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1Michigan State University, 2Soochow University, 3Humboldt-Universität zu Berlin and 4National

Central University

Longitudinal data analysis is a central piece of statistics. The data are

curves and they are observed at random locations. This makes the construc-

tion of a simultaneous confidence corridor (SCC) (confidence band) for the

mean function a challenging task on both the theoretical and the practical

side. Here we propose a method based on local linear smoothing that is

implemented in the sparse (i.e., low number of nonzero coefficients) mod-

elling situation. An SCC is constructed based on recent results obtained in

applied probability theory. The precision and performance is demonstrated

in a spectrum of simulations and applied to growth curve data. Technically

speaking, our paper intensively uses recent insights into extreme value the-

ory that are also employed to construct a shoal of confidence intervals

(SCI).

1. Introduction. Longitudinal or functional data analysis (FDA) is a central piece of statisti-

cal modelling. A well known application is growth curve analysis in biology, medicine and chemistry,

see e.g. Müller (2009), James, Hastie and Sugar (2000), Ferraty and Vieu (2006) and the references

there. Groundbreaking theoretical work on functional data analysis has been done among others by
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Cai and Hall (2006), Cardot, Ferraty and Sarda (2003). Much of this work though is devoted to co-

efficient estimation, semiparametric analysis or dimension reduction methods. Research on statistical

inference on the mean curve for example is rather scarce although it is potentially important for char-

acterization of global properties. To characterize global properties of the unknown function of interest,

the simultaneous confidence corridor (SCC) and the shoal of confidence intervals (SCI) are puissant in-

struments. They can be applied to test the overall trend or shape of the mean function. Such decisions

are critical e.g. in ozone analysis, see Lucas and Diggle (1997) for a longitudinal study on Sitka spruce.

They have pointed out that, in order to assess the cumulative effect of ozone pollution on spruce, an

inference on the mean function of spruce growth during the entire experiment rather than at the end

of the growth is required. This is one of the many other motivations to develop a new method and its

theory to construct an SCC for the mean function of sparse longitudinal data where the measurements

are randomly located with random repetitions.

The SCC methodology has been extensively studied in the literature. For the nonparametric regres-

sion, see Fan and Zhang (2000) and references there. In this strand of literature though it is not assumed

that for family of curves one needs to take care of dependence structures. Wu and Zhao (2007) re-

cently constructed a confidence band for the non-stationary mean function, and Wang and Yang (2009),

Song and Yang (2009) obtained the spline-based analogy for the mean and variance functions. Nonpara-

metric time series with specific dependence structures are considered in Zhao and Wu (2008). An SCC

construction for longitudinal data remains however an open problem.

The major difficulty to construct the SCC for longitudinal data is that the observations within subject

are dependent. In this situation, the “Hungarian embedding”, used to construct confidence bands is no

longer applicable. The sparse longitudinal data situation has been considered by Yao et al. (2005a) for

individual trajectories instead of the mean function, while Yao (2007) obtained an SCI for the mean

and covariance functions. Ma et al. (2010) constructed the first SCC of the mean function for the sparse

longitudinal data through piecewise constant spline. The constructed SCC, however, is nonsmooth and
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its convergence rate to the true mean function has suboptimal rate.

Here we propose to construct the SCC for the mean function of the sparse longitudinal data via local

linear smoothing. We tackle with this research a variety of interesting issues. First, the proposed SCC

allows for the global rather than pointwise inference. Second, the sparse rather than dense longitudinal

data setting requires more sophisticated extreme value theory. Third, compared to the piecewise con-

stant spline method of Ma et al. (2010), different extreme value results are employed for a local linear

estimator that leads to higher accuracy, better coverage, smooth mean curve and smooth SCC, all of

which are desirable in the application.

We organize our paper as follows. In Section 2, we state our model and local linear smoothing

methodology. In Section 3, we investigate the asymptotic distribution of the maximal deviation of the

local linear estimator from the true mean function, which is used to construct the SCC. Section 4

outlines the key procedures to implement the SCC. Section 5 illustrates the performance of the SCC

through extensive simulations followed by an empirical example in Section 6 which illustrates the SCC

application on growth curve data. Technical proofs are presented in the Appendix.

2. Model and Methodology. Longitudinal data has the form of {Xij , Yij} , 1 ≤ j ≤ Ni, 1 ≤ i ≤

n, in which Xij ∈ X = [a, b] is the j-th random time point for the i-th subject and Yij is the response

measured at Xij . For the i-th subject, the sample path is the noisy realization of a continuous time

stochastic process ξi (x), namely,

Yij = ξi (Xij) + σ (Xij) εij , (2.1)

where the errors εij are i.i.d. with E εij = 0,E ε2ij = 1, and {ξi (x) , x ∈ X} are i.i.d. copies of the process

{ξ (x) , x ∈ X} with E
∫
X ξ

2 (x) dx < +∞.

Denote by m (x) = E ξ (x) the regression curve and by G (x, x′) = Cov {ξ (x) , ξ (x′)} the covariance

operator with the Karhunen-Loève L2 representation

ξi (x) = m (x) +
∑∞

k=1
ξikϕk (x) , (2.2)
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one has the random coefficients {ξik}∞k=1 uncorrelated with mean 0 and variance 1. Here ϕk (x) =

√
λkψk (x) , where {λk}∞k=1 and {ψk (x)}∞k=1 are respectively the eigenvalues and eigenfunctions of

G (x, x′) such that λ1 ≥ λ2 ≥ . . . ≥ 0 and {ψk}∞k=1 forms an orthonormal basis of L2 (X ). There-

fore, G (x, x′) =
∑∞

k=1 ϕk (x)ϕk (x
′) and

∫
G (x, x′)ϕk (x

′) dx′ = λkϕk (x).

In applications, the number of eigenfunctions ψk (x) , k = 1, 2, ... needs to be chosen by some criterion,

see Yao et al. (2005a). In the sparse curve data situation, many practical studies have shown that fitting

too many eigenfunctions can heavily degrade the overall fit, see e.g. James, Hastie and Sugar (2000).

Hence, in what follows, we assume that λk = 0 if k > κ, where κ is a positive constant. Equations (2.1)

and (2.2) can then be written as:

Yij = m (Xij) +
∑κ

k=1
ξikϕk (Xij) + σ (Xij) εij . (2.3)

For convenience, we denote the conditional variance of Yij given Xij = x as

σ2
Y (x) = G (x, x) + σ2 (x) = Var (Yij |Xij = x ) . (2.4)

We are interested in the sparse situation where the number of measurements Ni within subject are

i.i.d. copies of a positive random integer N1, see Yao et al. (2005a), Yao et al. (2005b), Yao (2007).

To introduce the estimator, denote by K a kernel function, h = hn > 0 a bandwidth and Kh (x) =

h−1K (x/h). Let NT =
∑n

i=1Ni be the total sample size and define Y = (Yij)1≤j≤Ni,1≤i≤n the NT× 1

vector of responses. For any x ∈ [0, 1], let X = X (x) = (1, Xij − x)1≤j≤Ni,1≤i≤n be the design matrix

for linear regression andW = W (x) = N−1
T diag {Kh (X11 − x) , · · · ,Kh (XnNn − x)} the kernel weight

diagonal matrix. Following Fan and Gijbels (1996), local linear estimators of m (x) and m′ (x) are

{m̂ (x) , m̂′ (x)}T= argmin
a,b

{Y −X(a, b)T}TW{Y −X(a, b)T}

=
(
XTWX

)−1
XTWY.

Consequently, with eT0 = (1, 0), m̂ (x) is written as

m̂ (x) = eT0
(
XTWX

)−1
XTWY, (2.5)
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where the dispersion matrix

XTWY =diag (1, h)

 sn,0 sn,1

sn,1 sn,2

 diag (1, h) , (2.6)

has for any nonnegative integer l,

sn,l = sn,l(x) = N−1
T

∑
i,j
Kh (Xij − x) {(Xij − x) /h}l . (2.7)

3. Main Results. Without loss of generality, assume X = [0, 1] and consider the assumptions:

(A1) The mean function m (x) ∈ C2[0, 1], i.e. twice continuously differentiable.

(A2) {Xij}∞,∞
i=1,j=1 are i.i.d. with a probability density f (x). The functions f (x) , σ (x) and ϕk ∈ C1[0, 1]

with f (x) ∈ [cf , Cf ] , σ (x) ∈ [cσ, Cσ] and all involved constants are finite and positive.

(A3) The numbers of observations Ni, i = 1, 2, . . . are i.i.d. random positive integers with ENr
1 ≤

r!crN , r = 2, 3, . . . for some constant cN > 0. (Ni)
∞
i=1 , (Xij)

∞,∞
i=1,j=1 , (ξik)

∞,κ
i=1,k=1 , (εij)

∞,∞
i=1,j=1 are

independent, while {ξik}∞,κ
i=1,k=1 are i.i.d. N(0, 1).

(A4) There exists r > 5, such that E |ε11|r <∞.

(A5) The bandwidth h = hn satisfies nh4 → ∞, nh5 logn→ 0 and h < 1/2.

(A6) The kernel function K (x) is a symmetric probability density function supported on [−1, 1] and

∈ C3[−1, 1].

Assumptions (A1), (A2), (A5) and (A6) haven been postulated in many papers related to kernel

smoothing. (A3) has been used in Yao et al. (2005a). (A4) can be found also in Ma et al. (2010).

For a nonnegative integer l and a continuous function L (x), define:

µl,x (L) =


∫ 1

−x/h
vlL (v) dv,

µl (L) =
∫ 1

−1
vlL (v) dv,∫ (1−x)/h

−1
vlL (v) dv,

x ∈ [0, h)

x ∈ [h, 1− h]

x ∈ (1− h, 1]

(3.1)

Dx (L) = µ2,x (L)µ0,x (L)− µ2
1,x (L) , (3.2)
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and the equivalent kernel function, see Fan and Gijbels (1996):

K∗
x (u) = K (u) {µ2,x (K)− µ1,x (K)u}D−1

x (K) ,K∗
x,h (u) = K∗

x (u/h) /h (3.3)

where D−1
x (K) exists by Lemma A.5. One may verify:

µ0,x (K
∗
x) = 1, µ1,x (K

∗
x) = 0

Dx (K) = µ2 (K) ,K∗
x (u) ≡ K (u) ,∀x ∈ [h, 1− h] .

The asymptotic variance function is:

σ2
n (x)

def
=

∥K∗
x∥

2
2 σ

2
Y (x)

nhf (x)EN1

[
1 +

E
(
N2

1 −N1

)
EN1

G (x, x) f (x)h

σ2
Y (x) ∥K∗

x∥
2
2

+
µ1,x

(
K∗2

x

) {
σ2
Y (x) f (x)

}′
h

∥K∗
x∥

2
2 σ

2
Y (x) f (x)

]
. (3.4)

Define z1−α/2
def
= Φ−1 (1− α/2) and

Qh(α)
def
= ah + a−1

h [log{
√
C (K)/ (2π)} − log{− log

√
1− α}] (3.5)

with ah =
√
−2 log h, C (K) = {

∫ 1

−1
K ′ (x)

2
dx}{

∫ 1

−1
K2 (x) dx}−1.

THEOREM 3.1. Under Assumptions (A1)-(A6), for any α ∈ (0, 1)

lim
n→∞

P{supx∈[0,1] |m̂ (x)−m (x)| /σn (x) ≤ Qh(α)} = 1− α,

lim
n→∞

P{|m̂ (x)−m (x)| /σn (x) ≤ z1−α/2} = 1− α, ∀x ∈ [0, 1] ,

with σ2
n (x) and Qh(α) given in (3.4) and (3.5).

By Theorem 3.1, we construct the SCC and SCI for m(x) as follows,

COROLLARY 3.1. Assume (A1)-(A6). A 100 (1− α)% simultaneous confidence corridor (SCC)

for m (x) is:

[m̂ (x)± σn (x)Qh(α)] . (3.6)

A shoal of confidence intervals (SCI) is given by:

[
m̂ (x)± σn (x) z1−α/2

]
. (3.7)
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A simple approximation of σ2
n (x) is given by:

σ2
n,IID (x) =

∥K∗
x∥

2
2 σ

2
Y (x)

nhf (x)EN1
. (3.8)

PROPOSITION 3.1. Given (A2), (A3) and (A6), then supx∈[0,1]

∣∣σ−1
n (x)σn,IID (x)− 1

∣∣ = O (h) .

Using σ2
n,IID (x) instead of σ2

n (x) is equivalent to treat {Xij , Yij} , 1 ≤ j ≤ Ni, 1 ≤ i ≤ n as i.i.d data,

which implies that the longitudinal dependence structure is negligible in case of sparsity. This was also

observed by Ma et al. (2010), Wang et al. (2005).

4. Implementation. Now we outline the construction of the SCC and SCI. Recall the definition

of m̂ (x). The practical implementation of (3.6) and (3.7) is via estimating EN1, f (x) and σY (x),

see Wang and Yang (2009) and references therein. The quantity EN1 is estimated by NT/n and the

estimator of the density f (x) is

f̂ (x) = N−1
T

∑n

i=1

∑Ni

j=1
Kh (Xij − x) . (4.1)

The local linear estimator σ̂Y (x) = â1 results from:(
â1, b̂1

)
= arg min

a1,b1

∑n

i=1

∑Ni

j=1

{
ε̂2ij − a1 − b1 (Xij − x)

}2
wij ,

where ε̂ij = Yij − m̂ (Xij), wij = N−1
T Kh (Xij − x) and h = N

−1/5
T (logn)

−1
satisfying (A5). The

consistency of f̂ (x) and σ̂Y (x) is proved e.g. in Li and Hsing (2010), Yao et al. (2005a). Therefore, the

SCC m̂ (x) ± σ̂n,IID (x)Qh(α) and the SCI m̂ (x) ± σ̂n,IID (x) z1−α/2 both have asymptotic confidence

level 1− α.

5. Monte Carlo Studies. This section checks the finite sample performance of the SCC. The

data are generated from (2.1) with κ = 2:

Yij = m (Xij) +
∑2

k=1
ξikϕk (Xij) + σ (Xij) εij ,

with m (x) = sin {2π (x− 1/2)}, ϕ1 (x) = −0.2 cos {π (x− 1/2)}, ϕ2 (x) = 0.1 sin {π (x− 1/2)}, σ (x) =

exp{3(x − 0.5)2}/[1 + exp{3(x − 0.5)2}] and X ∼ U [0, 1] , ξk ∼ N(0, 1) , εij ∼ N(0, 1), while Ni has a
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discrete uniform distribution from 5, . . . , 15 and n varies: 20,50,100,200. The confidence level is set to:

1− α = 0.95, 0.99.

(Insert Figure 1 “Dataplot and trajectories” about here)

Table 1
Empirical coverage from 200 replications

n 1− α = 0.95 1− α = 0.99
20 0.925 0.965
50 0.940 0.980
100 0.950 0.995
200 0.955 0.990

The empirical coverage is reported in Table 1. The data are displayed in Figure 1. Clearly, the coverage

approaches the nominal confidence levels as n increases, see Theorem 3.1. Coverage frequencies remain

stable if the bandwidths’ slightly vary. In practice, one can choose bandwidths adaptively to achieve

better performance. The theoretical study of this issue would require too much space here. We therefore

do not pursue this. Figure 2 plots the SCCs with 95% and 99% confidence levels. The above studies have

illustrated the reliability of our method, which actually ensures the application of the SCC including

the true curve for the real data in Section 6.

(Insert Figure 2 “The 95% and 99% SCCs of the mean curve” about here)

6. Application. Now we apply the SCC and SCI to a longitudinal study of growth curve data. The

data curve analysis is a key in the studies of human skeletal health. These data consist of measurements

Yij , spinal bone mineral density (g/cm2), for n = 286 people. However, Ni, the number of measurements

for each individual, is between 2 and 4 (sparsity), and Xij , the time points of measurements (aged 8.8–

26.2 yr), varies among individuals.

An earlier study of the growth curve data in James, Hastie and Sugar (2000) developed the pointwise

inference of the mean function. Using the bootstrap method, they constructed the confidence intervals to

test the mean curve at points of interest, e.g. the fastest growth point at about 15 yr. In our study, this

task can be also done via constructing the SCI by (3.7). However, its computation is much faster than

the bootstrap procedures. Furthermore, we will use the SCC to examine the global shape of the mean
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curve on the whole domain, such as the upward or downward trend at different stages, the acceleration

or plateau during different periods.

(Insert Figure 3 “Growth curve data and the SCCs & SCIs of its mean curve” about here)

Figure 3 (a) exhibits the scatter plot of the spinal bone density v.s. the age. Figure 3 (b), (c) and (d)

depict the SCCs and SCIs of the population mean of the growth curve data, at the confidence levels

of 90%, 95% and 99%, respectively. For the pointwise inference, James, Hastie and Sugar (2000) and

our method share similar SCIs. However, testing the global shape of the growth curve, the constructed

SCCs can indicate that the spinal bone density at mean level increases with age, but the bone growth is

accelerated during early adolescence (9-15 yr) whereas it reaches the plateau during late puberty (16-26

yr). An R algorithm of our method has been provided on www.quantlet.org.

APPENDIX .

A.1. Preliminaries. We introduce Lemmas (A.1)-(A.4) for the proof of Theorem 3.1 (Appendix

A.2). For the details of Lemma A.1, see Cierco-Ayrolles et al (2003), Zheng, Yang and Härdle (2010).

LEMMA A.1. [Cierco-Ayrolles, Croquette and Delmas (2003)] Let X (t) be a Gaussian process

with almost surely C1 sample paths on [0, T ]. Then

P {|X (0)| > u}+ E
[(
UX
u [0, T ] +DX

−u [0, T ]
)
I{|X(0)|6u}

]
(A.1)

−1

2
E
(
UX
u [0, T ] +DX

−u [0, T ]
)[2] ≤ P{supx∈[0,T ] |X (t)| > u} ≤

P {|X (0)| > u}+ E
[(
UX
u [0, T ] +DX

−u [0, T ]
)
I{|X(0)|6u}

]
.

LEMMA A.2. [Theorem 1 of Cierco-Ayrolles, Croquette and Delmas (2003)] Suppose X is a C1

real-valued Gaussian process defined on an interval I and {X (t) , X(s), X ′ (t) , X ′ (s)} is non-degenerate

∀t ̸= s, (t, s) ∈ I2. Then, denoting pV the probability density of a random vector V :

E(UX
u [I]

[2]
) =

∫
I2

∫
(0,∞)2

|x′1| |x′2| pXt;Xs;X′
t;X

′
s
(u;u;x′1;x

′
2) dx

′
1dx

′
2dtds,
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E
(
UX
u [I]DX

−u [I]
)
=

∫
I2

∫ +∞

0

∫ 0

−∞
|x′1| |x′2| pXt;Xs;X′

t;X
′
s
(u;−u;x′1;x′2) dx′1dx′2dtds.

LEMMA A.3. [Theorem 2.6.7 of Csőrgő and Révész (1981)] Suppose that ξi, 1 ≤ i ≤ n are i.i.d.

with E ξ1 = 0,E ξ21 = 1 and H (x) > 0 (x ≥ 0) is an increasing continuous function such that x−2−γH (x)

is increasing for some γ > 0 and x−1 logH (x) is decreasing with EH (|ξ1|) < ∞. Then there exist

constants C1, C2, a > 0 which depend only on the distribution of ξ1 and a sequence of Brownian motions

{Wn (t) , 0 ≤ t <∞}∞n=1 such that for any {xn}∞n=1 satisfying H−1 (n) < xn < C1 (n logn)
1/2

and

Sk =
∑k

i=1 ξi

P {max1≤k≤n |Sk −Wn (k)| > xn} ≤ C2n {H (axn)}−1
.

LEMMA A.4. [Theorem 1.2 of Bosq (1996)]Suppose that ξi, 1 ≤ i ≤ n are i.i.d. with σ2 =

E ξ21 ,E ξ1 = 0 and there exists c > 0 such that for r = 3, 4, ...,E |ξ1|r ≤ cr−2r!E ξ21 < +∞, then for

each n > 1, t > 0, P (|Sn| ≥
√
nσt) ≤ 2 exp{−t2 (4 + 2ct/

√
nσ)

−1}.

A.2. Proof of Theorem 3.1. Throughout this section, for functions an (x) and bn (x), an (x) =

U{bn (x)} and an (x) = U {bn (x)} respectively means that, as n→ ∞, supx∈[0,1] |an (x) /bn (x)| = O(1)

and supx∈[0,1] |an (x) /bn (x)| = O (1). In addition, an (x) = Ua.s. {bn (x)} and an (x) = Ua.s. {bn (x)}

respectively means that, as n→ ∞, an (x) = U{bn (x)} and an (x) = U {bn (x)} almost surely, and Oa.s.,

Op, Oa.s., Op are similarly defined.

We denote m = (m (Xij)), ε = (σ (Xij) εij), ξk = (ξikφk (Xij)). The signal and noise decomposition

XTWY = XTWm+
∑κ

k=1 X
TWξk +XTWε implies that,

m̂ (x)−m (x) = m̃ (x)−m (x) + ẽ(x), (A.2)

ẽ(x) =
∑κ

k=1
ξ̃k(x) + ε̃(x),

where ξ̃k(x) = eT0(X
TWX)−1XTWξk and ε̃(x) = eT0(X

TWX)−1XTWε.

The error structure in (A.2) allows one to investigate the asymptotics of supx∈[0,1] |ẽ (x) /σn (x)| and

supx∈[0,1] |{m̃ (x)−m (x)} /σn (x)| separately in Lemmas A.6-A.14, with σn (x) given in (3.4).
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We introduce some more notations, defining

Dx =

 µ2,x(K) −µ1,x(K)

−µ1,x(K) µ0,x(K)

 , (A.3)

with µl,x(K) given in (3.1)

ε̂ (x) = f−1 (x)N−1
T

∑
i,j
K∗

x,h (Xij − x)σ (Xij) εij , (A.4)

ξ̂k (x) = f−1 (x)N−1
T

∑
i,j
K∗

x,h (Xij − x)ϕk (Xij) ξik, (A.5)

with K∗
x,h (u) given in (3.3)

Rij,ε (x) = K∗
x,h (Xij − x)Dx (K)σ (Xij) , (A.6)

Rik,ξk =
∑Ni

j=1
K∗

x,h (Xij − x)Dx (K)ϕk (Xij) , (A.7)

with Dx (K) given in (3.2)

σ2
ε,n (x) = f−2 (x)N−2

T D−2
x (K)

∑
i,j
R2

ij,ε (x) , (A.8)

σ2
ξk,n

(x) = f−2 (x)N−2
T D−2

x (K)
∑n

i=1
R2

ik,ξk
(x) , (A.9)

Cx(K) =
µ0,x{K∗′

x (x)
2}

µ0,x{K∗
x (x)

2}
−
µ2
0,x {K∗

x (x)K
∗′
x (x)}

µ2
0,x{K∗

x (x)
2}

, (A.10)

where K∗′
x (x) = dK∗

x (x) /dx, µl,x (L) given in (3.1). It is easily verified that Cx(K) = C (K) , ∀x ∈

[h, 1− h] with C (K) given in (3.5).

LEMMA A.5. Under Assumptions (A5)-(A6), for x ∈ [0, 1]

0 < D0 (K) ≤ Dx (K) ≤ D1/2 (K) = µ2 (K) < +∞, (A.11)

while supx∈[0,1] |Cx(K)| <∞.

Proof. See Appendix B, Zheng, Yang and Härdle (2010). �
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LEMMA A.6. Under Assumptions (A1)-(A6), for Dx (K) given in (3.2) and Dx in (A.3),

(
XTWX

)−1
= f−1(x) diag

(
1, h−1

) {
D−1

x (K)Dx +∆1,n (x)
}
diag

(
1, h−1

)
as n→ ∞, where the 2× 2 random matrices ∆1,n (x) = U (h) + Ua.s.{

√
logn/(nh)}.

Proof. For notational simplicity, let x ∈ [h, 1− h], we investigate sn,l (x) , l = 0, 1, 2, given in (2.7).

|sn,0 (x)− f (x)| ≤
∣∣n(EN1)N

−1
T − 1

∣∣ ∣∣∣∣(nEN1)
−1

∑n

i=1

∑Ni

j=1
Kh (Xij − x)

∣∣∣∣+ (A.12)

|EKh (Xij − x)− f (x)|+
∣∣∣∣(nEN1)

−1
∑n

i=1

∑Ni

j=1
Kh (Xij − x)− EKh (Xij − x)

∣∣∣∣
= I1 (x) + I2 (x) + I3 (x) .

Clearly, I2 (x) = U
(
h2

)
and E {Kh (Xij − x)}r = U

(
h1−r

)
for r ≥ 2. Define I3(x) = (nEN1)

−1 |
∑n

i=1 ζi,h|

with ζi,h =
∑Ni

j=1Kh (Xij − x)− EKh (Xij − x)EN1. For large n,

E |ζi,h|r = E

∣∣∣∣∑Ni

j=1
Kh (Xij − x)− EKh (Xij − x)EN1

∣∣∣∣ r

≤ (A.13)

2r−1[E{
∑Ni

j=1
Kh (Xij − x)}r + {EKh (Xij − x)EN1}r] ≤

2r E{
∑Ni

j=1
Kh (Xij − x)}r = 2r E

 r1+...+rNi
=r∑

0≤r1,...,rNi
≤r

(
r

r1...rNi

) Ni∏
i=1

E {Kh (Xij − x)}ri


≤ 2r E

[
Nr

i

r1+...+rNi
=r

max
0≤r1,..., rNi

≤r

Ni∏
i=1

E {Kh (Xij − x)}ri
]
≤ 2r (ENr

1 )Crh
1−r ≤ Cζr!h

1−r.

It can be next verified that E (ζi,h)
2
= (EN1)h

−1f (x)
∫
K2 (v) dv {1 + U(1)}. Hence, ∃ C ′

ζ > c′ζ > 0

such that c′ζh
−1 < E (ζi,h)

2
< C ′

ζh
−1 , i.e., E |ζi,h|r ≤ cr−2

∗ r!E (ζi,h)
2
with c∗ = (Cζ/c

′
ζ)

1
r−2h−1, see

(A.13). In fact, it implies {ζi,h}ni=1 satisfies Cramér’s Condition. Therefore, applying Lemma A.4 to∑n
i=1 ζi,h, for large n and large δ > 0, one shows

P{I3 (x) > δ
√
log n/ (nh)} ≤

2 exp[− (EN1)
2
δ2 log n{4C ′

ζ + 2δ EN1

(
Cζ/c

′
ζ

)1/(r−2) √
log n/ (nh)}−1] ≤ 2n−Cδ2 ≤ 2n−8.
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Now discretize h = x0 < x1 < · · · < xMn = 1− h with Mn = n4 and then,

P{maxMn
j=0 I3 (xj) > δ

√
log n/ (nh)} ≤

∑Mn

j=0
P{|I3 (x)| > δ

√
log n/ (nh)} ≤ 2n−4,

and hence the Borel-Contelli Lemma implies that maxMn
j=0 I3 (xj) = Oa.s.{

√
log n/(nh)}. It is also clear

that,

supx∈[h,1−h] I3 (x) ≤ maxMn
j=0 I3 (xj) + maxMn−1

j=0 supx∈[xj ,xj+1] |I3 (xj)− I3 (x)|

≤ Oa.s.{
√
log n/(nh)}+ U

{
(1− 2h) /

(
nh4

)}
= Oa.s.{

√
log n/(nh)},

which by the definition of I3 (x) implies that

(nEN1)
−1

∑n

i=1

∑Ni

j=1
Kh(Xij − x) = EKh(Xij − x) + Ua.s.{

√
log n/(nh)} (A.14)

= f(x) + U(h2) + Ua.s.{
√

log n/(nh)}.

Applying Lemma A.4 for NT, one has |(nEN1) /NT − 1| = Oa.s{
√
log n/n} and (A.14) also implies

that sup
x∈[h,1−h]

I1(x) = Oa.s.(
√
log n/n). Now, by (A.12), sn,0 (x) = f (x) + U

(
h2

)
+ Ua.s.{

√
log n/(nh)}.

Similarly, sn,1 (x) = U (h)+Ua.s.{
√
log n/(nh) }and sn,2(x) = f(x)µ2(K)+U (h)+Ua.s.{

√
log n/(nh)}

which imply that XTWX can be written as

f (x) diag(1, h)[diag {1, µ2(K)}+ U (h) + Ua.s.{
√

log n/(nh)}] diag(1, h).

Finally, the inverse of this matrix is concluded as this lemma. �

LEMMA A.7. Under Assumptions (A1)-(A6), as n→ ∞, ∥m̃ (x)−m (x)∥∞ = Oa.s.

(
h2

)
.

Proof. See Proof of Theorem 6.5, page 268 of Fan and Yao (2005). �

LEMMA A.8. Under Assumptions (A1)-(A6), for ε̂ (x) and ξ̂k (x) given in (A.4) and (A.5),

ẽ (x) = {1 + ∆2,n (x)} {ε̂ (x) +
∑κ

k=1
ξ̂k (x)}

as n→ ∞, where the 2× 2 random matrices ∆2,n (x) = U (h) + Ua.s.{
√

logn/(nh)}.
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Proof. For notational simplicity, let x ∈ [h, 1− h], therefore ε̂ (x) +
∑κ

k=1 ξ̂k (x) = f−1(x)T0(x)

with Tl, l = 0, 1 defined as

Tl (x) = N−1
T

∑
i,j
Kh (Xij − x) {(Xij − x) /h}l {σ (Xij) εij +

∑κ

k=1
ϕk (Xij) ξik}.

Lemma A.6 shows that for ∆1,n (x) given in Lemma A.6

ẽ(x) = f−1(x)eT0 diag
(
1, h−1

) [
diag

{
1, µ−1

2 (K)
}
+∆1,n (x)

]
{T0 (x) , T1 (x)}T,

i.e., ẽ(x) = {1 + ∆1,n (x)} f−1 (x)T0 (x). Therefore, this lemma holds. �

Let Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ Ni be descendingly ordered as X(t), 1 ≤ t ≤ NT, Sq =
∑q

t=1 ε(t) where

ε(t) is corresponding in index to X(t).

LEMMA A.9. Given (A1)-(A6), then there exists a sequence of Wiener processes {WNT (t)}
NT

t=1

independent of {Ni, Xij, ξi 1 ≤ i ≤ n, 1 ≤ j ≤ Ni, 1 ≤ k ≤ κ} such that as n → ∞ and for some

t
′
> 2/5

∥ε̂ (x)− ε̂NT(x)∥∞ = Oa.s.(n
−t

′

),

with ε̂NT (x)= {NTf (x)}−1 ∑NT

t=1K
∗
x,h

(
X(t) − x

)
σ
(
X(t)

)
{WNT (t)−WNT (t− 1)}.

Proof. Without loss of generality, let x ∈ [h, 1− h]. By Lemma A.3, let H (x) = xr, r > 5 (As-

sumption A4) and xn = ns, s ∈
(
2r−1, 2/5

)
. It is easy to verify that

{
ε(t)

}NT

t=1
satisfies the conditions of

Lemma A.3 and nH−1 (axn) = a−rn1−rs = O(n−s′) for some s′ > 1. Therefore, there exists a sequence

of Wiener process {WNT (t)}NT

t=1 independent of {Ni, Xij, ξi 1 ≤ i ≤ n, 1 ≤ j ≤ Ni, 1 ≤ k ≤ κ}

such that P {MNT > ns} ≤ C2n
−s′ with MNT = max1≤q≤NT |Sq −WNT (q)| and hence Borel-Cantelli

Lemma warrants that MNT
= Oa.s (n

s).
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The technique of summation by parts implies that

sup
x∈[h,1−h]

|ε̂ (x)− ε̂NT (x)| ≤ sup
x∈[h,1−h]

N−1
T c−1

f |Kh

(
X(NT) − x

)
σ
(
X(NT)

)
{WNT(NT)− SNT} (A.15)

+
∑NT−1

t=1
{Kh

(
X(t) − x

)
σ
(
X(t)

)
−Kh

(
X(t+1) − x

)
σ
(
X(t+1)

)
} ≤ h−1MNTN

−1
T c−1

f ×

sup
x∈[h,1−h]

[ 3CKCσ +
∑X(t)∈[x−h,x+h]

1≤t≤NT−1
|K{

(
X(t) − x

)
/h}σ

(
X(t)

)
−K{

(
X(t+1) − x

)
/h}σ

(
X(t+1)

)
| ].

Since |ab− cd| ≤ |a||b− d|+ |b||a− c|+ |a− c||b− d|, (A.15) is bounded by

h−1MNTN
−1
T c−1

f sup
x∈[h,1−h]

[ 3CKCσ +
∑X(t)∈[x−h,x+h]

1≤t≤NT−1
2CK×

|σ
(
X(t)

)
− σ

(
X(t+1)

)
|+ Cσ|K{

(
X(t) − x

)
/h} −K{

(
X(t+1) − x

)
/h}| ].

Therefore, ∃ constants L1
K,σ, L

2
K,σ, C and C ′ such that (A.15) is bounded by

h−1MNTN
−1
T c−1

f sup
x∈[h,1−h]

( 3CKCσ + L1
K,σ

∑X(t)∈[x−h,x+h]

1≤t≤NT−1
|X(t) −X(t+1)|+

L2
K,σh

−1
∑X(t)∈[x−h,x+h]

1≤t≤NT−1
|X(t) −X(t+1)| ) ≤ h−1MNTN

−1
T (C + C ′h) .

Namely supx∈[h,1−h] |ε̂ (x)− ε̂NT (x) | = Oa.s(h
−1ns−1) and by assumption (A5), one obtains

sup
x∈[h,1−h]

|ε̂NT (x)− ε̂ (x)| = Oa.s.(n
−t

′

), t
′
> 2/5.

This completes the proof. �

LEMMA A.10. Under Assumptions (A1)-(A6), as n→ ∞,

∥∥∥N−1
T

∑
i,j
R2

ij,ε (x)− ER2
11,ε (x)

∥∥∥
∞

= Oa.s.{
√
log n/ (nh)},

∥∥∥N−1
T

∑n

i=1

∑κ

k=1
R2

ik,ξk
(x)− (EN1)

−1
∑κ

k=1
ER2

1k,ξk
(x)

∥∥∥
∞

= Oa.s.{
√

log n/ (nh)},

with Rij,ε (x) and Rik,ξk (x) given in (A.6) and (A.7).
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Proof. Without loss of generality, let x ∈ [h, 1− h]. Clearly,

sup
x∈[h,1−h]

∣∣∣N−1
T

∑n

i=1

∑κ

k=1
R2

ik,ξk
(x)− (EN1)

−1
∑κ

k=1
ER2

ik,ξk
(x)

∣∣∣ ≤
(EN1)

−1
∑κ

k=1
sup

x∈[h,1−h]

∣∣∣n−1
∑n

i=1
R2

ik,ξk
(x)− ER2

ik,ξk
(x)

∣∣∣+
(EN1)

−1
∑κ

k=1
sup

x∈[h,1−h]

∣∣n(EN1)N
−1
T − 1

∣∣ ∣∣∣n−1
∑n

i=1
R2

ik,ξk
(x)

∣∣∣ .
It is next straightforward to verify Cramér’s Condition for R2

ik,ξk
(x)

∗
= R2

ik,ξk
(x) − ER2

ik,ξk
(x),

i.e., E{R2
ik,ξk

(x)
∗}r ≤ cr−2

∗ r!ER2
ik,ξk

(x)
∗
with r ≥ 2 and c∗ ∼ h−1. Again, by Lemma A.4, one

has supx∈[h,1−h]

∣∣∣n−1
∑n

i=1R
2
ik,ξk

(x)− ER2
ik,ξk

(x)
∣∣∣ = Oa.s.{

√
logn/ (nh)}, i.e., n−1

∑n
i=1R

2
ik,ξk

(x) =

U
(
h−1

)
+ Ua.s.{

√
log n/ (nh)}. Therefore,

sup
x∈[h,1−h]

∣∣∣N−1
T

∑n

i=1

∑κ

k=1
R2

ik,ξk
(x)− (EN1)

−1
∑κ

k=1
ER2

ik,ξk
(x)

∣∣∣ = Oa.s.{
√
log n/ (nh)}.

The proof for R2
ij,ε (x) is similar. �

Throughout the remainder, define the standardized noise processes as

ηn (x) = η (x) = {ε̂NT (x) +
∑κ

k=1
ξ̂k (x)}{σ2

ε,n (x) +
∑κ

k=1
σ2
ξk,n

(x)}−1/2, x ∈ [0, 1] (A.16)

with ε̂NT (x) , ξ̂k (x) , σ
2
ε,n (x) and σ

2
ξk,n

(x), respectively, given in Lemma A.9, (A.5), (A.8) and (A.9).

For any n and fixed x ,

L{η (x) | (Xij , Ni) , 1 ≤ j ≤ Ni, 1 ≤ i ≤ n} = N(0, 1) ,

and hence L{η (x)} = N(0, 1) which implies η (x) is a standardized Gaussian process.

To compute the extreme value of η (x) by Lemma A.1, one needs to study its correlation function. In

the following, denote xh−1 = t ∈
[
0, h−1

]
, mt = m(t) = E η (t), r (t, s) = E η (t) η (s) , rt = r (t, t) , r0t =

r (0, t) , r1,0 (t, s) = ∂r (α, β) /∂α|(t,s) , r1,1 (t, s) = ∂2r(α, β)/∂α∂β
∣∣
(t,s)

, r1,1(t, s) = ∂ E η (t) η (s) /∂t∂s,

t, s ∈
[
0, h−1

]
and C(t)

def
= Cth (K) , t ∈

[
0, h−1

]
, with Cth (K) as in (A.10), so that C(t) ≡ C (K) ,∀t ∈[

1, h−1 − 1
]
. Clearly, for any n,

m (t) = 0, r (t, t) = rt ≡ 1. (A.17)
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and it is easy to verify that for ∀t ∈
[
0, h−1

]
r1,0 (t, t) = 0, (A.18)

while for v2 = Var {η′ (t) |η (0) , η (t)}, see (15) in Zheng, Yang and Härdle (2010), s, t ∈
[
0, h−1

]
and

|t− s| ≥ 2,

rst = r1,0 (t, s) = 0, v2 = r1,1 (t, t) . (A.19)

LEMMA A.11. Under Assumptions (A1)-(A6)

lim
n→∞

sup
t∈[0,h−1]

|r1,1(t, t)− C(t)| = 0. (A.20)

There exist constants 0 < c < C <∞, 1 > δ > 0, such that for large n

inf
t,s∈[0,h−1],|t−s|<2

r (t, s) ≥ −1 + c > −1, sup
2>|t−s|≥δ, t,s∈[0,h−1]

r (t, s) ≤ 1− c < 1, (A.21)

sup
0<|t−s|<δ,t,s∈[0,h−1]

max[r1,0 (t, s) / (t− s) , {1− r2 (t, s)}/ (t− s)
2
] ≤ C,

inf
0<|t−s|<δ,t,s∈[0,h−1]

min[r1,0 (t, s) / (t− s) , {1− r2 (t, s)}/ (t− s)
2
] ≥ c, (A.22)

sup
0<|t−s|<δ,t,s∈[0,h−1]

r1,1 (t, t)− r21,0 (t, s) /
(
1− r2

)
(t− s)

2 ≤ C,

inf
0<|t−s|<δ,t,s∈[0,h−1]

r1,1 (t, t)− r21,0 (t, s) /
(
1− r2

)
(t− s)

2 ≥ c, (A.23)

sup
|t−s|<2,t,s∈[0,h−1]

|r21,0(t, s)/{1− r2(t, s)}| ≤ C (A.24)

inf
|t−s|<2,t,s∈[0,h−1]

|r1,0 (t, s) / (1 + r)|√
r1,1 (t, t)− r21,0 (t, s) / (1− r2)

≥ c (A.25)

Proof. See Appendix C, Zheng, Yang and Härdle (2010). �

In what follows, the “double sum” method of Piterbarg (1996) will be applied to study the extreme

value distribution of the sequence of Gaussian processes η (t) over the growing interval
[
0, h−1

]
. Partition
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the interval
[
1, h−1 − 1

]
as 1 = a1 < b1 < a2 < b2 < · · · < aN < bN = h1 − 1, assuming Il = [al,bl] , l =

1, · · · , N, I ′l = [bl, al+1] , l = 1, · · · , N − 1 and the length of Il and I
′
l are λn and 2, respectively, where

(λn + 2)N = h−1 and λn → ∞, N → ∞ as n→ ∞.

LEMMA A.12. Under Assumptions (A1)-(A6), for u = un satisfying 2
√
C (K)Nλnφ (un)φ (0) →

− log (1− α) with C (K) given in (3.5)̇

lim
n→∞

P{supt∈[0,1)∪N−1
l=1 I′

l∪(h−1−1,h−1] |η (t)|} ≤ u = 1.

Proof. In LemmaA.1, for ∀ [a, b] ⊆ [0, h−1], one computes according to Cierco-Ayrolles et al (2003),

Zheng, Yang and Härdle (2010)

E
[(
Uη
u [a, b] +Dη

−u [a, b]
)
I{|X(a)|≤u}

]
= (A.26)

2φ (u)

{
φ (0)

∫ b

a

√
r1,1 (t, t)dt−

∫ b

a

(
φ (0)

√
r1,1 (t, t)

[
1− Φ

{√
r1,1 (t, t)

√
1− rat
1 + rat

u

v

}]

+
r1,0 (t, a)√
1− r2at

φ

(√
1− rat
1 + rat

u

)
Φ

{
r1,0 (t, a)

1 + rat

u

v

})
dt−

∫ b

a

(
φ (0)

√
r1,1 (t, t)×[

1− Φ

{√
r1,1 (t, t)

√
1 + rat
1− rat

u

v

}]
− r1,0 (t, a)√

1− r2at
φ

(√
1 + rat
1− rat

u

)
Φ

{
−r1,0 (t, a)
1− rat

u

v

})
dt

}
.

According to (A.20) and (A.24), it is clear that as n→ ∞,

sup
1≤l≤N−1

E
[(
Uη
u [bl, bl + 2] +Dη

−u [bl, bl + 2]
)
I{|X(bl)|≤u}

]
= O{φ (u)} .

Hence, the upper bound of (A.1) shows that, if 2
√
C (K)Nλnφ (un)φ (0) → − log (1− α) as n→ ∞,

∑N−1

l=1
P{supI′

l′
|η (t)| > u} = O [2N {1− Φ(u)}] +O{Nφ (u)} = O(1) , (A.27)

Similarly, while t ∈ [0, 1) ∪
(
h−1 − 1, h−1

]
, one can show that

P{supt∈[0,1)∪(h−1−1,h−1] |η (t)| > u} = O{1− Φ(u)}+O{φ (u)} = O(1) . (A.28)
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Finally, this lemma is proved by

P{supt∈[0,1)∪N
l′=1

Il′∪(h−1−1,h−1] |η (t)| > u} ≤

P{supt∈[0,1)∪(h−1−1,h−1] |η (t)| > u}+
∑N−1

l=1
P{supI′

l
|η (t)| > u}.

�

LEMMA A.13. Under Assumptions (A1)-(A6), for u = un satisfying 2
√
C (K)Nλnφ (un)φ (0) →

− log (1− α) with C (K) given in (3.5)̇,

lim
n→∞

P{sup∪N
l=1Il

|η (t)| ≤ un} = 1− α.

Proof. First, in order to apply Lemma A.1, we rewrite

E
[(
Uη
u [al, bl] +Dη

−u [al, bl]
)
I{|X(al)|≤u}

]
=

∫ al+2

al

+

∫ bl

al+2

= I1l + I2l.

Similar to Lemma A.12, one also can show that as n→ ∞,

sup
1≤l≤N

I1l = O{φ (u)} . (A.29)

Further, since ralt = r1,0 (t, al) = 0, v2 = r1,1 (t, t) for ∀t ∈ [al + 2, bl], see (A.19), one can simplify

(A.26) as

I2l = 2φ (u)φ (0)

∫ bl

al+2

√
r1,1 (t, t)dt− 4φ (u)φ (0) {1− Φ(u)}

∫ bl

al+2

√
r1,1 (t, t)dt,

hence if 2
√
C (K)Nλnφ (un)φ (0) → − log (1− α), as n→ ∞,

sup
1≤l≤N

∣∣∣I2l − 2λnφ (u)φ (0)
√
C (K)

∣∣∣ = O{φ (u)λn} . (A.30)

Therefore, (A.29) and (A.30) show that

sup
1≤l≤N

∣∣∣E [(
Uη
u [al, bl] +Dη

−u [al, bl]
)
I{|X(al)|≤u}

]
− 2λnφ (u)φ (0)

√
C (K)

∣∣∣ = O{φ (u)λn} . (A.31)

Now consider the second order moment and it is easy to verify that

E
(
Uη
u [al, bl] +Dη

−u [al, bl]
)[2]

= 2EUη
u [al, bl]

[2]
+ 2E

(
Uη
u [al, bl]D

η
−u [al, bl]

)
.
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By Lemma A.2 and the Hölder inequality

EUη
u [al, bl]

[2]
(A.32)

=

∫
s,t∈[al,bl]

2

∫
(0,∞)2

|η′1| |η′2| pηt;ηs;η′
t;η

′
s
(u;u; η′1; η

′
2) dη

′
1dη

′
2dtds

=

∫
s,t∈[al,bl]

2

E{η′ (t)+ η′ (s)+ |η (t) = η (s) = u}pη(t),η(s) (u, u) dtds

≤
∫
s,t∈[al,bl]

2

E1/2[{η′ (t)+}2 |η (t) = η (s) = u ]E1/2[{η′ (s)+}2 |η (t) = η (s) = u ]pη(t),η(s) (u, u) dtds

=

∫
2≤|s−t|,s,t∈[al,bl]

2

+

∫
δ≤|s−t|<2,s,t∈[al,bl]

2

+

∫
|s−t|<δ,s,t∈[al,bl]

2

= I1l + I2l + I3l,

where pη(t),η(s) (u, u) = (2π
√
1− r2)−1 exp

{
−u2/ (1 + r)

}
, see Azäıs and Wschebor (2009) p.96, Gaus-

sian Rice Formula, and δ ∈ (0, 1) which does not depend on n, see Lemma A.11.

For I1l , it is cleat that

E
[
{η′ (t)+}2 |η (t) = η (s) = u

]
≤ E

[
{η′ (t)}2 |η (t) = η (s) = u

]
≤ E2 {η′ (t) |η (t) = η (s) = u}+ Var {η′ (t) |η (t) = η (s) = u} ,

E {η′ (t) |η (t) = η (s) = u} = r1,0 (t, s)u/ (1 + r) , (A.33)

Var {η′ (t) |η (t) = η (s) = u} = r1,1 (t, t)− r21,0 (t, s) /
(
1− r2

)
, (A.34)

see Azäıs and Wschebor (2009) p.96. If |t− s| ≥ 2, then rst = r1,0 (t, s) = 0 which implies that

E {η′ (t) |η (t) = η (s) = u} = 0 and Var {η′ (t) |η (t) = η (s) = u} = r1,1 (t, t). Hence

I1l ≤
∫
2≤|s−t|,s,t∈[al,bl]

2

√
r1,1 (t, t)

√
r1,1 (s, s)

1

2π
exp

(
−u2

)
dtds, (A.35)

which implies that

sup
1≤l≤N

I1l = O{φ2 (u)λ2n}. (A.36)

For I2l , similarly,

I2l ≤
∫
δ≤|s−t|<2,s,t∈[al,bl]

2

{r21,0 (t, s)u2/ (1 + r)
2
+ r1,1 (t, t)}1/2× (A.37)

{r21,0 (s, t)u2/ (1 + r)
2
+ r1,1 (s, s)}1/2

1

2π
√
1− r2

exp{−u2/ (1 + r)}dtds.
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By (A.21), for large n , ∃c > 0 such that sup|t−s|≥δ>0 (1 + r) ≤ 2− c and inf |t−s|≥δ>0

∣∣1− r2
∣∣ ≥ c > 0,

so ∃ constants L1, K1 > 0 such that

sup
1≤l≤N

I2l ≤ L1φ {(1 +K1)u}λn. (A.38)

One can bound I3l using the inequalities (4.10) and (4.11), Azäıs and Wschebor (2009) p.97, i.e.,

for Z ∼ N
(
µ, σ2

)
, if µ > 0, E (Z+)

2 ≤ µ2 + σ2 and if µ < 0, E (Z+)
2 ≤

(
µ2 + σ2

)
{1− Φ(−µ/σ)} +

µσφ (µ/σ). Since η′ (t) , η′ (s) conditioning on η (t) = η (s) = u have a joint Gaussian distribution, see

Azäıs and Wschebor (2009) p.96, we denote

µ1 = E {η′ (s) |η (t) = η (s) = u} , µ2 = E {η′ (t) |η (t) = η (s) = u} , (A.39)

σ2
1 = Var {η′ (s) |η (t) = η (s) = u} , σ2

2 = Var {η′ (t) |η (t) = η (s) = u} . (A.40)

Next, we claim that while 0 < |s− t| < δ , µ1 and µ2 have opposite signs. In fact, if 0 < |s− t| < δ, by

(A.22), for large n, r1,0 (t, s) ∼ (t− s) and r1.0 (s, t) ∼ (s− t) and by (A.21), inf |t−s|<δ (1 + r) ≥ c > 0,

which imply that µ1µ2 < 0, see (A.33). Further, according to (A.25), (A.33) and (A.34), for large n, ∃

constant L2 > such that inf |t−s|<2,t,s∈[0,h−1] |µ2|σ−1
2 ≥ L2u. Without loss of generality, by (A.39) and

(A.40), let µ1 > 0 > µ2, then

I3l ≤
∫
|s−t|<δ,s,t∈[al,bl]

2

√
µ2
1 + σ2

1

[(
µ2
2 + σ2

2

)
{1− Φ(−µ2/σ2)}+

µ2σ2φ (µ2/σ2)]
1/2 1

2π
√
1− r2

exp{−u2/ (1 + r)}dtds.

It follows from (A.22) and (A.23) that for large enough n, ∃ constants L3, L4, L5,K2 > 0 such that

sup
1≤l≤N

I3l ≤
∫
|s−t|<δ,s,t∈[al,bl]

2

L3

√
(s− t)

2
u2 + (s− t)

2× (A.41)

[{(s− t)
2
u2 + (s− t)

2} {1− Φ(L2u)} − (s− t)
2
uφ (−L2u)]

1/2 |s− t|−1
φ (u) dsdt

≤ L5δφ {(1 +K2)u}λn.

Hence, if 2
√
C (K)Nλnφ (un)φ (0) → − log (1− α), as n→ ∞, (A.36), (A.38) and (A.41) imply that

sup
1≤l≤N

EUη
u [al, bl]

[2]
= O{φ (u)λn} .
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Similarly, one has E
(
Uη
u [al, bl]D

η
−u [al, bl]

)
= o {φ (u)λn} and then

sup
1≤l≤N

E
(
Uη
u [al, bl] +Dη

−u [al, bl]
)[2]

= O{φ (u)λn} . (A.42)

In fact, by Lemma A.1, (A.31) and (A.42) show that, as n→ ∞,

P{supIl |η (t)| > u} = 2
√
C (K)φ (u)φ (0)λn + O{φ (u)λn} . (A.43)

Finally, since E η (t) η (s) = 0 while t ∈ Il, s ∈ Im, l ̸= m, then η (t) , η (s) for t ∈ Il, s ∈ Im, l ̸= m

are independent Gaussian processes and hence

P{sup∪N
l=1Il

|η (t)| ≤ u} =
∏N

l=1
P{supIl |η (t)| ≤ u}

=
∏N

l=1

[
1− P

{
supIl |η (t)| > u

}]
= exp(

∑N

l=1
log

[
1− P{supIl |η (t)| > u}

]
)

= exp(
∑N

l=1
log[1− 2

√
C (K)φ (u)φ (0)λn + O{φ (u)λn}])

= exp[−2N
√
C (K)φ (u)φ (0)λn + O{Nφ (u)λn}].

Since 2
√
C (K)Nλnφ (u)φ (0) → − log (1− α) as n → ∞, then it follows from the definitions of

N,λn, un that limn→∞ P{sup∪N
l=1Il

|η (t)| ≤ u} = 1− α. �

The quantileQh (α) given in (3.5) satisfies 2
√
C (K)Nλnφ {Qh (α)}φ (0) → − log (1− α), as n→ ∞,

then Lemmas A.12 and A.13 imply that limn→∞ P{sup[0,1] |η (x)| ≤ Qh (α)} = 1− α, i.e.,

lim
n→∞

P
[
ah{sup[0,1] |η (x)| − ah} − log{

√
C (K)/ (2π)} ≤ − log{− log

√
1− α}

]
= 1− α. (A.44)

In particular, sup[0,1] |η (x)| = Op(
√
log n).

LEMMA A.14. Under Assumptions (A1)-(A6), let ∆3,n (x) = σ̃n (x)σ
−1
n (x) − 1,x ∈ [0, 1], then

∆3,n (x) = U (h) + Ua.s.{
√
log n/(nh2)} and for ε̂ (x) , σ2

n (x) given in (3.4) as n→ ∞

sup
[0,1]

∣∣∣σ−1
n (x) {ε̂NT (x) +

∑κ

k=1
ξ̂k(x)} − η (x)

∣∣∣ = sup
[0,1]

|∆3,n (x)| |η (x)|

= Op{h
√
log n+

√
log 2n/(nh2)}.
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Proof. It follows from the definition of η (x) given in (A.16) that |∆3,n (x)| =
∣∣σ̃n (x)σ−1

n (x)− 1
∣∣ ≤∣∣σ̃2

n (x)σ
−2
n (x)− 1

∣∣ in which

σ̃2
n (x) = f−2 (x)D−2

x (K)N−1
T {N−1

T

∑
i,j
R2

ij,ε(x) +N−1
T

∑
k,i
R2

ik,ξk
(x)}.

Lemma A.10 implies N−1
T

∑
i,j R

2
ij,ε(x) = ER2

ij,ε(x)+Ua.s{
√
log n/(nh2)} and N−1

T

∑
k,iR

2
ik,ξ(x) =

(EN1)
−1

∑κ
k=1 ER

2
ik,ξk

(x) + Ua.s.{
√
log n/(nh2)}. Also, one has NT = nEN1 + Ua.s.(

√
log n/n) and

ER2
ij,ε(x) + (EN1)

−1
∑κ

k=1 ER
2
ik,ξk

(x) = U
(
h−1

)
. Therefore,

σ̃2
n (x) = f−2 (x)D−2

x (K) [(nEN1)
−1

+ Ua.s.(
√

log n/n)]×

[ER2
ij,ε(x) + (EN1)

−1
∑κ

k=1
ER2

ik,ξk
(x) + Ua.s.{

√
log n/(nh2)}]

= f−2 (x)D−2
x (K) (nEN1)

−1 {ER2
ij,ε(x) + (EN1)

−1
∑κ

k=1
ER2

ik,ξk
(x)}+

Ua.s.(
√
log n/n){ER2

ij,ε(x) + (EN1)
−1

∑κ

k=1
ER2

ik,ξk
(x)} = σ2

n (x) + Ua.s.{
√

logn/(nh2)},

which implies that σ̃2
n (x)σ

−2
n (x) = 1 + Ua.s.{

√
log n/(nh2)} and hence this lemma holds. �

Proof Of Proposition 3.1. The proof is trivial. �

Proof Of Theorem 3.1. The decomposition (A.2) implies that

σ−1
n (x) {m̂ (x)−m (x)} = σ−1

n (x) {m̃ (x)−m (x)}+ σ−1
n (x) ẽ(x). (A.45)

As (A.44) implies that sup[0,1] |η (x)| = Op(
√
log n), Lemma A.14 leads to

sup[0,1] σ
−1
n (x)

∣∣∣ε̂NT (x) +
∑κ

k=1
ξ̂k (x)

∣∣∣ = Op(
√
log n).

and hence by Lemma A.9, sup[0,1] σ
−1
n (x)

∣∣∣ε̂ (x) +∑κ
k=1 ξ̂k (x)

∣∣∣ = Op(
√
logn). Therefore, Lemma A.8

implies that

sup[0,1] σ
−1
n (x)

∣∣∣ẽ(x)− {ε̂ (x) +
∑κ

k=1
ξ̂k (x)}

∣∣∣ = Op{h
√
log n+

√
log 2n/ (nh2)}. (A.46)

It follows from (A.46), Lemmas A.9 and A.14 that for t′ > 2/5 (assumption A5 ),

sup[0,1]
∣∣σ−1

n (x) |ẽ(x)| − |η (x)|
∣∣ = Op{h

√
log n+

√
log 2n/ (nh2) +

√
hn−t′+1/2},
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Further, (A.46) and Lemma (A.7) warrants that

sup[0,1]
∣∣σ−1

n (x) |m̂ (x)−m (x)| − |η (x)|
∣∣ = (A.47)

Op{
√
nh5/2 + h

√
log n+

√
log 2n/ (nh2) +

√
hn−t′+1/2},

and therefore

ah supx∈[0,1]

∣∣σ−1
n (x) |m̂ (x)−m (x)| − |η (x)|

∣∣ (A.48)

= Op[
√
log h−1{

√
nh5/2 + h

√
log n+

√
log 2n/ (nh2) +

√
hn−t′+1/2}] = Op (1) .

Finally, by Slutsky’s Theorem, (A.44) and (A.48) show that

lim
n→∞

P
[
ah{sup[0,1] σ−1

n (x) |m̂ (x)−m (x)| − ah} − log{
√
C (K)/ (2π)} ≤ − log

{
− log

√
1− α

}]
= 1− α,

which is

lim
n→∞

P{supx∈[0,1] σ
−1
n (x) |m̂ (x)−m (x)| ≤ Qh (α)} = 1− α.

�
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Fig 1. Plots of simulated data (circles) and trajectories (solid lines): (a) n = 20, (b) n = 50, (c) n = 100,
(d) n = 200.
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Fig 2. Plots of 99% SCC (upper and lower dotdashed lines), 95% SCC (upper and lower dotted lines),
local linear estimator (median dashed line) and true mean function (median solid line): (a) n = 20, (b)
n = 50, (c) n = 100, (d) n = 200.
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Fig 3. Plots of the growth curve data, local linear estimator (median dashed line), SCC (upper and
lower thick lines) and SCI (upper and lower solid lines): (a) the data, (b) confidence level = 90%, (c)
confidence level = 95%, (d) confidence level = 99%
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