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Abstract Motivated by increment process modeling for two correlated random
and non-random systems from a discrete-time asset pricing with both risk free
asset and risky security, we propose a class of semiparametric regressions for a
combination of a non-random and a random system. Unlike classical regressions,
mean regression functions in the new model contain variance components and the
model variables are related to latent variables, for which certain economic inter-
pretation can be made. The motivating example explains why the GARCH-M of
which the mean function contains a variance component cannot cover the newly
proposed models. Further, we show that statistical inference for the increment pro-
cess cannot be simply dealt with by a two-step procedure working separately on the
two involved systems although the increment process is a weighted sum of the two
systems. We further investigate the asymptotic behaviors of estimation by using
sophisticated nonparametric smoothing. Monte Carlo simulations are conducted
to examine finite-sample performance, and a real dataset published in Almanac of
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China’s Finance and Banking (2004 and 2005) is analyzed for illustration about
the increment process of wealth in financial market of China from 2003 to 2004.

Keywords Non-random systems · Random systems · Semiparametric regression ·
Variance built-in Mean

JEL classification: C00; C14; J01; J31

1 Introduction

The standard regression paradigm separates mean and variance effects in the sense
that the scale of the stochastic error does not enter the conditional mean effect
given the explanatory variable X. This is also true for most of the time series mod-
els of autoregressive type with a few exceptions like e.g. the GARCH −M model,
see Tsay(2002). Discrete versions of many continuous time dynamics though nat-
urally give motivation for considering dependence of the mean function on the
conditional variance (or standard deviation) given X. Stochastic differential equa-
tions, as studied by Karoui and Peng (1997) in their discretized form may be seen
as special cases of

E{Ȳ (t)|X(t)} = f [θ(t), Y {X(t)}, Z{X(t)}]∆1/2
t , (1.1)

where f is a given regression function and ∆t is the time period. In (1.1), the
parameter vector θ(t) is time-dependent, Y {X(t)}, Ȳ (t) and Z{X(t)} depend on
an observable variable function X(t). Further, Y {X(t)} and Ȳ (t) are observable,
while Z{X(t)} is an unobservable random variable satisfying

Z2{X(t)} = Var{Ȳ (t)|X(t)}. (1.2)

Here the basic difference to classical regressions (including the classical time series
models) is that the mean E{Ȳ (t)|X(t)} of (1.1) contains a standard deviation Z(x)
(or variance Z2(x)) and depends on the latent variable X(t). The main differ-
ence between diffusion processes (or forward stochastic differential equations) and
forward-backward stochastic differential equations will be discussed in the next
section.

Briefly speaking, the dynamics of Ȳ (t) is determined by two systems, one is
non-random (e.g. a money market instrument or bond) and the other has a random
disturbance (e.g. a stock). Allocating randomly the asset to the two systems results
in our new model. The new model can describe an increment process (e.g. wealth
increment) and may be applied to different scientific fields such as mathematical
finance. We adopt a two-step procedure with estimating parameters in the two
systems separately and then working on the model about increment process of
interest. This technique leads us to investigating statistical properties such as
the distribution of the increment process and confidence interval construction for
parameters; for details see the next section. The proposed model contains well
known models, such as linear, nonlinear and varying coefficient models, as its
special cases.

The GARCH-M is also of a structure in which the mean function contains the
variance function. We will give a brief explanation about the differences between
our modeling and the GARCH-M in Section 2.1 below.
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The paper is organized in the following way. In Section 2 we first briefly de-
scribe the motivation from a problem arising in asset pricing with one risk-free asset
and one risky security.Consequently, a new model and its extensions are proposed
in Section 2. For the model with varying coefficients, some estimation methods
are introduced and the asymptotic properties are investigated in Section 3. Sec-
tion 4 contains the estimation for nonlinear models. We separate these two cases,
although the estimation in Section 3 can be a special case of that in Section 4,
because of its importance of the model under linear structure. Monte Carlo studies
are given in Section 5 for illustration and an empirical application is investigated
in Section 6. The proofs of the theorems are presented in the Appendix.

2 Modeling

In this section, we start with two examples to motivate the modeling with varying
coefficients under linear structure, and then extend them to the ones with nonlinear
structure.

2.1 Models under linear structure

Consider the varying coefficient regression:

Ȳ (ti) = [a(ti) + b(ti)Y (X(ti)) + c(ti)Z{X(ti)}]∆
1/2
i + Z{X(ti)}ε(ti) (2.1)

for i = 1, · · · , n− 1, where ∆i = ti+1 − ti is the time period, a(t), b(t) and c(t) are
time-dependent parameters, X(ti) and Y {X(ti)} are random variables observed

at ti, and Ȳ (ti) = [Y (X(ti+1)) − Y {X(ti)}]/∆
1/2
i , Z{X(ti)} is an unobservable

random variable valued at ti, and {ε(ti)} is a sequence of unobservable independent
standard normal random variables independent of X(ti). A special case is that all
the parameters a(·), b(·), and c(·) are constants.

A very simple example is geometric Brownian motion where the stock dynamics
X(t) is:

dX(t)/X(t) = µdt+ σdW (t)

Discretising at ti with steps ∆i as defined above yields:

X(ti+1)−X(ti) = µX(ti)∆i + σX(ti)∆
(1/2)
i ε(ti).

A further motivating example for (2.1) is as follows. For discrete-time asset pricing,
one may think of two basic securities: the risk free asset (e.g., money market
instrument or bond) and the risky asset (e.g., stock). The risk free asset is with
price per unit P0(t) governed by

P0(ti+1)− P0(ti) = r(ti)P0(ti)(ti+1 − ti), (2.2)

where r(t) is the short rate. The risky asset is traded and the price process X(t)
of the stock is modeled (similar to the example above) by a linear equation as:

X(ti+1)−X(ti) = µ(ti)X(ti)(ti+1 − ti) + σ(ti)X(ti)(ti+1 − ti)
1/2ε(ti), (2.3)
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where µ(t) and σ(t) > 0 are unknown functions. Let π0(ti) and π1(ti) be the
amounts of wealth invested respectively in bond and stock at time ti, and n0(ti)
and n1(ti) be the numbers respectively of bond and stock. Further, denote the port-
folio of bond and stock as Y {X(ti)} = n0(ti)P0(ti) + n1(ti)X(ti). Let Z{X(ti)} =
σ(ti)π1(ti) = σ(ti)n1(ti)X(ti). Assume that the wealth process Y {X(ti)} is self-
financing (Karatzas and Shreve 1998). Then the average wealth process Ȳ (t) sat-
isfies

Ȳ (ti) =
[
r(ti)Y {X(ti)}+

µ(ti)− r(ti)

σ(ti)
Z{X(ti)}

]
∆

1/2
i + Z{X(ti)}ε(ti). (2.4)

The proof for (2.4) is given in the Appendix. Note that Z{X(t)} is in general
unobservable in the financial market because σ(t) is an unknown function and
π1(t) is unobservable. However Z{X(t)} is certainly a function of interest because
it is related to the amount π1(t) of risky investment.

Model (2.4) is of course a special case of the dynamics described in (2.1). When
the data X(ti) and Y (ti) are available, we can infer the parameter functions a(t),
b(t) and c(t), and the variable Z2{X(t)}, and then we can predict future increments
Ȳ (t) and risky investments Z{X(t)}.

A very natural concern is that, to fully use the information provided by ob-
served data, we would first separately estimate the parameters in (2.2) and (2.3),
and then define the estimators of the associated parameters in model (2.1) or (2.4),
and investigate the statistical inference. We still use the first example to explain
its disadvantages. For point estimation, it is possible because the point estimation
does not involve a random relationship between the asset allocation of n0(ti) and
of n1(ti). However, this relation does have impact on statistical inference so that
such a two-step estimation does not very much help for inferring model (2.1) or
(2.4). First, note that in our case, the model of interest is total asset or increment,
but in asset pricing, the numbers n0(ti) and n1(ti) respectively of risk free and
risky assets are highly related. By model (2.2) and (2.3) only, one has difficulty
to study some statistical properties, such as the distribution of average increment
Ȳ (ti) of wealth. It also causes the difficulty for, say, confidence region construction
for the parameters in (2.1) or (2.4), when we do it only through the confidence
regions for the parameters in models (2.2) and (2.3). This is because, firstly, cor-
relation between the data in models (2.2) and (2.3) can influence the confidence
regions (including the coverage probability and shape of the confidence regions)
for the parameters in model (2.1) or (2.4); Secondly, the confidence regions for
the parameters in models (2.2) and (2.3) can not be directly transformed into the
confidence regions for the associated parameters in model (2.1) or (2.4). Therefore,
an indirect investigation in terms of model (2.1) or (2.4) is necessary.

When the normality condition on ε(t) is not supposed to hold, (2.1) becomes
linear semiparametric regression model{

E(Ȳ (t)|X(t)) = [a(t) + b(t)Y {X(t)}+ c(t)Z{X(t)}]∆1/2
t ,

Var(Ȳ (t)|X(t)) = Z2{X(t)} for t ∈ [0, T ].
(2.5)

From (2.1) and (2.5), we can see the main difference from the standard semi-
parametric regression is as follows. In (2.5), the regression function contains an
unknown deviation function Z(x), and the observations Ȳ (t) and Y {X(t)} depend
on an observable variable X(t). In this case, these models are different from the
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GARCH-M, a time series model. In the GARCH-M, although the mean term also
contains the variance, the variance is a squared sum of white noises and then is
independent of model variables (Tsay 2002). In our approach, however, Z{X(t)}
is dependent on X(t) where both Z{X(t)} and X(t) have special meanings such as
price process and investment process, respectively. Further our models are different
from the classical diffusion processes because (2.4) is determined by two systems
(2.2) and (2.3), and then Ȳ (t) and Y {X(t)} depend on yet another variable X(t).
Note that the standard diffusion process does not have this property although
drift functions in some diffusion processes also contain variance functions; see for
example Barndorff-Nielsen and Shephard (2002), and Fan (2005).

2.2 Extension

Note that the above semiparametric models are of linear structure in the sense
that the conditional expectation of Ȳ (t) is linearly related to the time-dependent
parameters a(t), b(t) and c(t). Such a linearity would need a check for it. However,
this is beyond the scope of this paper, we leave it to a further study. By contrast,
some diffusion processes are nonlinear in parameters (Ait-Sahalia (1996), Chan et

al. (1992), Fan et al. (2003), and Fan 2005). We can verify that if models (2.2)
and (2.3) are nonlinear in parameters, the resulting model (2.1) or (2.4) will be
nonlinear accordingly. Then nonlinear extension of model (2.1) or (2.4) is of in-
terest. For flexibility of modeling the above process, a nonlinear semiparametric
regression with a built-in standard deviation can be defined as{

E{Ȳ (t)|X(t)} = f [θ(t), Y {X(t)}, Z{X(t)}]∆1/2
t ,

Var{Ȳ (t)|X(t)} = Z2{X(t)} for t ∈ [0, T ],
(2.6)

where f is a given function and θ(t) is an unknown p-dimensional parameter vector
depending on time t.

3 Estimation for linear semiparametric regression

We now consider estimation for model (2.5). First, for studying the asymptotic
properties of the estimators defined below, we need the (locally) strict stationarity
of the sequence of X(ti) in (2.5). However, it is usually not the case because X(ti)
are generated from (2.3) and this equation produces unstationary X(ti). To satisfy
the stationarity condition, a common way is to make a transform on X(ti) . For
example a familiar transformation is S(ti) = logX(ti). The process S(ti) is then
often a (locally) stationary process. Correspondingly, P0(ti) in (2.2) should be
transformed as P (ti) = logP0(ti). S(ti) and P (ti) can then satisfy an equation
similar to (2.1) or (2.5). Therefore, without loss of generality, we assume that
X(ti) are (locally) stationary. This is a main condition assumed in the following
theorems.

As is stated in Subsection 2.1, Z2(x) is in general unobservable. But the sec-
ond equation of (2.5) shows that Z2(x) is a conditional expectation of Ȳ (t) given
X(t) = x. Then we can use nonparametric method to estimate Z2(x) by his-
torical observations (X(ti), Ȳ (ti)) (i = 1, · · · , n) of (X(t), Ȳ (t)) (see for example
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Fan (2005), Fan et al (2003), Cai (2007) and Wand and Jones (1995), Simonoff
(1996)). Note that, compared with the deviation term Z(x), the expectation term

[a(t) + b(t)Y (t) + c(t)Z{X(t)}]∆1/2
t is negligible if ∆t is small enough. Then, a

simple estimator of the variance is defined as

Ẑ2(x0) =

∑n−2
i=1 Ȳ 2(ti)Kh{X(ti)− x0}∑n−2

i=1 Kh{X(ti)− x0}
, (3.1)

where Kh(x) = K(x/h)/h, K(x) is a kernel function satisfying the regularity condi-
tions given below and h is the bandwidth depending on n. We use this estimation
mainly for ease of exposition, other smoothing methods, such as local polyno-
mial(Fan and Gijbels 1996), may also be used.

Let X = {X(t1), · · · , X(tn)} and Ȳ = {Ȳ (t1), · · · , Ȳ (tn)}. Without loss of
generality, suppose that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T . We need the following
conditions: ∆ti = ti+1 − ti = O(T/n) for i = 1, · · · , n− 2, the kernel function K(u)
and the sequence {X(t1), · · · , X(tn)} respectively satisfy the following conditions:

C1) K(u) is symmetric with respect to u = 0, has a bounded derivative and support

(−1, 1), and ∫ 1

−1
K(u)du = 1, σ2

K =
∫ 1

−1
u2K(u)du ̸= 0,∫ 1

−1
|u|jKk(u)du < ∞ for j ≤ k = 1, 2.

(3.2)

C2) X(t1), · · · , X(tn) are ρ-mixing dependent; the ρ-mixing coefficients ρ(l) satisfy
ρ(l) → 0 as l → ∞, where

ρ(l) = sup
Xi,Xi+l∈X

|E(Xi+lXi)− E(Xi+l)E(Xi)|
(Var(Xi+l)Var(Xi))1/2

(3.3)

with Xi = X(ti).
Condition C1) is standard and condition C2) is commonly used for weakly

dependent process; see for example Rosenblatt (1956, 1970), Kolmogorov and
Rozanov (1960), Bradley and Bryc (1985), Lu and Lin (1997). Denote Jj

K =∫ 1

−1
ujK2(u)du for j = 0, 1, 2. Furthermore, some common stochastic processes

satisfy condition C2) as shown by Bradley (2005). We have the following theorem.

Theorem 1 In addition to conditions C1) and C2), assume that in model (2.5), X(ti) ∈
(x0 − h, x0 + h) have a common probability density p(x); both the functions p(x) and

Z(x) have two continuous derivatives; {X(ti) : X(ti) ∈ (x0−h, x0+h)} is a stationary

Markov process; the ρ-mixing coefficients satisfy ρ(l) = ρl for 0 < ρ < 1; and a(t), b(t)
and c(t) are bounded on [0, T ]. Then as nh → ∞, nh5 → 0 and nh∆2

t → 0,

√
nh{Ẑ2(x0)− Z2(x0)}

L−→ N(0, J0
KZ4(x0)/p(x0)).

The proof of Theorem 1 is presented in the Appendix. The asymptotic normal-
ity given in this theorem is similar to that of classical nonparametric estimation.
Here we only need the conditions locally in the neighbor x0 (x0−h, x0+h) because
the kernel estimation only utilizes the data around x0. Also, from the proof we can
see the ρ-mixing condition can be replaced by pl(u, v) − p(u)p(v) = O(ρl), where
pl(u, v) is the joint probability density of {X(ti),X(ti+l))}n−2

i=1 and 0 < ρ < 1.
Furthermore, the proof of this theorem indicates that when the expectation

term [a(t)+b(t)Y (t)+c(t)Z{X(t)}]∆1/2
t is large (when∆t is large), the conventional
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estimator defined in (3.1) may be no longer consistent. Thus, we define a bias
corrected estimator for Z2(x0) in terms of the difference between Ȳ (ti+1) and
Ȳ (ti) for successive time points ti and ti+1 as

Z̃2(x0) =

∑n−2
i=1 {Ȳ (ti+1)− Ȳ (ti)}2Kh{X(ti)− x0}

2
∑n−2

i=1 Kh{X(ti)− x0}
. (3.4)

The above estimator is a new one designed for the model that has an unspecified
mean function. The following theorem states the asymptotical normality.

Theorem 2 In addition to the conditions of Theorem 1, the conditional probability

density pl(v|u) of X(ti+l) given X(ti) is free of i for X(ti+l), X(ti) ∈ (x0−h, x0+h),
and has two continuous derivatives. Then as nh → ∞, nh5 → 0 and nh∆4

t → 0,

√
nh{Z̃2(x0)− Z2(x0)}

L−→ N(0, J0
KZ4(x0)/p(x0)).

The proof is also postponed to the Appendix.
As is shown in the above two theorems, we can estimate the nonparametric

function Z(x). Furthermore, according to (2.2) and the commonly used estimation
for forward stochastic differential equations, we can also estimate σ(t) whose esti-
mator is denoted by σ̂(t). From the relation between Z{X(t)}, n1(t) and π1(t), we
can see that both n1(t) and π1(t) can be estimated respectively with

n̂1(t) =
Ẑ{X(t)}
X(t)σ̂(t)

or ñ1(t) =
Z̃{X(t)}
X(t)σ̂(t)

, (3.5)

π̂1(t) =
Ẑ{X(t)}

σ̂(t)
or π̃1(t) =

Z̃{X(t)}
σ̂(t)

. (3.6)

These estimators show that although in some situations, such as in a natural
environment, n1(t) (the number of groups of a species defined in Section 2) cannot
be directly observed, it can be estimated.

We now turn to estimating β(t) = (a(t), b(t), c(t))τ . In the remainder of this
section, for the convenience of representation, we assume that ∆i = ∆ for all i.
First, we plug the estimator Ẑ or Z̃ into the first equation of (2.5). Then by the
local polynomial smoothing (Fan and Gijbels 1996), we can obtain an estimator
of β(t) as

β̂(t) = ∆−1/2(D̂τWD̂)−1D̂τWȲ , (3.7)

where W = diag{Kh(t1 − t), · · · ,Kh(tn − t)}, Ȳ = (Ȳ1, · · · , Ȳn)τ and

D̂ =

 1 Y1 Ẑ1

· · · · · · · · ·
1 Yn Ẑn


with Yi = Y {X(ti)}, Ȳi = Ȳ (ti) and Ẑi = Ẑ{X(ti)} or Ẑi = Z̃{X(ti)}.

Different from the case for estimating Z{X(t)}, in which we use state variable
X(t) to construct kernel estimators (3.1) and (3.4), we consider time t as a covari-
ate to construct nonparametric estimator of β(t) given in (3.7). In the following
theorem the local condition on X(ti) is determined by time t rather than by state
variable x.
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Theorem 3 In addition to the conditions of Theorems 1 and 2, assume that β(t) has

two continuous derivatives and the matrix Ω(t) defined below is positive definite. Then,

as nh → ∞, nh5 → 0 and nh∆ → ∞, we have

√
nh∆{β̂(t)− β(t)} L−→ N(0, J0

KZ2
t Ω

−1(t)),

where Ω(t) =

 1 E(Yt) E(Zt)
E(Yt) E(Y 2

t ) E(YtZt)
E(Zt) E(YtZt) E(Z

2
t )

 with X(t) = Xt, Y {X(t)} = Yt and Z{X(t)} =

Zt.

Note that unlike the estimator of Z(x) and nonparametric estimator in classical
nonparametric regression, which can achieve the standard convergence rate, the
convergence rate of β̂(t) depends on ∆. Usually, ∆ → 0 and then the estimator β̂(t)
has a slow convergence rate. The reason why this happens is that the mean term
is higher order infinitesimal than the variance term. This argument will be further
verified by the simulations in Section 6. On the other hand, since X(t1), · · · , X(tn)
are supposed to be locally and identically distributed, the matrix Ω(t) given in
the above theorem is dependent on t.

Particularly, when β is time-independent, similar to (3.7), the estimator is
simplified to be

β̂ = ∆−1/2(D̂τ D̂)−1D̂τ Ȳ . (3.8)

By a similar argument used in Su and Lin (2009), we can prove that, under some
regularity conditions,

√
n∆(β̂ − β)

L→ N(0, J0
K E(Z2)Ω−1), (3.9)

where Ω =

 1 E(Y ) E(Z)
E(Y ) E(Y 2) E(Y Z)
E(Z) E(Y Z) E(Z2)

 .

4 Estimation for nonlinear semiparametric regression

We now consider the estimation for model (2.6). Because the estimator of Z(x0) is
free of the first equation of (2.6), it can be estimated by the same method as that
given in (3.1) or (3.4), and then the resulting estimator has the same asymptotic
properties as those in Theorems 1 and 2. Thus, we only focus on the estimation
for the parameter vector θ(t) in this section.

We can plug the estimator of Z(x0) into the first equation of (2.6) and then
use the local polynomial smoother (Fan and Gijbels 1996) to obtain an estimator
of θ(t). For example, an estimator of θ(t), denoted by θ̂(t), can be obtained by
minimizing

Q̂(θ) =
1

n

n−2∑
i=1

{Ȳi − f̂i(θ)∆
1/2
i }2Kh(ti − t) (4.1)

over θ, where f̂i(θ) = f(ti, θ,Xi, Yi, Ẑi). Under some regularity conditions, θ̂ can
also be obtained by solving the following equation

L̂(θ) = Q̂′(θ) = − 1

n

n−2∑
i=1

{Ȳi − f̂i(θ)∆
1/2
i }f̂ ′i(θ)∆

1/2
i Kh(ti − t) = 0,
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where Q′(θ) denotes the derivative of Q(θ). In the remainder of this section, for
convenience of representation, we also assume that ∆i = ∆ for all i. The following
lemma is a preliminary for the asymptotic result of θ̂.

Lemma 1 For nonlinear model (2.6), when the functions θ(t) and f(θ) respectively

have two and three continuous derivatives, E{f ′(θ(t))f ′(θ(t))τ} is positive definite, the

conditions on X(ti) in Theorem 3 hold, we have

sup
t∈[0,1]

|θ̂(t)− θ(t)| = Op(n
−ς),

where the positive number ς satisfies nς [h2 + (log(nh)/nh)1/2] → 0.

The proof of the lemma is delayed to the Appendix. The following theorem
follows.

Theorem 4 Under the conditions of Lemma 1, if nh5 → 0 and nh∆ → ∞, then

√
nh∆{θ̂(t)− θ(t)} L−→ N

(
0, J0

KZ2
t {E[f ′{θ(t)}f ′{θ(t)}τ )]}−1

)
.

The proof of the theorem is also in the Appendix. When the regression function
f{θ(t)} is linear in θ(t), the above theorem is reduced to Theorem 3. As is shown
above, X(ti), i = 1, · · · , n, are supposed to be locally and identically distributed,
we then write the matrix E[f ′{θ(t)}f ′{θ(t)}τ )] as a function of t.

When θ is time-independent, the estimator θ̂ can be defined as the minimizer
of

Q̂(θ) =
1

n

n−2∑
i=1

{Ȳi − f̂i(θ)∆
1/2
i }2

over θ. Similar to (3.9), we have that, under some regularity conditions,

√
n∆(θ̂ − θ)

L−→ N
(
0, J0

K E(Z2){E[f ′(θ)f ′(θ)τ ]}−1
)
.

5 Monte Carlo studies

In this subsection, the models for simulations are chosen to satisfy the stationary
condition. The simulations are based on 500 repetitions with the size n = 300.
We use the mean and mean squared error (MSE) of estimators to evaluate their
performance.

Example 1. The main goal of this example is to examine the behavior of esti-
mators of the diffusion term and the drift term in linear semiparametric models.
Consider the common riskless asset model

P0(ti+1)− P0(ti) = rP0(ti)(ti+1 − ti) (5.1)

with the Cox-Ingersoll-Ross (CIR) model

X(ti+1)−X(ti) = κ{θ −X(ti)}(ti+1 − ti) + σX1/2(ti)(ti+1 − ti)
1/2ε(ti), (5.2)

where θ, κ and σ are the time-independent parameters. Note that model (5.1) is
the same as (2.2) but model (5.2) differs from (2.3). Here model (5.2) does not
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describe the stock price but an interest rate term structure, in which the spot rate
X(t) moves around its long-run equilibrium level θ at speed κ. When 2κθ ≥ σ2,
this process is shown to be positive and stationary. By the same notations as used
in Section 2, we have

Ȳ (ti) =
[
n1κθ + rY (ti)− κ+r

n1σ2Z
2{X(ti)}

]
∆1/2 + Z{X(ti)}ε(ti)

, [a+ bY (ti) + cZ2{X(ti)}]∆1/2 + Z{X(ti)}ε(ti)
(5.3)

and Z{X(ti)} = n1σX
1/2(ti).

Let κ = 0.214, θ = 0.086, σ = 0.078, r = 0.05, n0 = 10, n1 = 10,∆ = 1/4,X(t0) =

0.08, P (t0) = 0.1. In the estimation, we use the Gaussian kernelK(t) = 1√
2π

exp(− t2

2 ).

Table 1 reports the simulation results for the estimators of the coefficients
a = n1κ, b = r and c = − κ+r

n1σ2 . The results show that the estimator of b works well,
but those for a and c have large bias, and especially for c, the MSE is pretty large.
The curves however are fitted well. To be precise, the estimated curves of drift and
diffusion are close to the true ones. Figure 1 presents the estimated curves by one
simulation.

(Table 1 is about here)
(Figure 1 is about here)

Example 2. As is shown in the previous sections, the asymptotic normality
depends on the condition about ∆, but the rates required for estimating the drift
and the diffusion are different. Now we examine the behavior of the estimator with
different choices of ∆. The model is identical to that in Example 1 except choosing
∆ = 4/10, which is larger than that in Example 1. Table 2 reports the simulation
results. We see that when ∆ is large, the resulting estimators work better than
those obtained with small ∆. By contrast, comparing Figure 1 with Figure 2, we
see that Z{X(t)} is estimated more accurately when ∆ is small. On the other
hand, the drift term is estimated more accurately when ∆ is large. These findings
coincide with our theoretical results of course.

(Table 2 is about here)
(Figure 2 is about here)

Example 3. In this example θ is time-dependent as θ(t) = 0.086+ 1
4 (

t
n∆ −0.5)2,

the other parameters are fixed at the values as in Example 1. Therefore, a = a(t) =
0.184+0.535( t

n∆ −0.5)2. The simulations show that the estimator â(t) works very
well. Figure 3 reports the simulation results about estimated curves and confidence
bands respectively with bandwidth h = 10∆ and h = 20∆ by one simulation. We
may conclude that the estimation of a(t) is not very sensitive to the bandwidth
selection.

(Figure 3 is about here)

6 An empirical application

We now illustrate the proposed technology in a real data situation. To investigate
the increment process of wealth in the financial market of China, we fit data
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published in the Almanac of China’s Finance and Banking (2004 and 2005). The
dataset consists of the total amount of deposit and the total amount of market
capitalization of stock reported daily from 2003 to 2004. To get daily data of
deposit, we approximate them by interpolation. Two models are used to fit the
data, one is with constant coefficients and the other has varying-coefficients.

We first consider the following linear model{
E{Ȳ (ti)|X(ti)} = [bY {X(ti)}+ cZ{X(ti)}]∆

1/2
t ,

Var{Ȳ (ti)|X(ti)} = Z2{X(ti)} for ti = 1, 2, · · · , 483,
(6.1)

where parameters b and c are time-independent, X(ti), Y (ti), Ȳ (ti) and Z{X(ti)}
are defined as those in Section 2. To estimate Z{X(ti)}, the bandwidth is chosen to
be Std{X(t)}n−1/5 and the length of interval is chosen as ∆ti = 1. After estimating
Z{X(ti)}, b and c by the methods proposed in the previous sections, we get the

fitted values of wealth increment; that is ˆ̄Y (ti) = [̂bY (ti)+ĉẐ{X(ti)}]∆
1/2
ti

(hundred

million). Figure 4 reports the fitted values ˆ̄Y (ti) and real values Ȳ (ti). It shows
that the fitted values are in the centric curve of data cloud. Then our model and
method work well in this case. Note that Ẑ{X(ti)} changes from time to time
largely and the estimation value ĉ = 1.471 is also large relative to b̂ = −0.004. It
implies that the built-in variance (or deviation) in the regression function is not
negligible.

(Figure 4 is about here)

We now turn to considering the varying-coefficient linear model as{
E{Ȳ (ti)|X(ti)} = [b(ti)Y {X(ti)}+ c(ti)Z{X(ti)}]∆

1/2
t ,

Var{Ȳ (ti)|X(ti)} = Z2{X(ti)} for ti = 1, 2, · · · , 483.
(6.2)

For comparison, the bandwidth h for estimating Z{X(t)} and length of interval are
chosen to be the same as those for model (6.1). Figure 5 reports the fitted values
of wealth increment for different h and Table 3 lists the corresponding expectation
values of squared residuals (MSR). From these figures and Table 3 we can see that,
when h is large, the fitted values are smooth but the mean of squared residuals is
large. Thus we should choose a suitable h to balance the smoothness and fitting.
On the other hand, the means of squared residuals obtained by time-dependent
model (6.2) are uniformly smaller than those obtained by the time-independent
model (6.1). Then for this dataset, a time-dependent model seems more suitable
than a time-independent model.

(Table 3 is about here)
(Figure 5 is about here)

Appendix:Proofs

Proof of (2.4) The wealth process Y {X(ti)} satisfies

Y {X(ti)} = n0(ti)P0(ti) + n1(ti)X(ti).
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By the existing literature, see for example Karatzas and Shreve (1998), the self-
financing implies

∆n0(ti)P0(ti+1) +∆n1(ti)X(ti+1) = 0,

where ∆n0(ti) = n0(ti+1) − n0(ti) and ∆n1(ti) = n1(ti+1) − n1(ti). By the repre-
sentation of Z{X(ti)} = σ(ti)n1(ti)X(ti) and the self-financing equation, we see
that if P0(ti) and X(ti) in the above wealth equation are replaced by those in (2.2)
and (2.3), respectively, then the equation (2.4) follows.

Proof of Theorem 1 Without loss of generality, we assume ∆ti = ∆ for all i.
Denote

Ȳ {X(ti)} = Ȳi, Z{X(ti)} = Zi,

Kh = Kh{X(t)− x0},Kh,i = Kh{X(ti)− x0},Ki = K{X(ti)− x0}.

Because Xi, i = 1, · · · , n, are identically distributed, and Z(x) and p(x) have two
continuous derivatives, we have

E( 1
n

∑n−2
i=1 Ȳ 2

i Kh,i) = E[Ȳ 2{X(t)}Kh]
= E[E(Ȳ 2{X(t)}Kh|X )]
= 1

h

∫
Z2(u)K{(u− x0)/h}p(u)du+Op(∆)

= Z2(x0)p(x0) +
1
2h

2{Z2(x0)p(x0)}′′σ2
K +Op(∆) + Op(h

2).

Similarly,

E( 1
n

∑n−2
i=1 Kh,i) =

1
h

∫
K{(u− x0)/h}p(u)du

= p(x0) +
1
2h

2p′′(x0)σ
2
K + Op(h

2).

Furthermore, 1
n

∑n−2
i=1 Kh,i is a kernel estimator of the density p(x0). By the

uniform weak consistency of kernel estimator with mixing dependent variables
(Peligrad 1992; Kim and Cox 1996), we have

supx | 1n
∑n−2

i=1 Kh,i − p(x)| = Op[h
2 + {log(nh)/nh}1/2].

Then

Ẑ2(x0)− Z2(x0)

=
∑n−2

i=1 Ȳ 2
i Kh,i−

∑n−2
i=1 E(Ȳ 2

i Kh,i)∑n−2
i=1 Kh,i

+
∑n−2

i=1 E(Ȳ 2
i Kh,i)−Z2(x0)

∑n−2
i=1 Kh,i∑n−2

i=1 Kh,i

=
∑n−2

i=1 Ȳ 2
i Kh,i−

∑n−2
i=1 E(Ȳ 2

i Kh,i)

np(x0)
{1 + Op(1)}

+
1
2
h2(Z2(x0)p(x0)−p(x0))

′′σ2
K+Op(h

2)+Op(∆)

p(x0)
{1 + Op(1)}.

(A.1)

(A.1) shows that, Ẑ2(x0)−Z2(x0) is asymptotically equivalent to
∑n−2

i=1 Ȳ 2
i Kh,i −∑n−2

i=1 E(Ȳ 2
i Kh,i). From Lemma 1 of Politis and Romano (1992) and the relation

between the α-mixing condition and the ρ-mixing condition (see, e.g. Theorem
1.1.1 of Lu and Lin 1997), we can see that {Ȳ 2

1 , · · · , Ȳ 2
n } is a ρ-mixing dependent

process and the mixing coefficient, denoted by ρY (l), satisfies

∞∑
k=1

ρY (2k) ≤ C

∞∑
k=1

ρ(2k) =
∞∑
k=1

ρ2
k

< ∞,
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where C is a positive constant. By this and Central Limit Theorems for ρ-mixing
dependent process (see Ibragimov 1975; or Theorem 6.3 of Fan and Yao 2005; or
Theorem 4.0.1 of Lu and Lin 1997), we can obtain that

√
nh

{ 1

n

n−2∑
i=1

Ȳ 2
i Kh,i −

1

n

n−2∑
i=1

E(Ȳ 2
i Kh,i)

}
L−→ N(0, D), (A.2)

where D is the limiting variance of
√
nh
n

∑n−2
i=1 Ȳ 2

i Kh,i. The work remaining is to
calculate D. By the properties of Markov process and the ρ-mixing coefficients, we
have

|E(Ȳ 2
i Ȳ 2

i+l{Kh,i − E(Kh,i)}{Kh,(i+l) − E(Kh,(i+l))}|
= |E[Z2

i Z
2
i+l{Kh,i − E(Kh,i)}{Kh,(i+l) − E(Kh,(i+l))}]|+O(∆)

≤ E(Z2
i Z

2
i+l){Var(Ki)Var(Ki+l)}1/2 ρl +O(∆)

= Cρl +O(∆).

We can easily verify that, as n → ∞, 1
n

∑n−2
i=1

∑n−i
l=1 ρl → ρ

1−ρ . Thus

D = Var(
√
nh
n

∑n−2
i=1 Ȳ 2Kh,i)

= hE[(Z2{X(t)}(Kh − E(Kh)))
2]

+2h
n

∑n−2
i=1

∑n−i
l=1 E[Ȳ 2

i Ȳ 2
i+l{Kh,i − E(Kh,i)}{Kh,(i+l) − E(Kh,(i+l))}]

= hE[Z4{X(t)}(Kh − E(Kh))
2] + 2h

n O(
∑n−2

i=1

∑n−i
l=1 ρl) +O(h∆)

= Z4(x0)p(x0)J
0
K + O(1).

(A.3)

Therefore the result of the theorem follows from (A.1)-(A.3). �
Proof of Theorem 2 The proof is similar to that of Theorem 1 and thus is

omitted here. �
As Theorem 3 is a special case of Theorem 4, we omit the proof details.

Proof of Lemma 1 Let θ0(t) be the true value of the parameter in model (2.6)
and ν be p-dimensional vector satisfying ∥ν∥ = 1. It is sufficient to show that, for
any given η > 0, the following holds:

P

{
inf

t∈[0,T ]
inf

∥ν∥=1
Q̂{θ0(t) + n−ςν} > Q̂{θ0(t)}

}
≥ 1− η, (A.4)

where Q̂ is defined in (4.1). This is because it implies that with probability at least
1− η that supt∈[0,T ] ∥θ̂(t)− θ0(t)∥ ≤ n−ς . Hence there exists a minimizer such that

supt∈[0,T ] ∥θ̂(t)− θ0(t)∥ = Op(n
−ς).

Again by the uniform weak consistency of kernel estimator for mixing depen-
dent variables, we have

supx |Ẑ2(x)− Z2(x)| = Op{h2 + (log(nh)/nh)1/2},
supx |Z̃2(x)− Z2(x)| = Op{h2 + (log(nh)/nh)1/2}.

Let fi(θ) = f(ti, θ,Xi, Yi, Zi) and

L(θ) = − 1

n

n−2∑
i=1

{Ȳi − fi(θ)∆
1/2}f ′i(θ)∆1/2Kh(ti − t).
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By similar methods and Taylor expansion, there exists a point θ∗ between θ0(t)+
n−ςν and θ0(t), such that, uniformly for all x and t, noting that fi contains Z(x),

Q̂{θ0(t) + n−ςν} − Q̂(θ0(t))

= −n−ς L̂(θ0(t)) +
Op(n

−2ς)
2n

n−2∑
i=1

f̂ ′i(θ
∗)f̂ ′i(θ

∗)τ∆Kh(ti − t)

−Op(n
−2ς)

2n

n−2∑
i=1

(Ȳi − f̂i(θ
∗)∆1/2)f̂ ′′i (θ

∗)∆1/2Kh(ti − t)

= −n−ςL(θ0(t)) +
Op(n

−2ς)
2n

n−2∑
i=1

f ′i(θ
∗)f ′i(θ

∗)τ∆Kh(ti − t)(1 + Op(1))

−Op(n
−2ς)

2n

n−2∑
i=1

(Ȳi − fi(θ
∗)∆1/2)f ′′i (θ

∗)∆1/2Kh(ti − t)(1 + Op(1))

= −n−ςL(θ0(t)) +
Op(n

−2ς)
2n

n−2∑
i=1

f ′i(θ
0(t))f ′i(θ

0(t))τ∆Kh(ti − t)(1 + Op(1))

−Op(n
−2ς)

2n

n−2∑
i=1

(Ȳi − fi(θ
0(t))∆1/2)f ′′i (θ

0(t))∆1/2Kh(ti − t)(1 + Op(1)).

(A.5)

We now compare the convergence rates of the three terms. Again by the uniform
consistency of kernel estimator, we have that, uniformly for all t,

n−ςL{θ0(t)} = Op

(
∆n−ς{h2 + (log(nh)/nh)1/2}

)
,

n−2ς

2n

n−2∑
i=1

f ′i{θ
0(t)}f ′i{θ

0(t)}τ∆Kh(ti − t) = Op(∆n−2ς),

n−2ς

2n

n−2∑
i=1

[Ȳi − fi{θ0(t)}∆1/2]f ′′i {θ
0(t)}∆1/2Kh(ti − t)

= Op

[
∆n−2ς{h2 + (log(nh)/nh)1/2}

]
.

These three rates indicate that the second term is slower convergent to zero than
the other two terms do. Thus, the first and third terms can be asymptotically
negligible, and then Q̂(θ0(t) + n−ςν)− Q̂(θ0(t)) is asymptotically equivalent to

Op(n
−2ς)

2n

n−2∑
i=1

f ′i{θ
0(t)}f ′i{θ

0(t)}τ∆Kh(ti − t).

Note that the above is positive uniformly for t ∈ [0, T ]. We then get that for any
η > 0 with probability 1− η, for large n, Q̂(θ0(t) + n−ςν) > Q̂(θ0(t)) uniformly for
t ∈ [0, T ]. This completes the proof of (A.6). �

Proof of Theorem 4 Note that L̂(θ̂(t)) = 0 and L̂(θ(t)) = L(θ(t))(1 + Op(1)).
Then by Lemma 1 and Taylor expansion, we have that there exists a point θ∗
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between θ̂ and θ such that, uniformly for all x and t,

0 = L(θ̂){1 + Op(1))}

= L(θ)(1 + Op(1)) +
1

n

n−2∑
i=1

f ′i(θ
∗)f ′i(θ

∗)τ∆Kh(ti − t){θ̂(t)− θ(t)}{1 + Op(1))}

− 1

n

n−2∑
i=1

{Ȳi − fi(θ
∗)∆1−δ}f ′′i (θ

∗)∆1/2Kh(ti − t){θ̂(t)− θ(t)}{1 + Op(1))}

= L(θ)(1 + Op(1)) +
1

n

n−2∑
i=1

f ′i(θ)f
′
i(θ)

τ∆Kh(ti − t){θ̂(t)− θ(t)}{1 + Op(1))}

− 1

n

n−2∑
i=1

{Ȳi − fi(θ)∆
1/2}f ′′i (θ)∆

1/2Kh(ti − t){θ̂(t)− θ(t)}{1 + Op(1))}. (A.6)

As is shown in the proof of Lemma 1, the first and third terms on the right hand
side of (A.6) can be asymptotically negligible uniformly for all x and t. By the
uniform weak consistency of kernel estimator,

supt∈[0,1]

∣∣∣ 1n n−2∑
i=1

f ′i(θ)f
′
i(θ)

τKh(ti − t)− E[f ′(θ(t))f(θ(t))τ )]
∣∣∣

= Op(h
2 + (log(nh)/nh)1/2).

(A.7)

Furthermore, by the same argument in the proof of Theorem 1, we have that
∆−1/2

√
nhL(θ) is asymptotically normal. Hence (A.6) and (A.7) result in that

∆1/2
√
nh(θ̂(t)− θ(t))

=
{

1
n

n−2∑
i=1

f ′i(θ)f
′
i(θ)

τKh(ti − t)
}−1

∆−1/2
√
nhL(θ) + Op(1)

L−→ N
(
0, J0

KZ2
t {E[f ′(θ(t))f(θ(t))τ )]}−1

)
,

as desired. �
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Table 1: The Parameter Estimators For Example 1

Parameter True value Mean MSE
a 0.1840 0.2542 0.0341
b 0.0500 0.0499 0.0000
c -4.3393 -5.6493 14.0454

Table 2: The Parameter Estimators For Example 2

Parameter True value Mean MSE
a 0.1840 0.1999 0.0210
b 0.0500 0.0500 0.0000
c -4.3393 -4.2135 6.6967
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Table 3: Means Of Squared Residuals For Demonstration Study

Model (5.4) (5.5) with h = 10∆ (5.5) with h = 15∆
MSR 2.164× 105 1.887× 105 1.957× 105

Model (5.5) with h = 20∆ (5.5) with h = 25∆ (5.5) with h = 40∆
MSR 1.997× 105 2.021× 105 2.074× 105
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Figure 1. The estimation curves with ∆ = 1/4 for model in example 1. The figure on the left presents the true curve
of Z{X(t)} and estimation curve of Z{X(t)}, and the figure on the right presents the true curve of drift term and its
estimation curve.
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Figure 2. The estimation curves with ∆ = 4/10 for model in example 2. The figure on the left presents the true curve
of Z{X(t)} and estimation curve of Z{X(t)}, and the figure on the right presents the true curve of drift term and its
estimation curve.
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Figure 3. The estimated curve and confidence band of a(t) in Example 3. The figures on the left and right present the
results with h = 10∆ and h = 20∆, respectively.
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Figure 4. The fitted increment of wealth for model (5.4).
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Figure 5. The fitted increment of wealth for model (5.5). The figures on the upper left and right respectively present the
results h = 10∆ and h = 15∆. The figures on the middle left and right respectively present the results with h = 20∆ and
h = 25∆.
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