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Abstract Theoretical studies suggest that unexpected changes in 
future mortality and survival probabilities (stochastic mortality) are 
important determinants of individuals’ decisions about consumption, 
saving, asset allocation, and retirement timing. Using data on 
subjective survival expectations elicited in the Survey of Health, 
Ageing and Retirement in Europe (SHARE) and corresponding life 
table data from the Human Mortality Database (HMD), we find 
evidence of respondents’ awareness of stochastic mortality. We also 
find that respondents’ saving behavior is influenced by stochastic 
mortality perceptions. 
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For the past several decades, the industrialized world has experienced rapid improvements in 

life expectancy and mortality rates. However, annual rates of decline in mortality exhibit 

considerable variation, as illustrated in Figure 1 for males and females aged 65 and 85. The 

erratic path of mortality rates reflects the underlying complex interaction of external drivers, 

such as medical innovation, whose overall impact is clearly non-deterministic. The resulting 

unexpected changes in mortality are commonly referred to as stochastic mortality or 

aggregate mortality risk. 

 

-- Figure 1 here -- 

 

Theoretical studies suggest that uncertainty regarding future mortality rates is an important 

determinant of individual consumption and saving decisions (Levhari and Mirman, 1977; 

Davies, 1981; Cocco and Gomes, 2009; De Nardi, French, and Jones, 2009), individual asset 

allocation decisions regarding annuities and longevity bonds (Albis and Thibault, 2008; 

Menoncin, 2008; Cocco and Gomes, 2009; Post, 2009; Stevens, 2009; Horneff, Maurer, 

Rogalla, 2010; Schulze and Post, 2010), and retirement timing decisions (Cocco and Gomes, 

2009), as well as for equilibrium annuity prices (Van de Ven and Weale, 2008). In these 

models, individuals integrate into their decision process not only a prognosis on (mean) 

mortality rates and survival probabilities,1 but also a prognosis on possible fluctuations in 

these rates. The presence of stochastic mortality is shown, for example, to increase 

individuals’ savings for self-insurance against longevity shocks (Cocco and Gomes, 2009), to 

induce the use of longevity bonds as hedging instruments (Menoncin, 2008; Cocco and 

Gomes, 2009), and to increase investment in deferred annuities (Post, 2009; Stevens, 2009; 

Horneff, Maurer, Rogalla, 2010). 

 

In this paper, we investigate whether individuals are aware of stochastic mortality and, if so, 

whether this awareness affects their actual savings behavior. To this end, we analyze survey 

data on subjective survival expectations elicited in the Survey of Health, Ageing and 

Retirement in Europe (SHARE) and corresponding life table data from the Human Mortality 

Database (HMD) (University of California and Max Planck Institute, 2009). 

 

SHARE contains subjective point forecasts of individuals’ survival probabilities. Such 

estimates have been shown to be informative with respect to the mean of objective survival 

                                                 
1 This is the case in the standard life-cycle model incorporating uncertainty regarding the lifespan (Yaari, 1965). 
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probabilities. Similar to their objective counterparts, subjective survival estimates exhibit 

differentials according to, for example, age, gender, health, and socio-economic status 

(Hamermesh, 1985; Hurd and McGarry, 1995; Mirowsky and Ross, 2000; Khwaja, Sloan, and 

Chung, 2007; Popham and Mitchell, 2007; Delavande and Rohwedder, 2008). Subjective 

estimates are found to match the shape of survival functions of actual life tables, although 

they exhibit some underestimation at younger ages and some overestimation at older ages 

(Hamermesh, 1985; Elder, 2007; Hurd, Rohwedder, and Winter, 2009).2 Furthermore, 

subjective estimates have predictive power for individuals’ actual survival (Hurd, McFadden, 

and Gan, 1998; Hurd and McGarry, 2002; Siegel, Bradley, and Kasl, 2003; Winter, 2008), for 

the development of aggregate mortality rates (Hamermesh, 1985; Perozek, 2008), and for 

economic decisions regarding consumption, savings, bequests, and claiming retirement 

benefits (Coile et al., 2002; Gan et al., 2004; Hurd, Smith, and Zissimopoulos, 2004; Bloom et 

al., 2007; Delavande and Willis, 2008). In addition, in an experimental setting, it was shown 

that the processes underlying the formation of subjective expectations (including lifespan 

predictions) are indeed based on individuals’ knowledge (Lewandowsky, Griffiths, and 

Kalish, 2009). 

 

To study individuals’ awareness of stochastic mortality, we test whether subjective survival 

probabilities elicited in SHARE are also informative with respect to the uncertainty 

surrounding the development of objective mortality rates. For this, we relate the dispersion in 

individuals’ point forecasts to the uncertainty observed in objective mortality data. A similar 

approach is found in a large number of empirical studies that use dispersion of point forecasts 

as a proxy for uncertainty regarding economic variables, including, for example, 

macroeconomic variables such as inflation (Cukierman and Wachtel, 1979; Levi and Makin, 

1979, 1980; Mullineaux, 1980; Makin; 1982; Brenner and Landskroner, 1983; Bomberger, 

1996; Hayford, 2000), unemployment (Hayford, 2000), economic activity and growth  (Hahm 

and Steigerwald, 1999; Vuchelen, 2004; Bloom, Floetotto, and Jaimovich, 2009; Bachmann, 

Elstner, and Sims, 2010), financial variables such as firm earnings and stock returns (Ajinkya 

and Gift, 1985; Imhoff and Lobo, 1992; Gebhardt, Lee, and Swaminathan, 2001; Zhang, 

2006a, 2006b) and real estate performance (McAllister, Newell, and Matysiak, 2008), and the 

demand for consumer goods (Fisher and Raman, 1996; Gaur et al., 2007; Fuss and 

                                                 
2 The evidence for specific causes of death is mixed: some studies find that individuals misperceive the risks 
related to specific causes of death (e.g., Lichtenstein et al., 1978; Morgan et al., 1983; Viscusi, 1990; Hakes and 
Viscusi, 2004; Armantier, 2006; Andersson and Lundborg, 2007; Bhattacharya, Goldman, and Sood, 2009); 
however, other studies report opposite results (Benjamin and Dougan, 1997; Viscusi, Hakes, and Carlin, 1997; 
Benjamin, Dougan, and Buschena, 2001). 
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Vermeulen, 2008). Methodologically, dispersion in point forecasts may reflect both perceived 

uncertainty underlying the forecast variable and disagreement among forecasters (who may 

feel certain about their estimate) (e.g., Zarnowitz and Lambros, 1987; Barron et al., 1998; 

Giordani and Söderlind, 2003; Engelberg, Manski, and Williams, 2009; Barron, Stanford, and 

Yu, 2009; Lahiri and Sheng, 2010). However, empirical studies that explicitly account for 

such distinction mostly find that forecast dispersion and uncertainty regarding the forecast 

variable are positively related (Zarnowitz and Lambros, 1987; Rich, Raymond, and Butler, 

1992; Bomberger, 1996; Rich and Tracy, 2006; Barron, Stanford, and Yu, 2009; Lahiri and 

Sheng, 2010). Experimental studies further support these findings by documenting a positive 

relationship between past volatility of a target variable and the dispersion of corresponding 

forecasts (Harvey, 1995; Harvey, Ewart, and West 1997; Du and Budescu, 2007). 

 

These results provide the foundation for our main research hypothesis: 

 

Hypothesis 1: If individuals are aware of stochastic mortality, then the dispersion of 

subjective forecasts should be wider when uncertainty regarding the underlying mortality 

rates is high.3 

 

We test this hypothesis by checking whether the mortality dispersion found in life table data 

from the Human Mortality Database corresponds to forecast dispersion observed in responses 

elicited in SHARE.4 In a further step, we use data on SHARE respondents’ wealth 

accumulation to study behavioral implications of stochastic mortality awareness in relation to 

forecaster uncertainty and forecaster disagreement. 

 

Our results show that the dispersion of subjective estimates of survival probabilities is 

positively linked to the dispersion of objective survival rates, indicating an awareness of 

stochastic mortality among SHARE respondents. Our related analysis of respondents’ saving 

behavior provides additional evidence that respondents are aware of and also act on stochastic 

mortality; however, disagreement effects are also found.  

                                                 
3 In the sense of Kahneman and Tversky (1982), our hypothesis thus postulates a positive link between external 
and internal uncertainty with respect to survival probabilities. 
4 Ideally, we would like to have a data set that includes direct responses regarding subjective mortality 
uncertainty and contains information from a sample of individuals who exhibit considerable heterogeneity with 
respect to objective mortality uncertainty. We are not aware of data having the first property, but SHARE meets 
the second property very well. It covers a large number of countries with heterogeneous objective mortality 
uncertainty and provides key control variables. Survey design and sampling methods are harmonized across all 
countries, guaranteeing reliable cross-country comparisons. 
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Our real-world findings complement theoretical studies of individual decision making under 

stochastic mortality. They are highly relevant for the design of pension systems that 

emphasize individually managed retirement savings and asset allocation. The success of such 

systems crucially depends on individuals making informed decisions based, at least in part, on 

their awareness of stochastic mortality. 

 

The remainder of this article is structured as follows. In Section 1, the data are described. 

Calculation of dispersion measures for SHARE and HMD data and explorative analyses are 

contained in Section 2. Awareness of stochastic morality is then formally analyzed in Section 

3, followed by an analysis of estimation errors in Section 4. In Section 5, we link awareness 

of stochastic mortality to saving behavior. Section 6 summarizes and discusses our findings. 

 

1. Data, Sample Selection, and Generated Variables 

1.1. Subjective Survival Expectations—SHARE 

The Survey of Health, Ageing and Retirement in Europe (SHARE) is a rich micro-level data 

set covering European countries and Israel. We use Wave 2 of SHARE, which includes data 

collected between 2006 and 2007 for Austria, Belgium, Czechia, Denmark, France, Germany, 

Greece, Ireland, Italy, the Netherlands, Poland, Spain, Sweden, and Switzerland. We omit 

Greece and Ireland from our analysis because the Human Mortality Database does not contain 

data for Greece and SHARE is missing wealth and income variables for Ireland (as of July 

2010). Our sample is comprised of 30,038 individual cases. 

 

To elicit survival expectations, individuals in SHARE are asked the following question: 

“What are the chances that you will live to be age T or more?” The target age T is chosen 

conditional on the respondent’s current age, x, as given in Table 1 (Hurd, Rohwedder, and 

Winter, 2009) and the response range is between 0 and 100. Due to this survey design, 

individuals are asked for age-specific survival probabilities referring to different forecast 

horizons (T – x). 

 

-- Table 1 here -- 

 

We rescale the responses so that they range from 0 to 1 and treat them as probabilities (see, 

e.g., Hurd and McGarry, 2002). After removing those respondents who did not answer the 
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survival expectations question as well as those cases where the target age variable given in the 

data set did not comply with Table 1, we have 26,497 valid cases for analysis. 

 

An overview of demographic and economic characteristics of the selected respondents is 

given in Table 2; variables are defined in Table 3. 

 

-- Table 2 here -- 

 

-- Table 3 here -- 
 
 

1.2. Objective Mortality Data—HMD 

The Human Mortality Database provides harmonized mortality data for 37 countries. For the 

countries in our sample, we use the most recent gender- and age-specific time series for one-

year probabilities of death, qx,t, with t denoting the observation year, starting from 1950 if 

available (1956 for Germany; 1958 for Poland). To match subjective expectations and 

objective data, we construct for all time-horizon-age-gender-country combinations found in 

the SHARE data corresponding time series of multi-period mortality rates, qx,t,T-x, using the 

HMD data (for simplicity’s sake, country and gender indices are suppressed). Furthermore, 

we adapt to the forward-looking nature of SHARE responses by calculating forecasts for  

qx,t,T-x (and for multi-period rates of survival px,t,T-x) conditional on the survey year. To this 

end, we assume the following stochastic process for evolution of multi-period mortality rates 

over time: qx,t,T-x = qx,t-1,T-x · rx,t,T-x, where rx,t,T-x follows a lognormal distribution with mean 

μx,T-x and standard deviation σx,T-x. We estimate the parameters μx,T-x and σx,T-x from the HMD 

data. This stochastic model reflects both trends and the uncertainty around trends in mortality 

progress (and thus survival probabilities) over time. 

 

2. Calculation of Dispersion Measures 

Mortality and survival rates vary with socio-demographic factors such as age, gender, and 

income and it is thus intuitive to expect dispersion in subjective survival expectations of 

respondents who are heterogeneous with respect to these factors. Since we are interested in 

response dispersion caused by uncertainty as to the mortality rate, we subdivide the sample 

into groups of individuals who can be expected to have homogenous mortality rates. To do so, 

we use all available information in the HMD database: age, gender, country, and, in addition, 
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marital status (“couple”).5 Other factors known to have an impact on mortality rates (e.g., 

income) and, possibly, on dispersion for which the HMD data cannot account are included as 

control variables in regression analyses. 

 

For every age-gender-country-couple group, we calculate a measure of the dispersion of 

responses by first calculating the standard deviation of responses for each group. To enable 

meaningful comparisons, especially between different age groups, we then normalize these 

standard deviations by the corresponding group-specific mean. That is, we choose the 

coefficient of variation (CV) as the measure of dispersion. We adopt the same approach for 

objective survival probability forecasts, where the CV for the prognosis of px,t,T-x is calculated 

based on the stochastic mortality model introduced in the previous subsection. 

 

Table 4 provides summary statistics for the data on the group level, including the dispersion 

measures. We restrict our analysis to groups containing at least two individuals, resulting in 

different countries having different numbers of groups. 

 

-- Table 4 here -- 

 

Figure 2 is a preliminary look at the relationship between the uncertainty underlying objective 

survival probability and dispersion of subjective estimates. 

 

-- Figure 2 here -- 

 

Figure 2 suggests a positive relationship between the two dispersion measures: a greater 

dispersion in subjective estimates of survival tends to coincide with greater dispersion in 

objective mortality data. A separate analysis by couple and gender (see Figure 3) shows that 

this tendency can also be found within these subgroups. 

 

-- Figure 3 here -- 

 

                                                 
5 Key economic variables (e.g., net worth), used later in the econometric analysis are reported as household-level 
aggregates. Respondents living in a partnership appear wealthier, since both partners’ entries for these variables 
refer to the combined amount. 
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Figure 4 shows the age-specific group averages of the two dispersion measures. Age-specific 

coefficients of variation in objective mortality rates are plotted in Panel A; those for the 

dispersion of subjective responses in Panel B. 

 

-- Figure 4 here -- 

 

Figure 4 reveals that both dispersion measures are related to age. Elder (2007) argues that age 

is likely to have a detrimental effect on the cognitive abilities needed to estimate mortality 

rates. To understand more precisely to what extent the positive relationship shown in Figures 

2 and 3 is due to the stochastic mortality perception link hypothesized in this paper, we next 

run regressions that control for age and other factors. 

 

3. Regression Analyses of Subjective Dispersion 

Using the grouped data described above, we now employ regressions to measure the impact of 

the actual uncertainty regarding future survival rates on the dispersion of individuals’ 

subjective estimates of these rates. In this analysis, we control for key demographic 

characteristics and other factors potentially affecting dispersion in subjective survival 

estimates. In particular, we estimate the following equation with OLS: 

SUB_DISPj = α + βOBJ_DISPj + δTzj + εj , (3.1)

where SUB_DISPj depicts the measure of dispersion of subjective survival probabilities in 

group j (age-horizon-gender-country groups), OBJ_DISPj depicts the objective uncertainty 

about the future survival rate for group j (estimated from time-series models for qx,t,T-x), and 

zj is a vector of group-specific control variables. In addition to the variables used for 

grouping, we chose net worth, income, education, self-perceived health, and grip strength as 

additional socio-demographic control variables based on empirical findings on mortality 

differentials (e.g., Smith, Taylor, and Sloan, 2001; Hurd and McGarry, 2002; Brown, 2003; 

Elder, 2007; Sullivan and von Wachter, 2009; Andersen-Ranberg et al., 2010). We also 

include numeracy score as a control variable to account for possible differences in cognitive 

ability. For these variables we use their group-specific dispersion as a control variable.6 We 

thus control for the possibility that heterogeneity in these factors could cause additional 

                                                 
6 Depending on whether it is relative differences (scale variables such as net worth) or absolute differences that 
are more informative (ordinal variables such as numeracy score), we use either the coefficient of variation (CV) 
or the standard deviation (Std) as a dispersion measure. 
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dispersion of subjective survival probability estimates within a group. Since variables in 

Equation (3.1) are generated, we use bootstrap standard errors (Efron and Tibshirani, 1993). 

Results for three models that differ by the number of control variables they include, are given 

in Table 5. 

 

-- Table 5 here -- 

 

Results for all models show that dispersion in objective survival probabilities is positively and 

strongly significantly related to dispersion in subjective survival estimates of SHARE 

respondents. The dispersion in subjective survival estimates increases significantly with age, 

possibly reflecting a decrease in cognitive ability as mentioned by Elder (2007) in his analysis 

of survival expectation levels. The dispersion also increases with the length of the forecast 

horizon (even though we are using a normalized dispersion measure), which indicates that it is 

more difficult to forecast events in the more distant future (Lahiri and Sheng, 2010). 

Respondents who are one-half of a couple have a lower dispersion in subjective survival 

estimates, but no significant effect is found for gender. Nor do differences in group size have 

any impact on dispersion. Adding socio-economic and cognitive control variables that 

account for mortality dispersion unrelated to stochastic mortality in Models (2) and (3) 

improves model fit as measured by the R2, while the coefficient for the dispersion in objective 

survival probabilities remains positive and strongly significant. 

 

In conclusion, results of the regression analysis in which we control for key variables related 

to the dispersion in objective mortality probabilities (e.g., age, gender, wealth, income) and 

cognitive abilities (e.g., age, numeracy) confirm the findings of the univariate analysis: our 

data exhibit a significant and positive relationship between the dispersion in objective survival 

probabilities and subjective estimates. This finding supports Hypothesis 1 as it is an indication 

that the SHARE respondents are aware of stochastic mortality. 

 

4. Analysis of Estimation Error Level 

In this section, we analyze the level of the estimation error, that is, we study the difference 

between subjective and objective estimates of survival probability for each respondent. 

Previous literature establishes a relationship between survival probability estimation error and 

various individual characteristics, one of the most important of which is age: younger people 
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tend to underestimate actual survival rates, older people tend to overestimate them (e.g., 

Hamermesh, 1985; Elder, 2007; Hurd, Rohwedder, and Winter, 2009). Related to this 

phenomenon are findings from the financial analyst dispersion literature showing that greater 

objective uncertainty is associated with larger levels of estimation errors (see, e.g., Zhang, 

2006a). We thus now investigate whether dispersion of objective rates plays a role with 

respect to survival probability estimation error levels. 

 

We use two alternative measures of the respondent’s estimation error (see Table 3). Both 

measures are defined in relative terms; again, this is done to enable comparison of each 

group’s estimates on a similar scale. The first and more intuitive measure defines the 

estimation error as the difference between the subjective and the objective estimate of survival 

probability, divided by the objective probability. This measure distinguishes between positive 

and negative deviations of subjective estimates from the objective probabilities. On average, 

within groups, positive and negative values can cancel out, and thus the second measure 

defines the estimation error as the absolute (positive) value of the difference between the 

subjective and objective estimates of the survival probability, divided by the objective 

probability. As expected, the second measure tends to be larger on average (see Table 4). 

 

Results obtained using the first measure confirm findings in the literature: higher age leads to 

more optimism about survival prospects (see Figure 5). 

 

-- Figure 5 here -- 

 

Figure 6 shows that the level of estimation error (especially in absolute terms, i.e., using the 

second definition) increases when the dispersion of objective mortality rates increases. 

 

-- Figure 6 here -- 

 

To disentangle the effects dispersion in objective mortality rates, age, and other control 

variables have on the level of estimation error, we estimate the following regression model: 

 

EST_ERR_LEVELj = α + βOBJ_DISPj + δTzj + εj. (4.1)
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Model (4.1) uses the same set of control variables as Model (3.1), but we now also include 

age2 to account for the non-linear age effect on the estimation error observed in Figure 5.7 

Another difference from the previous regressions is that in Model (4.1) we include the control 

variables in their levels (instead in their dispersion), because we are interested in measuring 

an effect on a survival-rate-level variable as well. 

 

Regression results for both error level measures yield significant and positive coefficients for 

the dispersion of objective survival rates. However, the estimation results are highly sensitive 

to outliers (compare Figure 6, Panels A and B), and standard diagnostic tests clearly reject the 

normality assumption for the regression residuals. Taking the logarithm of the estimation 

error (which is possible only for the second measure, which is always positive), however, 

yields a much more stable model and reveals a more linear relationship (compare Figure 6, 

Panel C). Regression results for the logarithm of the estimation error level are provided in 

Table 6. 

 

-- Table 6 here -- 

 

With respect to age (age and age2), we find a u-shaped impact on the absolute estimation error 

level, confirming (from age 49 onward) the positive age effect found in the literature. 

Moreover, we observe that a longer forecast horizon makes it more difficult for individuals to 

estimate their survival probability, as reflected by increased errors in the level. With respect to 

the dispersion in subjective forecasts, there is a significant positive effect of the objective 

dispersion on the estimation error, which accords with the effects found in the financial 

analyst literature. 

 

5. Stochastic Mortality and Individuals’ Saving Behavior 

The results discussed in Section 3 evidence a positive relationship between the dispersion in 

objective survival data and the dispersion in individuals’ subjective survival expectations. 

Building on findings from the literature on forecast dispersion, we argue that this is evidence 

that individuals are aware of stochastic mortality. This argument is based by empirical studies 

on financial analyst forecasts that identify a positive relationship between forecast dispersion 

and uncertainty regarding the forecast variable (Zarnowitz and Lambros, 1987; Rich, 

                                                 
7 Adding an age2 term to Equation (3.1) yields no significant results. 
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Raymond, and Butler, 1992; Bomberger, 1996; Rich and Tracy, 2006; Barron, Stanford, and 

Yu, 2009; Lahiri and Sheng, 2010). However, we do not ignore the argument made by 

Zarnowitz and Lambros (1987) and Engelberg, Manski, and Williams (2009) that any 

dispersion in forecasts can be caused by both forecaster uncertainty (driven by the underlying 

uncertainty of the forecast variable) and disagreement among forecasters (who may feel 

certain about their prediction). To identify the drivers of survival probability dispersion, we 

use data on SHARE respondents’ saving behavior and follow a systematic testing procedure 

(described below). This analysis thus relates to the question of whether respondents are not 

only aware of but also act on the existence of stochastic mortality, that is, whether they adjust 

their savings behavior. 

 

Previous literature shows that both a longer expected lifespan (Bloom et al., 2007) and higher 

perceived background risk (e.g., Carroll, 1997; Courbage and Rey, 2007; Cocco and Gomes, 

2009; Menegatti, 2009) should increase savings. Our analysis of dispersion in subjective 

survival estimates utilizes these findings to discriminate between forecast uncertainty and 

disagreement. We structure our analysis according to three mutually exclusive research 

hypotheses. 

 

Hypothesis 2: Uncertainty in objective survival probability causes uncertainty of individuals 

regarding their individual survival rate expectation, but does not cause disagreement between 

individuals. 

 

Hypothesis 3: Uncertainty in objective survival probability causes disagreement between 

individuals, but each individual is certain about his or her survival rate expectation. 

 

Hypothesis 4: Uncertainty in objective survival probability causes both forecast uncertainty 

and disagreement between individuals with respect to subjective expectations. 

 

We test these hypotheses by analyzing individuals’ saving behavior, as each of the hypotheses 

is expected to have a different effect on savings behavior. Under Hypothesis 2, individuals 

will accumulate more (buffer stock or precautionary) savings the higher the perceived 

uncertainty (as indicated by forecast dispersion). However, we should not expect savings 

differentials between individuals, that is, savings dispersion should not be related to forecast 

dispersion. Under Hypothesis 3, individuals are not aware of stochastic mortality, so higher 
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dispersion should not lead to higher average savings—unless there is a general bias in the 

level of survival prospect estimation related to uncertainty, for which we control. But, since 

individuals have different opinions with respect to survival prospects, we expect a positive 

relationship between forecast dispersion and savings dispersion. Under Hypothesis 4, we 

expect both level and dispersion effects of forecast dispersion on individual savings. Figure 7 

summarizes the conceptual framework underlying Hypotheses 2–4. 

 

-- Figure 7 here -- 

 

To test Hypotheses 2–4, we estimate two simultaneous equation models (SEM), the first of 

model incorporating the savings level, the second one the savings dispersion. The SEM for 

the savings level contains the following three equations: 

 

SUB_DISPj = α1 + β1OBJ_DISPj + δ1Tz1j + ε1j , 

EST_ERR_LEVELj = α2 + β2OBJ_DISPj + δ2Tz2j + ε2j , 

SAVE_LEVELj = α3 + γ1SUB_DISPj + γ2EST_ERR_LEVELj + δ3Tz3j + ε3j , 

(5.1)

(5.2)

(5.3)

Equation (5.1) reestablishes the link analyzed in Section 3 (Equation (3.1)) between objective 

and subjective survival expectation dispersion. Similarly, Equation (5.2) incorporates the 

findings of Section 4, where, by means of Equation (4.1), we identified a positive link 

between objective dispersion and the survival probability estimation error level. This equation 

for the level of estimation error is necessary in our model because in Equation (5.3) we want 

to control for the possibility that even under pure disagreement (Hypothesis 3), objective 

dispersion may lead to some estimation bias with respect to the survival probability level. 

These estimation errors could very well have an impact on saving levels if individuals are 

using an either too long or too short future lifetime as the basis for their saving plans. Thus, 

without this control, it would be impossible to discriminate between Hypotheses 2 and 3. 

Finally, in Equation (5.3), the overall impact of subjective dispersion and estimation error 

levels on the savings level is modeled. Again, the vector z contains group-specific control 

variables. 

 

We use two alternative indicators to measure savings: the total net worth of a respondent and 

the respondent’s financial assets (see Table 3). Net worth is a very broad measure of wealth 

accumulation and includes items such as real estate or cars that are in part also consumption 

goods. Financial assets are less comprehensive but avoid the latter issue. 
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The savings level simultaneous equation model is estimated via three-stage least squares 

(3SLS); the estimation results can be found in Table 7. 

 

-- Table 7 here -- 

 

Results for the model’s key equation (Equation (5.3)) show a significant positive link between 

dispersion in survival probability estimates and the amount of financial assets. No such link is 

found for the broader savings measure net worth. 

 

In a next step, we specify a simultaneous equation model for savings dispersion: 

 

SUB_DISPj = α1 + β1OBJ_DISPj + δ1Tz1j + ε1j , 

SAVE_DISPj = α2 + γSUB_DISPj + δ2Tz2j + ε2j , 

(5.4)

(5.5)

Again, we incorporate the relation between objective dispersion and subjective dispersion first 

described in Equation (3.1), now labeled equation (5.4). The overall impact of the dispersion 

of subjective estimates on savings dispersion is modeled in Equation (5.5) using the 

coefficient of variation for net worth or financial assets as the dependent variable. In contrast 

to the savings level SEM, there is no need for including an equation for the estimation error. 

Here, such an equation would refer to the estimation error dispersion, thus in principle 

resembling Equation (5.4).8 Results of the 3SLS estimation of the savings dispersion SEM are 

given in Table 8. 

 

-- Table 8 here -- 

 

Results of the savings dispersion SEM are similar with respect to the two savings indicators: 

that is, there is a positive and significant link between dispersion of subjective survival 

estimates and financial assets, and no significant effect for net worth. 

 

These results lead to two possible conclusions regarding Hypotheses 2–4. First, if net worth is 

the appropriate indicator for savings, all three hypotheses are rejected. This finding would 

imply that while the subjective survival probability estimation of SHARE respondents is 

indeed distorted by objective mortality dispersion, respondents do not act on this at all. If, on 

                                                 
8 The level of the estimation error is a deterministic additive transformation of the subjective survival probability 
estimate. This transformation does not contribute additional dispersion. 
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the other hand, financial assets are the appropriate indicator for savings, Hypotheses 2 and 3 

are rejected and we can conclude that the impact of stochastic mortality on respondents is 

twofold: both uncertainty and disagreement play a role in the formation of (subjective 

survival) expectations. Given that net worth encompasses consumption goods, and that the 

goodness of fit of the net worth SEMs (see AIC and BIC) is inferior, we lean toward the 

second interpretation (Hypothesis 4) of our regression results: SHARE respondents are aware 

of stochastic mortality, stochastic mortality causes forecaster uncertainty as well as 

disagreement, and respondents adjust their savings behavior in response to the perceived risk 

of stochastic mortality.9 

 

6. Summary and Conclusions 

Annual rates of decline in mortality exhibit considerable variation, which is well described by 

the term stochastic mortality. Theoretical studies indicate that stochastic mortality is an 

important determinant for individual decisions on consumption, saving, asset allocation, and 

retirement timing, as well as for equilibrium annuity prices. Our analysis of subjective 

survival expectations elicited in the SHARE survey and objective mortality data from the 

Human Mortality Database reveals that SHARE respondents are aware of stochastic 

mortality. This awareness is reflected in the dispersion of respondents’ subjective estimates, 

which co-varies systematically with dispersion in actual population mortality rate changes. 

Awareness, in turn, translates into savings behavior, resulting in higher savings when 

uncertainty is higher. 

 

These findings have particular relevance for the design of pension systems that emphasize 

individually managed retirement savings and asset allocations. In such systems, it is essential 

that individuals make informed decisions based on sound expectations about asset returns, 

returns to human capital, and mortality fluctuations. Although we find that individuals adjust 

savings in response to stochastic mortality we cannot judge at this moment, whether the 

response is sufficient or whether it is biased by behavioral factors documented in the savings 

literature and whether the adjustment of savings is the best possible response at all. Based on 

the theoretical findings of Cocco and Gomes (2009) this question could provide a fruitful are 

for future research, as responding only partially correctly to stochastic mortality was shown to 

                                                 
9 We also tested for the behavioral impact of stochastic mortality on private annuity purchases. SHARE 
respondents show the “normal” annuitization behavior, i.e., voluntary annuitization is rather. Only 18.8% of the 
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imply considerable individual welfare costs in the domain of investments into (hypothetical) 

longevity bonds. 
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Table 1 Assignment of individual target age T in SHARE 
 

Current age of 
respondent, x Target age, T 

≤65 75 
66–69 80 
70–74 85 
75–79 90 
80–84 95 
85–94 100 
95–99 105 

100–104 110 
105+ 120 
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Table 2 Summary statistics for sample selected from SHARE Wave 2 data 

 

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Demographics

Age, x 66.04 65.00 63.85 62.00 62.86 61.00 63.06 61.00 63.50 62.00 64.09 63.00 64.72 64.00 63.06 61.00 63.11 61.00 65.21 64.00 65.07 63.00 63.98 63.00
Gender 0.59 1.00 0.54 1.00 0.58 1.00 0.55 1.00 0.57 1.00 0.54 1.00 0.54 1.00 0.55 1.00 0.56 1.00 0.54 1.00 0.53 1.00 0.55 1.00
Couple 0.63 1.00 0.75 1.00 0.71 1.00 0.76 1.00 0.72 1.00 0.81 1.00 0.83 1.00 0.80 1.00 0.77 1.00 0.80 1.00 0.77 1.00 0.72 1.00
Education 2.92 3.00 2.80 3.00 2.50 2.00 3.40 3.00 2.58 3.00 3.41 3.00 1.92 1.00 2.83 2.00 2.28 3.00 1.64 1.00 2.78 3.00 2.93 3.00

Health and Cognition
Self-Perceived Health 3.02 3.00 2.95 3.00 3.33 3.00 2.54 2.00 3.12 3.00 3.18 3.00 3.26 3.00 2.93 3.00 3.85 4.00 3.40 3.00 2.75 3.00 2.56 3.00
Grip Strength 35.20 33.00 35.68 34.00 36.21 34.00 34.91 33.00 34.25 32.00 37.19 35.00 33.15 31.00 36.20 35.00 33.56 32.00 30.61 29.00 36.79 35.00 35.74 34.00
Numeracy 3.73 4.00 3.41 3.00 3.56 4.00 3.66 4.00 3.32 3.00 3.75 4.00 2.99 3.00 3.75 4.00 2.98 3.00 2.62 3.00 3.71 4.00 3.87 4.00

Economic Indicators PPP adj. €
Income 38,143 22,762 42,744 22,689 20,385 13,033 32,647 28,237 60,880 28,772 33,365 25,020 37,127 19,093 41,293 29,175 37,758 9,304 79,345 15,422 32,818 27,811 40,149 30,766
Pension Income 8,807 7,017 5,953 0 3,701 5,015 3,362 0 6,379 205 6,627 0 3,881 0 6,323 0 2,987 2,071 4,161 0 4,810 0 7,000 0
Financial Wealth 34,288 10,507 99,183 37,055 12,256 5,286 120,028 53,296 66,967 20,461 54,269 24,062 23,069 5,795 83,430 29,455 14,708 0 35,619 6,094 90,796 42,797 145,616 60,836
Net Worth 195,232 145,029 344,129 253,566 196,963 84,854 505,219 193,343 392,823 261,324 233,296 148,659 296,063 197,387 417,854 201,692 76,585 42,319 337,753 226,544 744,723 153,740 475,794 217,036

Survival Expectation
Forecast Horizon 14.79 14.00 16.22 15.00 16.38 15.00 16.50 15.00 16.41 15.00 15.58 14.00 15.42 14.00 16.16 15.00 16.40 15.00 15.69 14.00 15.26 14.00 16.11 14.00
Subj. Survival Probabiliy 0.59 0.60 0.58 0.60 0.43 0.50 0.69 0.80 0.62 0.60 0.60 0.60 0.67 0.70 0.66 0.70 0.48 0.50 0.61 0.60 0.62 0.70 0.66 0.70

N = 2,401 N = 2,723
Italy PolandDenmark

Country

N = 1,290
Austria

N = 2,923
Belgium Czechia

N = 2,415 N = 2,224
Switzerland
N = 1,379N = 2,211

France Germany Sweden
N = 2,415

Netherlands Spain
N = 1,757N = 2,437 N = 2,322

 
 

Note: Summary statistics were calculated based on the unweighted data.
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Table 3 Definition of variables 
 

Variable Definition 
Age Age of respondent 
Gender Gender: 0 = male, 1 = female 
Couple  Marital status: 0 = married or partnership, 1 = otherwise 
Education  International Standard Classification of Education (ISCED 97) (0 = 

no education … 6 = Ph.D.) 
Self-Perceived Health Self-perceived health (“US version”) (1 = excellent … 5 = poor) 
Grip Strength Maximum grip strength measurement of hands 
Numeracy Numeracy score (mathematical performance) (1 = bad … 5 = good) 
Income Total, purchasing power adjusted, Euro, net income of household, 

including income from employment, self-employment, pensions, 
invalidity or unemployment benefits, alimony or other private 
regular payments, long-term care insurance, housing allowances, 
child benefits, poverty relief, real estate (incl. imputed rents), land 
or forestry, and capital income 

Pension Income Total, purchasing power adjusted, Euro, old-age pension income of 
household, including old-age pensions from government, 
occupational schemes, and private annuities 

Pension Share Pension income divided by income 
Financial Wealth Total, purchasing power adjusted, Euro, financial wealth of 

household including bank accounts, government and corporate 
bonds, stocks, mutual funds, individual retirement accounts, 
contractual savings for housing, and life insurance policies 

Net Worth Total, purchasing power adjusted, Euro, net worth of household, 
including real assets (real estate, share owned of businesses, cars), 
financial assets (bank accounts, government and corporate bonds, 
stocks, mutual funds, individual retirement accounts, contractual 
savings for housing, and life insurance policies) minus the value of 
mortgages and financial liabilities 

Forecast Horizon Forecast horizon for estimate of subjective survival probability = T 
(as defined in Table 1) minus age  

Subjective Survival 
Probability 

Response to the question: “What are the chances that you will live 
to be age T or more?” divided by 100 

Relative Estimation 
Error 

Subjective survival probability minus objective estimate of the 
survival probability divided by the objective probability 

Relative Absolute 
Estimation Error 

ABS(Subjective survival probability minus objective estimate of the 
survival probability) divided by the objective probability 

Group Size Number of respondents in an age-gender-country-couple group 
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Table 4 Summary statistics for SHARE Wave 2 and HMD grouped data 

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Group Size 9.00 8.00 17.37 12.00 13.87 10.00 14.48 9.00 13.99 11.00 16.70 9.50 16.99 9.00 14.96 7.00 14.66 10.00 11.45 7.00 14.37 9.00 9.21 7.00
Age, x 67.84 68.00 67.41 67.00 66.15 66.00 66.95 67.00 67.56 67.50 66.65 66.50 66.69 67.00 67.29 67.00 67.32 67.00 67.88 68.00 68.17 68.00 66.92 67.00
Gender 0.55 1.00 0.53 1.00 0.54 1.00 0.53 1.00 0.55 1.00 0.56 1.00 0.53 1.00 0.54 1.00 0.53 1.00 0.56 1.00 0.54 1.00 0.57 1.00
Couple 0.52 1.00 0.52 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.54 1.00 0.53 1.00 0.54 1.00 0.52 1.00 0.54 1.00 0.51 1.00 0.56 1.00

Forecast Horizon 15.14 14.00 15.86 14.00 16.16 14.00 15.99 14.00 15.70 14.00 15.57 14.00 15.92 14.00 15.71 14.00 15.35 14.00 15.43 14.00 15.44 14.00 15.79 14.00
CV Subj. Estimate 0.56 0.47 0.57 0.46 0.74 0.62 0.54 0.46 0.56 0.46 0.59 0.47 0.49 0.42 0.49 0.42 0.69 0.64 0.58 0.49 0.65 0.50 0.46 0.37

CV Obj. Probability 0.04 0.02 0.04 0.03 0.06 0.05 0.05 0.03 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.02 0.07 0.05 0.03 0.01 0.03 0.02 0.03 0.01
Relative Estimation Error 0.46 -0.16 0.49 -0.19 0.33 -0.34 0.65 0.05 0.19 -0.21 0.22 -0.19 0.49 -0.12 0.69 -0.09 0.77 -0.26 0.55 -0.16 0.17 -0.14 0.34 -0.13
Relative Abs. Est. Error 0.98 0.36 1.04 0.35 1.15 0.48 1.05 0.36 0.77 0.35 0.81 0.36 0.94 0.34 1.10 0.32 1.44 0.48 1.11 0.37 0.77 0.38 0.77 0.30
Std Relative Est. Error 0.96 0.36 1.16 0.34 1.24 0.37 1.10 0.44 0.85 0.32 0.84 0.34 0.83 0.37 1.01 0.36 1.44 0.42 1.15 0.38 0.98 0.38 0.70 0.31

Std Rel. Abs. Est. Error 0.77 0.27 0.97 0.27 1.01 0.29 0.83 0.28 0.67 0.26 0.66 0.28 0.66 0.26 0.84 0.26 1.24 0.32 0.91 0.29 0.71 0.27 0.55 0.23

SwitzerlandSweden
Country

N = 141 N = 167 N = 158 N = 167

Belgium Czechia

N = 151

Spain

N = 159

Poland

N = 150

Austria

N = 160

Netherlands

N = 164 N = 142

Denmark France Germany Italy

N = 166 N = 146

 
Note: N denotes the number of groups with more than one individual. For calculation of group-based measures, the SHARE weights are not applied. Groups are based on age, 
gender, country, and couple. Mean and median values are calculated across all data points.
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Table 5 OLS regression results for SHARE/HMD grouped data; dependent variable: 
coefficient of variation of group-specific subjective survival probabilities 
 

Coef. Bootstr. std. err. Coef. Bootstr. std. err. Coef. Bootstr. std. err.
Group Size -0.0002 0.0005 -0.0004 0.0006 -0.0006 0.0005

Age 0.0197 0.0017 *** 0.0196 0.0018 *** 0.0187 0.0016 ***
Gender -0.0063 0.0124 -0.0060 0.0121 -0.0071 0.0123
Couple -0.0402 0.0159 ** -0.0402 0.0172 ** -0.0396 0.0167 **

Forecast Horizon 0.0211 0.0030 *** 0.0209 0.0028 *** 0.0188 0.0026 ***
CV Obj. Prob. 2.7109 0.4667 *** 2.7745 0.4775 *** 3.0258 0.4502 ***
CV Net Worth -0.0006 0.0042 0.0001 0.0037

CV Income 0.0128 0.0063 ** 0.0116 0.0059 **
CV Education -0.0167 0.0166

CV Self-Perc. Health 0.0224 0.0227
CV Grip 0.0713 0.0988

CV Numeracy 0.0243 0.0242
Constant -1.1528 0.1465 *** -1.1512 0.1425 *** -1.1057 0.1346 ***

N
Adjusted R2

* significant at 10%, ** significant at 5%, *** significant at 1% level

(3)

1,814
0.4738

1,871 1,869
0.4530 0.4517

(1) (2)

 
 
 
Table 6 OLS regression results for SHARE/HMD grouped data; dependent variable: log of 
group-specific relative absolute estimation 
 

Coef. Bootstr. std. err.
Group Size 0.0053 0.0012 ***

Age -0.1696 0.0312 ***
Age2 0.0017 0.0002 ***

Gender -0.0486 0.0728
Couple -0.1093 0.0311 ***

Forecast Horizon 0.0404 0.0084 ***
CV Obj. Prob. 5.3994 0.9148 ***

Net Worth 0.0000 0.0000
Income 0.0000 0.0000 *

Education -0.0295 0.0232
Self-Perc. Health 0.1082 0.0299 ***

Grip 0.0006 0.0045
Numeracy 0.0008 0.0318
Constant 5.3994 0.9148 ***

N
Adjusted R2

* significant at 10%, ** significant at 5%, *** significant at 1% level

1,878
0.7394
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Table 7 Simultaneous equation model (SEM) for the savings level; two savings indicators; 
three-stage least squares estimation results for SHARE/HMD grouped data 
 

Coef. Bootstr. std. err. Coef. Bootstr. std. err.
Dependent Variable

Group Size 0.0000 0.0006 0.0008 0.0008
Age 0.0199 0.0018 *** 0.0217 0.0022 ***

Gender -0.0154 0.0125 -0.0163 0.0122
Couple -0.0493 0.0163 *** -0.0631 0.0178 ***

Forecast Horizon 0.0214 0.0029 *** 0.0244 0.0035 ***
CV Obj. Prob. 2.7713 0.5338 *** 2.4717 0.6379 ***
CV Net Worth 0.0045 0.0069

CV Financial Wealth 0.0389 0.0147 ***
CV Income 0.0010 0.0061 -0.0029 0.0068

Std Education -0.0115 0.0156 -0.0095 0.0143
Std Self-Perc. Health -0.0002 0.0214 0.0101 0.0214

 CV Grip 0.1685 0.1134 0.0344 0.0834
Std Numeracy 0.0498 0.0235 ** 0.0492 0.0210 **

Constant -1.2430 0.1662 *** -1.4328 0.2039 ***
Dependent Variable

Group Size 0.0047 0.0013 *** 0.0029 0.0013 **
Age -0.1793 0.0330 *** -0.1902 0.0317 ***
Age2 0.0017 0.0002 *** 0.0017 0.0002 ***

Gender -0.1173 0.0695 * -0.0679 0.0725
Couple -0.1700 0.0647 *** -0.2243 0.0647 ***

Forecast Horizon 0.0278 0.0092 *** 0.0209 0.0099 **
CV Obj. Prob. 6.0105 1.1911 *** 8.5586 1.3978 ***

Net Worth 0.0000 0.0000
Financial Wealth 0.0000 0.0000 **

Income 0.0000 0.0000 0.0000 0.0000 **
Education -0.0178 0.0219 -0.0745 0.0339 **

Self-Perc. Health 0.0963 0.0533 * 0.1839 0.0659 ***
Grip -0.0060 0.0045 -0.0018 0.0044

Numeracy 0.0144 0.0331 -0.0529 0.0395
Constant 2.4252 1.2870 * 2.9545 1.2881 **

Dependent Variable
Age -77,101.93 90,453.40 -13,901.18 7,953.13 *
Age2 702.77 761.83 138.75 68.93 **

Gender 61,134.27 98,960.68 -7,527.86 9,923.17
Couple 136,999.70 31,966.52 *** 17,260.66 4,220.21 ***

Education 6,442.72 25,489.04 10,795.39 3,024.21 ***
Self-Perc. Health -110,267.70 39,409.49 *** -21,181.81 5,053.80 ***

Grip 8,272.12 6,163.64 -37.25 600.52
Numeracy -624.41 44,278.87 16,107.92 5,169.82 ***

Income 0.06 0.19 0.07 0.03 **
Pension Share -326,994.50 154,026.30 ** -70,500.73 18,282.52 ***

Log Rel. Abs. Est. Error -585,907.20 517,039.30 -120,435.30 50,674.15 **
Sub. Surv. Prob. 1,959,536.00 1,550,873.00 318,596.20 166,630.40 *

CV Sub. Surv. Prob. 2,475,178.00 2,096,772.00 427,053.90 210,575.60 **
Constant -676,065.30 2,170,192.00 -166,987.80 219,431.90

N
AIC
BIC

* significant at 10%, ** significant at 5%, *** significant at 1% level

54,176
1,768

46,691
46,916

1,773

54,401

Net Worth Level SEM Financial Assets Level SEM

Equ. (5.1): SUB_DISP = CV Sub. Surv. Prob.

Equ. (5.2): EST_ERR_LEVEL = Log of Rel. Abs. Est. Error

Equ. (5.3): SAVE_LEVEL = 
Net Worth Financial Assets
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Table 8 Simultaneous equation model (SEM) for the dispersion in savings; two indicators for 
the saving level; three-stage least squares estimation results for SHARE/HMD grouped data 
 

Coef. Bootstr. std. err. Coef. Bootstr. std. err.
Dependent Variable

Group Size -0.0053 24.9818 0.0011 0.0040
Age 0.0210 3.7960 0.0174 0.0041 ***

Gender -0.0601 61.3421 -0.0051 0.0228
Couple 0.0131 259.7296 -0.0598 0.0411

Forecast Horizon 0.0200 9.0266 0.0159 0.0097
CV Obj. Prob. 2.4415 3201.7050 3.8105 1.4412 ***
CV Net Worth 0.3414 1586.0620

CV Financial Wealth -0.1242 0.2885
CV Income 0.0411 690.7319 0.0244 0.0322

Std Education -0.0213 55.6996 -0.0217 0.0176
Std Self-Perc. Health -0.0359 183.2232 0.0130 0.0282

 CV Grip 0.1872 516.1696 0.1500 0.2106
Std Numeracy -0.0601 367.2323 0.0430 0.0271

Constant -1.4994 1731.2690 -0.8643 0.6716

Dependent Variable
Age 0.0346 0.0298 0.1357 0.0177 ***
Age2 -0.0003 0.0003 -0.0011 0.0002 ***

Gender 0.1618 0.0858 * 0.0927 0.0258 ***
Couple 0.0225 0.0578 0.0712 0.0265 ***

Std Education 0.0176 0.0469 0.0173 0.0283
Std Self-Perc. Health 0.1823 0.0820 ** -0.0489 0.0417

CV Grip -0.1434 0.2899 0.5692 0.1648 ***
Std Numeracy 0.2843 0.0904 *** 0.0374 0.0396

CV Income -0.0579 0.3614 0.1390 0.0231 ***
CV Sub. Surv. Prob. 0.0990 0.7164 0.5883 0.2028 ***

Constant -0.2094 1.2000 -3.3370 0.5665 ***

N
AIC
BIC

* significant at 10%, ** significant at 5%, *** significant at 1% level

1,773 1,768
7,232 2,752
7,364 2,884

Equ. (5.4): SUB_DISP = CV Sub. Surv.Prob.

Equ. (5.5): SAVE_DISP = 

Net Worth Dispersion SEM Financial Assets Dispersion SEM

CV Net Worth CV Financial Assets
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Figure 1 One-year realized probabilities of death, data source: Human Mortality Database 
 

Females, age = 65 years 

.004

.006

.008

.010

.012

.014

.016

.018

.020

1960 1970 1980 1990 2000

FRANCE
GERMANY
NETHERLANDS
SPAIN
SWEDEN

O
ne

-Y
ea

r P
ro

ba
bi

lit
ie

s 
of

 D
ea

th
 fo

r A
ge

 6
5

Year

Males, age = 65 years 

.010

.015

.020

.025

.030

.035

.040

1960 1970 1980 1990 2000

FRANCE
GERMANY
NETHERLANDS
SPAIN
SWEDEN

O
ne

-Y
ea

r P
ro

ba
bi

lit
ie

s 
of

 D
ea

th
 fo

r A
ge

 6
5

Year

Females, age = 85 years 

.06

.08

.10

.12

.14

.16

.18

.20

1960 1970 1980 1990 2000

FRANCE
GERMANY
NETHERLANDS
SPAIN
SWEDEN

O
ne

-Y
ea

r P
ro

ba
bi

lit
ie

s 
of

 D
ea

th
 fo

r A
ge

 8
5

Year

 

Males, age = 85 years 

.08

.10

.12

.14

.16

.18

.20

.22

1960 1970 1980 1990 2000

FRANCE
GERMANY
NETHERLANDS
SPAIN
SWEDEN

O
ne

-Y
ea

r P
ro

ba
bi

lit
ie

s 
of

 D
ea

th
 fo

r A
ge

 8
5

Year

 
 
 



 29

Figure 2 Scatter plot of group-specific coefficients of variation of HMD and SHARE data 
 

 
Note: Each point represents one group of individuals with a certain characteristic in the dimensions of age, 
gender, country, and couple. 
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Figure 3 Scatter plot of group-specific coefficients of variation of HMD and SHARE data 
 

 
Note: Each point represents one group of individuals with fixed characteristic in the dimensions age, gender, 
country, and couple. 
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Figure 4 Mean group-specific coefficients of variation of HMD (Panel A) and SHARE (Panel 
(B) data, data grouped according to age, gender, country, and couple; mean calculated over 
gender and couple 
 

Panel A Panel B 
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Figure 5 Mean group-specific relative estimation error, data grouped according to age, 
gender, country, and couple; mean calculated over gender and couple 
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Figure 6 Scatter plots of group-specific coefficients of variation of HMD data and estimation 
errors in SHARE data, relative estimation error (Panel A), relative absolute estimation error 
(Panel B), and logarithm of relative absolute estimation error (Panel C)  
 

Panel A Panel B 

 Panel C 
 

Note: Each point represents one group of individuals with fixed characteristic in the dimensions age, gender, 
country, and couple. 
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Figure 7 Conceptual links underlying savings-behavior-related research hypotheses 
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