understanding of it — and our

lack of understanding of a similar process not based on Gaussianity — we would seek to build

modifications onto the Brownian motion, rather than to replace the Gaussian distribution

with some other distribution that is either heavy-tailed or asymmetric. (Recall our elliptical

reference above to the existence of Brownian motion.)

There are several possible modifications of the Brownian motion. We will formulate two

modifications below that address stochastic volatility and jumps. Before doing so, however,

we mention a simple modification that allows for long range dependencies in a model of

the form (9). In this modification, instead of the Brownian motion Wt, we use a fractional

Brownian motion, WH
t , where 0 < H < 1 is the Hurst index. (An index of 0.5 is ordinary

Brownian motion.) The essential characteristic of a fractional Brownian motion,

Cov(WH
t ,W

H
s ) =

1

2

(
|t|2H + |s|2H − |s− t|2H

)
,

allows for the modified model (9) to exhibit long range dependencies, which, as we remarked

without elaboration in Section 1.1, is an empirical property of rates of return. Fractional

Brownian motion is in spirit related to the reformulation of the ARCH(1) model of equa-

tions (11) and (12) as the AR(1) model (14).

4.1 Coupled Diffusion Models

The modification of an AR model that yields a GARCH model is merely to apply to a

function of the volatility the same basic time series model that is used for returns. This
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way of handling stochastic volatility in the case of diffusion models would result in coupled

diffusion models in which a secondary diffusion model is applied to a function of the volatility:

dXt

Xt

= µdt+ σtd(W1)t (15)

dσ2
t = α(µσ2

t
− σ2

t )dt+ β(σ2
t )
γd(W2)t, (16)

where α, µσ2
t
, β, and γ are constants and (W1)t and (W2)t are Brownian motions.

Equations (15) and (16) are sometimes called the Hull and White model (although that term

is usually used for a different model used for interest rate derivatives). For the special case

of γ = 0.5, it is also called the Heston model.

There are many variations on models of this form. Notice that this model does not tie

the magnitude of the volatility to the magnitude of the return, as the simple ARCH model

did. This could be remedied by an incorporation of X into Equation (16). An important

consideration is the relationship between the two Brownian motions (W1)t and (W2)t. The

simplest assumption is that they are independent. An alternative, but still very simple

assumption, is that (W2)t is a linear combination of (W1)t and an independent Brownian

motion.

While the coupled diffusion model do incorporate stochastic volatility, just as with the

ARCH and GARCH models, because the underlying distribution of the stochastic component

is normal, the models will not display the heavy-tailed and asymmetric returns that are

observed empirically.

4.2 Diffusion with Jumps

A modification of any of the models that we have discussed above that can display both

heavy-tailed and asymmetric returns is to superimpose a Poisson process onto the model.

Starting with the simple geometric Brownian motion diffusion model (9), we write

dXt

Xt

= µdt+ σdWt + κtdqt, (17)

where Wt is the standard Wiener process; qt is a counting process with intensity λt, that is,

P (dqt= 1) = λtdt; and κt is the size of the price jump at time t if a jump occurred. If Xt−
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denotes the price immediately prior to the jump at time t, then κt = Xt −Xt−.

4.3 Inference on the Parameters

If restrictive assumptions are made about the constancy of parameters and independence of

the events in the process, there are fairly simple statistical estimators for most of the param-

eters in the single-equation models. Parameters in coupled equations can often be estimated

using two-stage likelihood methods. The parameters in a model such as equation (17) are

difficult to estimate because we do not know which of the two processes is operating. One

approach to the fitting the parameters in a model with a superimposed process is to set an ar-

bitrary threshold for the return, and to assume the Poisson process generates any realization

greater than that threshold.

For models with time-varying parameters, analysis generally depends on the use of Monte

Carlo methods.

5 How Simple Can a Realistic Model Be?

At this point, we must ask how simple can a pricing model be and still capture all of the

empirical properties that we have observed. Clearly, the basic models of Section 2 fail

drastically.

The first modification to the simple ARMA or geometric Brownian motion model is usually

to address the stochastic volatility. An approach in either case is to couple the basic process

with a similar process for the volatility. So long as the underlying stochastic components

are Gaussian, two-stage maximum likelihood methods can be used in the analysis.

The issue of heavy tails and asymmetric distributions could perhaps be addressed by re-

placing the Gaussian processes with some asymmetric heavy-tailed process, perhaps a stable

process. The loss of the simplicity of the normal distribution, however, is a very steep price

to pay. An alternative approach is to superimpose a Poisson jump process, as in model (17).

Such a model has a stochastic volatility (due to the firing of the Poisson process), but it
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is not the slowly-varying volatility that we observe. Hence, the jump process needs to be

superimposed on a model that already accounts for stochastic volatility, such as a GARCH

model or a coupled diffusion model.

It is clear that the amount of a jump, κt, is not constant. A simple modification would be to

take κt as an independent random variable. Its distribution would seem to be heavy-tailed

and to have a negative mean. Empirically (see Figure 4) a negative (positive) jump tends

to be followed immediately by a positive (negative) jump, This may suggest that jumps

be modeled as paired events instead of trying to accommodate these positive and negative

values in the distribution of κt.

A further glance at Figure 4 indicates two additional considerations (assuming a somewhat

arbitrary visual identification of jumps): jumps do not follow a time-homogeneous Poisson

process, and jumps and (ordinary) volatility are not independent. This means that λt (the

Poisson intensity) must be stochastic and it must depend on qs, for s < t. Also, σt must

depend on qs, for s < t. Furthermore, σt and λt must be correlated.

Rather than suggesting a comprehensive and realistic model, in this section, we have just

discussed some of the relevant considerations. We seek a realistic model that accounts for the

peculiar properties of the rate-of-return process, but we must realistically limit the degrees

of freedom in the model.

6 Agent-Based Models

The pricing models discussed in Sections 2 through 5 are developed from a macro perspective

on the prices themselves. This perspective excludes aspects of the market that results from

irrational human behavior, where “irrational” is defined subjectively and usually means that

the market participants are attempting to optimize a simple objective function. In a rational

approach to modeling market behavior, what individual traders are doing has no affect on

the decision of a trader to buy or sell; that is the market does not have “momentum”.

There is an instantaneous adjustment of prices to some “fair market value”. No matter how

attractive a rational approach to financial modeling is, its attractive simplicity cannot make
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it so. Market participants do not act independently of each other. Traders do not have share

the same processed data. Traders do not identify the same objective function. Traders do

not all share a similar model of the market. The proportion of traders who behave in a

certain way, that is, who do share a similar model varies in time.

The ultimate dependence of prices on the beliefs and actions of individual traders suggests

another approach to financial modeling. This approach begins with models of behavior of the

market participants. In this kind of approach to scientific modeling, called “agent-based”,

the actions of a set of individual “agents” are governed by control parameters that can

depend on the actions of other agents.

We will not pursue this approach here. LeBaron (2006) provides a survey of the micro

perspective modeling incorporated in an agent-based approach.

7 Applications of Pricing Models

We must emphasize again that the role of pricing models is not to predict prices. Pricing

models provide a description of stochastic behavior, and for that reason they have impor-

tant applications in a number of areas, such as in the regulation of financial markets, in

management of risk, and in pricing of derivative assets.

Options pricing is probably the highest profile application of asset pricing models. This

application soared to prominence in the early 1970’s when Black and Scholes used the dif-

ferential equation (10) derived from the geometric Brownian motion model (9) to develop

exact formulas for fair prices of European puts and calls.

As we have pointed out, the simple geometric Brownian motion model does not correspond

very well with empirical data. Although prices yielded by the Black-Scholes options pricing

formulas were useful for traders, they quickly noticed that the prices set by the market

differed from the Black-Scholes prices in systematic ways. If the market price is inserted as

the price in a Black-Scholes formula, any other single variable in the formula can be solved

for. The time to expiry, the current market price of the asset, and the strike price are all

directly observable, so the only variable in the model that might be considered questionable
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is the volatility. An interesting fact emerged; if the formula is applied to options on the

same underlying asset and at the same time to expiry but at different strike prices, the value

of the volatility that satisfies the formula is not constant, but rather a convex function of

the strike price. This was called the “volatility smile”. Likewise, if the same strike price

but different times to expiry are entered into the formula, the volatility exhibits systematic

curvature. Fengler (2010, this volume) provides more details on this kind of result from the

Black-Scholes formula.

Although we have taken the definition of “volatility” simply to be “standard deviation of

rates of returns”, we have already indicated in Section 1.2 the difficulties in assigning a

value to volatility. The value of volatility implied by the inverted use of the Black-Scholes

formula with observed prices of derivatives therefore has intrinsic interest. Volatility defined

by inversion of a pricing formula is called “implied volatility”, and so volatility defined as

originally in terms of a standard deviation is now often called “statistical volatility”. The

inverted use of pricing models together with observed prices of derivatives to define a type

of asset price volatility is probably more common now than use of the pricing models for

their earlier purpose of determining fair prices for derivatives.

There are now markets in implied volatility of various market indexes, and this kind of market

provides another tool for hedging investment risks. The most widely traded such implied

volatility index is the VIX, which follows the implied volatility of the S&P 500. Traded

implied volatility indexes use rather complicated asset pricing models; none currently use

the simple Black-Scholes formula.

The simpler models such as ARMA/ARIMA or geometric Brownian motion can often be

analyzed by well-established statistical methods. The most impressive result of such an

analysis is probably the Black-Scholes formulas. For more realistic models, the analysis is

often by Monte-Carlo methods. In the case of stochastic models, the Monte Carlo methods

are often coupled with numerical solutions to the stochastic differential equations; see, for

example, Sauer (2010, this volume).

Realistic asset pricing models generally present analysis problems that can feasibly be ad-

dressed only by Monte Carlo methods. See Yu (2010, this volume) or Glasserman (2004) for

more detailed discussion of Monte Carlo methods in the application of asset pricing models.
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Figueroa-López, José E. (2010), Jump-diffusion models driven by Lévy processes, Handbook
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