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Abstract

This paper studies the problem of optimal investment with CRRA (constant, relative risk aversion)

preferences, subject to dynamic risk constraints on trading strategies. The market model considered

is continuous in time and incomplete; furthermore, financial assets are modeled by Itô processes.

The dynamic risk constraints (time, state dependent) are generated by risk measures. The optimal

trading strategy is characterized by a quadratic BSDE. Special risk measures (Value–at–Risk, Tail

Value–at–Risk and Limited Expected Loss ) are considered and a three–fund separation result is

established in these cases. Numerical results emphasize the effect of imposing risk constraints on

trading.
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1. Introduction

In this paper we consider the problem of a utility–maximizing agent, whose preferences are of

of constant relative risk aversion (CRRA) type and whose trading strategies are subject to risk

constraints. We work on a continuous–time, stochastic model with randomness being driven by

Brownian noise. The market is incomplete and consists of several traded assets whose prices follow

Itô processes. In practice managers set risk limits on the strategies executed by their traders. In fact,

the mechanisms used to control risk are more complex: financial institution have specialized internal

departments in charge of risk assessments; on top of that there are external regulatory institutions

to whom financial institutions must periodically report their risk exposure. It is natural, therefore,

to study the portfolio problem with risk constraints, which has received a great deal of scrutiny

lately. A very well known paper in this direction is [CK92]. The authors employ convex duality

to characterize the optimal constrained portfolio. A more recent paper in the same direction is

[HIM05]. Here the optimal constrained portfolio is characterized by a quadratic BSDE, which

renders the method more amenable to numerical treatment. In these two (by now classical) papers

the risk constraints are imposed via abstract convex (closed) sets. Lately, a line of research has

been developed where the risk–constraint sets are specified employing a specific risk measure, e.g.

VaR (Value at Risk). In the following we provide a brief overview of the related literature.

Existing Research: A risk measure that is commonly used by both practitioners and academics

is VaR. Despite its success, VaR has as drawbacks not being subadditive and not recognizing the

accumulation of risk. This encouraged researchers to develop other risk measures, e.g. TVaR (Tail

Value at Risk). The works on optimal investment with risk constraints generated by VaR, TVaR (or

other risk measures) split into two categories, which depend on whether or not the risk assessment

is performed in a static or a dynamic fashion. Let us briefly touch on the first category. The seminal

paper is [BS01], where the optimal dynamic portfolio and wealth-consumption policies of utility

maximizing investors who use VaR to control their risk exposure is analyzed. In a complete–market,

Itô-processes framework, VaR is computed in a static manner (the authors compute the VaR of

the final wealth only). An interesting finding is that VaR limits, when applied only at maturity,

may actually increase risk. One way to overcome this problem is to consider a risk measure that

is based on the risk–neutral expectation of loss - the Limited Expected Loss (LEL). In [ESR01] a

model with Capital–at–Risk (a version of VaR) limits, in the Black–Scholes–Samuelson framework

is presented. The authors assume that portfolio proportions are held constant during the whole

investment period, which makes the problem static. [DVLLLW10] extends [ESR01] from constant

to deterministic parameters. In a market model with constant parameters, [GW09] extends [BS01]

to cover the case of bounded expected loss. In a general, continuous–time Financial market model,

[GW06] considers the portfolio problem under a downside risk constraint measured by an abstract

convex risk measure. [Kup09] extends [ESR01] by imposing a uniform (in time) risk constraint.

In the category of dynamic risk measurements we recall the seminal paper [CHI08]. Following the

financial industry practice, the VaR (or some other risk measure) is computed (and dynamically re–

evaluated) using a time window (2 weeks in practice) over which the trading strategies are assumed
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to be held constant for the purpose of risk measurement. The finding of the authors is that dynamic

VaR and TVaR constraints reduce the investment (proportion wise) in the risky asset. [LVT06]

studies the impact of VaR constraint on equilibrium prices and the relationship with the leverage

effect. [BCK05] shows that, in equilibrium, VaR reduces market volatility. [Pri10] finds that risk

constraints may give rise to equilibrium asset pricing bubbles. Among others, [AP05], [Pir07], and

[Yiu04] analyze the problem of investment and consumption subject to dynamic VaR constraints.

[PirZit09] considers maximizing the growth rate of the portfolio in the context of dynamic VaR,

TVaR and LEL constraints. In a complete market model, [Sas10] uses a martingale method to

study the optimal investment under dynamic risk constraints and partial information.

Our Contribution: This paper extends the risk measurements introduced by [CHI08] by con-

sidering a relatively general class of risk measures (we only require them to be Carathéodory maps,

and this class is rich enough to include many convex and coherent risk measures). The correspond-

ing risk–constraint sets arising from such risk measures, and applied to the trading strategies, are

time and state dependent. Moreover, they satisfy some important measurability properties.

We employ the method developed in [HIM05] in order to find the optimal trading strategy subject

to the risk constraints. The main difference is that, unlike [HIM05], our constraint sets are time

dependent, which renders the methodology developed in [HIM05] not directly applicable within

our context. The difficulty stems from establishing the measurability of the BSDE’s driver (the

BSDE which characterizes the optimal trading strategy). This is done by means of the Measurable

Maximum Theorem and the Kuratowski–Ryll–Nardzewski Selection Theorem. After this step is

achieved we apply results from [BriandHu08] to get existence for the BSDE which in turn yields

the optimal trading strategy.

We then restrict our risk measures to Value–at–Risk, Tail Value–at–Risk and Limited Expected

Loss. By doing so we observe that the risk constraints have a particular structure: they are convex

sets (for a fixed time and state) and depend on two statistics (portfolio return and variance). This

leads to a three–fund separation result. More precisely, an investor subject to regulatory constraints

will invest her wealth into three–funds: a savings account and two index funds. One index fund

is a mix of the stocks with weights given by the Merton proportion. This index fund is related to

market risk and most of the portfolio separation results refer to it. The second index is related to

volatility risk. In a market with non–random drift and volatility the second index is absent. Thus,

the second index can be explained by the demand of hedging volatility risk.

Numerical results we develop shed light into the structure of the optimal trading strategy.

More precisely, using recent results concerning numerical methods for quadratic growth BSDEs,

we present in Section 5 some numerical examples for the three risk measures Var, TVar and LEL.

Our simulations clearly exhibit the effect of the risk constraint on the optimal strategy and on the

associated value function.

The paper is organized as follows: In Section 2 we introduce the basic model, the risk measures

and the corresponding risk constraints. Section 3 presents measurability properties of the candidate
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optimal trading strategy and its characterization via a quadratic BSDE. In Section 4 Value–at–

Risk, Tail Value–at–Risk and Limited Expected Loss risk measures are considered and a three-fund

separation result is obtained within this context. Numerical results are presented in Section 5. The

paper ends with an appendix that contains some technical results.

2. Model Description and Problem Formulation

2.1. The Financial Market. Our model of a financial market, based on a a filtered probability

space (Ω,F , {Ft}t∈[0,T ],P) that satisfies the usual conditions, consists of n + 1 assets. The first

one, {S0(t)}t∈[0,T ], is a riskless bond with a strictly positive, constant interest rate r > 0. The

remaining n assets are stocks, and they are modeled by an n–dimensional Itô–process {S(t)}t∈[0,T ] =

{(Si(t))i=1,...,n}t∈[0,T ]. Their dynamics are given by the following stochastic differential equations,

in which {W (t)}t∈[0,T ] = {(Wi(t))i=1,...,m}t∈[0,T ] is a m–dimensional standard Brownian motion:

dS0(t) = S0(t)r dt

dSi(t) = Si(t)
(
αi(t) dt+

m∑
j=1

σij(t) dWj(t)
)
, i = 1, . . . , n,

 , t ∈ [0, T ], (2.1)

where the Rn–valued process {α(t)}t∈[0,T ] = {(αi(t))i=1,...,n}t∈[0,T ] is the mean rate of return, and

{σ(t)}t∈[0,T ] = {(σij(t))j=1,...,m
i=1,...,n }t∈[0,T ] ∈ Rn×m is the variance–covariance process. In order for

the equations (2.1) to admit unique strong solutions, we impose the following regularity conditions

on the coefficient processes α(t) and σ(t):

Assumption 2.1. All the components of the processes {α(t)}t∈[0,T ] and {σ(t)}t∈[0,T ] are pre-

dictable, and

n∑
i=1

∫ t

0

|αi(u)| du+

n∑
i=1

m∑
j=1

∫ t

0

σij(u)2 du <∞, for all t ∈ [0,∞), a.s.

To ease the exposition, we introduce the following notation: for an integrable Rm-valued process

γ(t) = (γi(t))i=1,...,n, and a sufficiently regular Rm–valued process π(t) = (πj(t))j=1,...,m we write

∫ t

0

γ(u) du ,
n∑
i=1

∫ t

0

γi(u) dt,

∫ t

0

π(t) dW (t) ,
m∑
j=1

∫ t

0

πj(t) dWj(t).

Further, we impose the following condition on the variance–covariance process σ(t) :

Assumption 2.2. The matrix σ(t) has independent rows for all t ∈ [0,∞) almost–surely.

This assumption makes it impossible for different stocks to have the same diffusion structure.

Otherwise, the market would either allow for arbitrage opportunities or redundant assets would

exist. As a consequence of Assumption 2.2 we have that n ≤ m - the number of risky assets does

not exceed the number of “sources of uncertainty”. Also, the inverse (σ(t)σ(t)′)−1 is easily seen to

exist, thus the equation

σ(t)σ(t)′ζM (t) = µ(t),
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uniquely defines a predictable stochastic process {ζM (t)}t∈[0,T ], named the Merton–proportion pro-

cess, where {µ(t)}t∈[0,T ] = {(µi(t))i=1,...,n}t∈[0,T ], with µi(t) = αi(t) − r for i = 1, . . . , n. At this

point we make another assumption on the market coefficients:

Assumption 2.3. We assume that

E

[
exp

(∫ T

0

||ζM (t)σ(u)||2 du
)]

<∞,

and the stochastic process σ′(σσ′)−1σ is uniformly bounded.

2.2. Trading strategies and wealth. Let P denote the predictable σ–algebra on [0, T ]×Ω. The

control variables are the proportions of current wealth the investor invests in the assets. More

precisely, we have the following formal definition:

Definition 2.4. An Rn–valued stochastic process {ζ(t)}t∈[0,T ] = {(ζi(t))i=1,...,n}t∈[0,T ] is called an

admissible portfolio–proportion process if it is predictable (i.e. P-measurable) and it satisfies

E
[ ∫ t

0

∣∣ζ′(u)(α(u)− r1)
∣∣ du+

∫ t

0

||ζ′(t)σ(u)||2 du
]
<∞, for all t ∈ [0,∞). (2.2)

Here ζ′(t) denotes the transpose of ζ(t), 1 = (1, . . . , 1)′ is a n–dimensional column vector all of

whose coordinates are equal to 1, and ||x|| is the standard Euclidean norm. The set of admissible

strategies will be denoted by A.

Given a portfolio–proportion process ζ(t), we interpret its n coordinates as the proportions of

the current wealth Xζ(t) invested in each of the n stocks. In order for the portfolio to be self–

financing, the remaining wealth Xζ(t)(1−
∑n
i=1 ζi(t)) is assumed to be invested in the riskless bond

S0(t). If this quantity is negative, we are effectively borrowing at the rate r > 0. No short–selling

restrictions are imposed, hence the proportions ζi(t) are allowed to be negative, and they are not

a priori bounded. The equation governing the evolution of the total wealth {Xζ(t)}t∈[0,T ] of the

investor using the portfolio–proportion process {ζ(t)}t∈[0,T ] is given by

dXζ(t) = Xζ(t)
(
ζ′(t)α(t) dt+ ζ′(t)σ(t) dW (t)

)
+
(

1− ζ′(t)1
)
Xζ(t)r dt

= Xζ(t)
(

(r + ζ′(t)µ(t)) dt+ ζ′(t)σ(t) dW (t)
)
,

(2.3)

where we recall that {µ(t)}t∈[0,T ] = {(µi(t))i=1,...,n}t∈[0,T ], with µi(t) = αi(t) − r for i = 1, . . . , n,

is the vector of excess rates of return. Under the regularity conditions (2.2) imposed on ζ(t),

Equation (2.3) admits a unique strong solution given by

Xζ(t) = X(0) exp
{∫ t

0

(
r + ζ′(u)µ(u)− 1

2 ||ζ
′(u)σ(u)||2

)
du+

∫ t

0

ζ′(u)σ(u) dW (u)
}
. (2.4)

The initial wealth Xζ(0) = X(0) ∈ (0,∞) is considered to be exogenously given. As a consequence

of Assumption 2.3, and using (2.2), a strategy ζ is admissible if and only if it is a predictable process

such that

E
[ ∫ T

0

||ζ′(u)σ(u)||2 du
]
<∞. (2.5)
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Indeed we have

ζ′(u)µ(u) = (σT (u)ζ(u))T (σT (u)ζM (u)) ≤ ||ζ′σ(u)|| ||ζTM (u)σ(u)||,

by the Cauchy–Buniakowski–Schwarz inequality. Thus, inequality (2.5) follows from Assumption

2.3, Expression (2.2) and the Cauchy–Buniakowski–Schwarz inequality.

The expression appearing inside the first integral in (2.4) above will be given its own notation;

the quadratic function Q̃ : R2 → R is defined as

Q̃(ζµ, ζσ) , r + ζµ − 1
2ζ

2
σ,

Another useful notation is for the the random field Q : Ω× [0,∞)× Rn → R by

Q(t, ζ) = Q̃(ζ′µ(t), ||ζ′σ(t)||).

It is clear from Expression (2.4) that the evolution of wealth process Xζ(t) depends on the Rn-

dimensional process ζ(t) only through two “sufficient statistics”, namely

ζµ(t) , ζ′(t)µ(t), and ζσ(t) , ||ζ′(t)σ(t)||. (2.6)

These will be referred to in the sequel as portfolio rate of return and portfolio volatility, respectively.

2.3. Projected distribution of wealth. Let us recall that for the purposes of risk measurement,

it is common practice to use an approximation of the distribution of the investor’s wealth at a future

date. Given the current time t ≥ 0, and a length τ > 0 of the measurement horizon [t, t + τ), the

projected distribution of the wealth from trading will be calculated under the simplifying assumptions

that

(1) the proportions of the wealth {ζ(s)}s∈[t,t+τ) invested in various securities, as well as

(2) the market coefficients {α(s)}s∈[t,t+τ) and {σ(s)}s∈[t,t+τ)
will stay constant and equal to their present values throughout the time interval [t, t+τ). The wealth

equations (2.3) and (2.4) yield that the projected wealth loss is - conditionally on Ft - distributed

as L = L(X(t), ζµ(t), ζσ(t)), where the law of L(x, ζµ, ζσ) is the one of

x
(

1− exp(Y (ζµ, ζσ))
)
, (2.7)

in which Y (ζµ, ζσ) is a normal random variable with mean Q̃(ζµ, ζσ)τ and standard deviation√
τζσ. The quantities ζµ(t) and ζσ(t) are the portfolio rate of return and volatility, defined in

Equation (2.6). In the upcoming sections we turn our focus to risk measurements associated to the

relative projected wealth gain, which will be defined as the distribution of the quantity

Xζ(t+ τ−)−Xζ(t)
Xζ(t)

.

This is not a technical requirement, and the method developed in Sections 2.4 to 3.1 still holds for

risk measurements in absolute terms. The economic implications, however, may be stark, and the

definition of the risk constraints below would require a certain recursive structure. The latter in

the sense that admissibility (risk–wise) at time t will depend on the choice of the strategy at all
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previous times. We elaborate further on this in Remark 2.6. The measurement horizon τ and the

market coefficients will play the role of “global variables”.

2.4. The risk constraints. In this section we introduce the risk constraints that will be imposed

on the trading strategies. We keep the presentation as general as possible, and so we make several

sufficient assumptions on the risk measures. These allow us to show existence (and in some cases

uniqueness) of optimal, constrained trading strategies. We begin by making precise how the risk of

a given strategy is measured.

Let us define the gain over time interval [t, t+ τ ] by ∆τX
ζ
t , X

ζ
t+τ− −X

ζ
t , and let (ρt)t∈[0,T ] be a

family of maps ρt with

ρt : Ct ⊂ L2(FT , P )→ L2(Ft, P ),

where

Ct ,
{

∆τX
ζ
t /X

ζ
t

∣∣∣ ζ is an admissible strategy
}
.

Notice that for all t ∈ (0, T ], we have that Ct ⊂ L2(FT , P ). We also define C0 , L2(FT , P ). For

a given admissible (ζ̃(s))s∈[0,t) and ζ ∈ Rn we define the strategy ζ : Ω × [0, t + τ) → Rn as

ζ(s) = ζ̃(s) for s < t and ζ(s) = ζ for t ≤ s < t+ τ. By definition of the wealth process we obtain

that Xζt = X ζ̃t−, moreover (under the assumptions made in Section 2.3) the quantity ∆τX
ζ
t /X

ζ
t

depends exclusively on ζ, and not on ζ̃. In order to establish the risk constraints, we define the

acceptance sets

Aρ,ζ̃t (ω) ,

{
ζ ∈ Rn

∣∣∣ ρt(∆τX
ζ
t

Xζt (ω)

)
(ω) ≤ Kt(ω)

}
t ∈ [0, T ], (2.8)

where Kt is a real–valued, exogenous, predictable process that satisfies Kt ≥ ρt(0) for all t in [0, T ],

P–a.s.. Notice that ζ = 0 is in the constraint set. We observe that by construction, the sets Aρ,ζ̃t
are independent of ζ̃, and we shall simply write Aρt . In analogous fashion we will slightly abuse

notation and write ∆τX
ζ
t /X

ζ
t for ∆τX

ζ
t /X

ζ
t . It follows from Equation (2.3) that in fact

∆τX
ζ
t

Xζt
= E(ζ, t)− 1,

where

E(ζ, t) , exp

{∫ t+τ

t

(
r + ζµ(u)− 1

2
ζσ(u)2

)
du+

∫ t+τ

t

ζ(u)σ(u)dW (u)

}
.

Hence, the expressions for the sets of constraints Aρt may be rewritten as

Aρt (ω) =
{
ζ ∈ Rn

∣∣∣ ρt(E(ζ, t)− 1)(ω) ≤ Kt(ω)
}
.

Moreover, under the assumption that µ, σ and ζ remain (for the purpose of risk assessment)

constant over [t, t+ τ), we may write

E(ζ, t) , exp
{
rτ
}
· exp

{
τ
(
ζµ −

1

2
ζ2σ
)}
· exp

{
ζσ∆τWt

}
,

and we shall denote by E1(ζ, t) and E2(ζ, t) the second and third factors of E(ζ, t), respectively.

We make the following assumption on the family (ρt)t∈[0,T ] :
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Assumption 2.5. The family of maps

ρt : Ct ⊂ L2(FT , P )→ L2(Ft, P )

satisfies that the mapping

(ζ, (ω, t)) 7→ ρt(E(ζ, t)− 1)(ω)

is a Carathéodory function; that is, for every (ω, t) in Ω× [0, T ], the map ζ 7→ ρt(E(ζ, t)− 1)(ω) is

continuous and for every ζ in Rn the map (ω, t) 7→ ρt(E(ζ, t)− 1)(ω) is P–measurable.

Before continuing our analysis, we give two simple examples of families (ρt)t∈[0,T ] which satisfy

Assumption 2.5.

Ex. 1: Let ρ0 be a coherent, continuous risk measure on L2(FT , P ), and for every admissible ζ let

ρt(E(ζ, t)− 1)(ω) , exp
{
rτ
}
E1(ζ, t)(ω)ρ0

(
E2(ζ, t)(ω)− 1

)
where

E1(ζ, t)(ω) , exp
{
τ
(
ζx− 1

2
||ζy||2

)}∣∣∣
x=µ(ω,t),y=σ(ω,t)

and

ρ0
(
E2(ζ, t)(ω)− 1

)
, ρ0

(
exp

{
xy∆τW0

}
− 1
)∣∣∣
x=ζ(ω,t),y=σ(ω,t)

.

Obviously (ρt)t∈[0,T ] satisfies Assumption 2.5.

Ex. 2: (Shortfall risk measures) Let l : R → R be a convex, non–decreasing continuous and non–

constant function2 with |l(−∞)| < +∞. Assume that the filtration {Ft}t∈[0,T ] is generated

by the Brownian motion {W (t)}t∈[0,T ] and that σi,j(t) := σi,j(t,Wt) and µ(t) := µ(t,Wt)

where σi,j and µ are deterministic Borelian functions. We set

ρt(−E(ζ, t)− 1) , E[l(exp(r(τ + ζx
1

2
‖ζy‖2) + xy∆τW0))]x=µ(t,Wt),y=σ(t,Wt)

so that ρt(−E(ζ, t)−1) = E[l(−E(ζ, t)−1)|Ft], P−a.s.. Then the family (ρt)t∈[0,T ] satisfies

Assumption 2.5. Indeed, fix a in Rn and let ζ in Rn. Then, by monotonicity of the

exponential and l we have that:

l(−∞) ≤ l(−E(ζ, t) + 1) ≤ l(1).

Hence Lebesgue’e dominated convergence Theorem implies that:

lim
ζ→a

ρt(−E(ζ, t)− 1) = ρt(−E(a, t)− 1), ∀t ∈ [0, T ].

Finally, since the filtration we consider is the Brownian filtration, the stochastic process

(ρt(E(ζ, t)− 1))t∈[0,T ] is predictable.

Remark 2.6. If we were to consider risk constraints based not on the relative projected wealth loss,

but only on the quantities ∆τX
ζ
t , then the acceptance sets defined in Expression 2.8 would depend

on (ζ(s))s∈[0,t). More precisely, the set of risk–admissible strategies would be

A ,
{
ζ = (ζ(s))s∈[0,T ]

∣∣ ζ is admissible and ζ(t) ∈ Aρ,ζ1[0,t)

t

}
2Such functions are usually referred to as “loss functionals”.
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In the case where ρt is a Ft−–coherent family, i.e. if ρr(XY ) = X ρt(Y ) for all X ∈ Ft−, then risk

constraints in absolute terms are generated by inequalities of the form

Xζt ρt

(∆τX
ζ
t

Xζt

)
≤ Kt.

This follows from the fact that the wealth level at time t is a Ft−–measurable random variable.

The structure then reverts to that of risk constraints in relative terms, except for a redefinition

of the risk bound as K̃t(ω) , Kt(ω)/Xt(ω). Notice that if Kt ≡ K ∈ R+, then K̃t would be a

decreasing function of wealth. In other words, highly capitalized investors would face more stringent

constraints. This could lend an approach to dealing with the too–big–to–fail problem, and could be

further tweaked by allowing Kt to depend on the state of nature. It is, however, beyond the scope of

this paper to discuss such policy–making issues, and we shall stick to the relative–measures–of–risk

framework.

Remark 2.7. Note that (ρt)t∈[0,T ] is not stricto sensu a dynamic risk measure, since every ρt is a

priori not defined on the whole space L2(FT , P ). As we we have seen in the previous lines, defining

the risk of every random variable in L2(FT , P ) is not relevant for us, since we only need to evaluate

the risk of the very specific random variables ∆τX
ζ
t .

2.5. The optimization problem. We finish the section by formulating our central problem.

Given a choice of a dynamic risk measure ρ satisfying Assumption 2.5 and a final date T, we

are searching for a portfolio–proportion process ζ∗(t) ∈ Aρt which maximizes the p−CRRA utility

Up(x) = xp

p , p > 0, of the final wealth among all the portfolios satisfying the same constraint. In

other words, for all t ∈ [0,∞) and ζ(t) ∈ Aρt =
{
ζ ∈ Rn

∣∣∣ ρt(E(ζ, t)− 1) ≤ Kt

}
E
[
Up(X

ζ∗(T ))
]
≥ E

[
Up(X

ζ(T ))
]
. (2.9)

3. Analysis

3.1. The optimal policy. In this section we prove the existence of an optimal investment strategy.

In order to do so, we make use of the powerful theory of backward stochastic differential equations

(BSDEs). Let

Aρ ,
{
ζ = (ζ(t))t∈[0,T ] ∈ A

∣∣ ζ(t) ∈ Aρt , ∀t ∈ [0, T ]
}

where A is the set of admissible strategies in the sense of Definition 2.4. We recall that we consider

the maximization problem

max
ζ∈Aρ

E(Up(X
ζ(T ))).

By means of (2.4) we may write

Up(X
ζ(t)) = Up(X(0)) exp

(∫ t

0

p
(
r + ζµ(u)− 1

2ζσ(u)2
)
du+

∫ t

0

p ζ′(u)σ(u) dW (u)

)
.

In analogous fashion as done in [HIM05], let us introduce the auxiliary process

Rζ(t) , Up(X(0)) exp

(
Y (t) +

∫ t

0

p
(
r + ζµ(u)− 1

2ζσ(u)2
)
du+

∫ t

0

p ζ′(u)σ(u) dW (u)

)
,

9



where (Y,Z) is a solution to the BSDE

Y (t) = 0−
∫ T

t

Z(u)dW (u)−
∫ T

t

h(u, Z(u))du, t ∈ [0, T ]. (3.1)

The function h(t, z) should be chosen in such a way that

a) the process Rζ is a supermartingale, Rζ(T ) = Up(X
ζ(T )) and Rζ(0) = (X(0))p

p for every

ζ ∈ Aρ,
b) there exists at least one element ζ∗ in Aρ such that Rζ

∗
is a martingale.

We shall verify ex–post that the function h(t, z) in question satisfies the measurability and growth

conditions required to guarantee existence of solutions to Equation (3.1). Before going further we

explain why achieving this would provide a solution to the optimization problem (2.9). Assume we

were able to construct such a family of processes Rζ , then we would obtain that ζ∗ is an optimal

strategy for the utility maximization problem (2.9) with initial capital X(0) > 0 independent of ζ.

Indeed let ζ any element of Aρ, then using (a) and (b) we have

E(Up(X
ζ(T )) = E(Rζ(T )) ≤ Rζ(0) =

(X(0))p

p
= E(Rζ

∗
(T )).

This method is known as the martingale optimality principle. Let us now perform a multiplicative

decomposition of Rζ into martingale and an increasing process. To this end, given a continuous

process M, we denote by E(M) its stochastic exponential:

E(M(t)) , exp

(
M(t)− 1

2
〈M〉t

)
,

where 〈M〉 denotes the quadratic variation. Then

Rζ(t) =
(X(0))p

p
E
(∫ t

0

(p ζ′(u)σ(u) + Z(u)) dW (u)

)
exp

(∫ t

0

g(u, Z(u)) du

)
,

where

g(u, z) , h(u, z) +
1

2
||z||2 + pr + pζ′(u)(µ(u) + pσ(u)z) +

p2 − p
2
||ζ′(u)σ(u)||2.

Since Rζ
′

should be a supermartingale for every admissible ζ(u) (and a martingale for some element

ζ∗(u)), then g has to be a non–positive process. With this in mind, a suitable candidate would be

h(u, z) , −pr − 1

2
||z||2 + inf

ζ(u)∈A(u)

{
−pζ′(u)(µ(u) + pσ(u)z)− p− p2

2
||ζ′(u)σ(u)||2

}
,

which leads to

h(u, z) = −pr − 1

2
||z||2 +

p

2(p− 1)
||σ′(u)(σσ′)−1(u)(µ(u) + pσ(u)z)||2 (3.2)

+
p(1− p)

2
dist

(
σ′(u)(σσ′)−1(u)(µ(u) + pσ(u)z)

1− p
;Aρuσ(u)

)2

.

If in addition we let

10



z̃ ,
σ′(u)(σσ′)−1(u)(µ(u) + pσ(u)z)

1− p
and Ãρu , Aρuσ(u), (3.3)

then

dist

(
σ′(u)(σσ′)−1(u)(µ(u) + pσ(u)z)

1− p
;Aρuσ(u)

)2

= ‖σ
′(u)(σσ′)−1(u)(µ(u) + pσ(u)z)

1− p
−ζ∗T (u)σ(u)‖2

with

ζ∗
T

(u)σ(u) ∈ Proj(Z̃(u), Ãρu). (3.4)

The available results on existence of solutions to BSDEs require, to begin with, the predictability

of the driver h. In our case this is closely related to the predictability of ζ∗, in other words, to

whether or not the candidate for an optimal strategy is acceptable.

Theorem 3.1. Let Z be a predictable process such that

E

(∫ T

0

||Z(u)||2 du

) 1
2

<∞,

then for (t, ω) ∈ [0, T ]× Ω, the mapping

(t, ω) 7→ dist(Z̃t(ω), Ãρt (ω)),

where Z̃ is as in Equation (3.3), is predictable. In addition there exists a predictable process ζ∗ in

Rn such that

E

(∫ T

0

||ζ∗T (u)σ(u)||
2
du

) 1
2

<∞

and

dist
(
Z̃t, Ãρt

)
= dist(Z̃t, ζ

∗T (t)σ(t)), ∀t ∈ [0, T ], P − a.s..

Proof. Let us define for k ∈ N

Aρt,k(ω) ,
{
ζ ∈ [−k, k]n

∣∣∣ ρt(E(ζ, t))(ω)−Kt(ω) ≤ 0
}
.

The purpose of artificially bounding the values of Aρ· is to make use of the theory of compact–

valued correspondences (see Appendix A). It follows from Lemma A.1 that for all k ∈ N and for all

(t, ω), the set Aρt,k(ω) is non–empty and compact. Moreover, Proposition A.3 guarantees that for all

t ∈ [0, T ] and k ∈ N, the correspondence (ω, t) �7→ Ãρt,k(ω) is weakly P–measurable (see Definition

A.2 in the Appendix for the definition of weakly measurability). Let (C(Rm),H) denote the space

of non–empty, compact subsets of Rm, equipped with the Hausdorff metric. This is a complete,

separable metric space, in which Ãρt,k(·) takes its values. Theorem A.4 then states that for z ∈ Rm

and t ∈ [0, T ], the distance mapping

δ(ω, z) = dist
(
z, Aρt,k(ω)σ(t)

)
11



is a Carathéodory one. Since the process Z̃t is predictable and z 7→ δ(z, ω) is continuous for all

ω ∈ Ω, the map

(ω, t) 7→ dist
(
Z̃t(ω), Aρt,k(ω)σ(t)

)
is P–measurable. Finally

dist
(
Z̃t(ω), Ãρt (ω)

)
= inf
k∈N

{
dist

(
Z̃t(ω), Aρt,k(ω)σ(t)

)}
,

thus the mapping ω 7→ dist(Z̃t(ω), Ãρt (ω)) is predictable as the pointwise infimum of predictable

ones. We now turn our attention to the second claim. First we observe that since Ãρt (ω) is closed

(and contained in Rm), the set

Aρt (ω) , argmina∈Ãρt (ω)

{
dist(Z̃t(ω), a)

}
is compact. It follows from the Measurable Maximum Theorem ([AB06], page 605) that the cor-

respondence (t, ω) �7→ Aρt (ω) is weakly P–measurable. It is then implied by the Kuratowski–Ryll–

Nardzewski Selection Theorem that Aρ· (·) admits a measurable selection ζ∗
T
σ; in other words,

there exists a predictable process ζ∗ : [0, T ]× Ω→ Rn such that

dist(Z̃t(ω), Ãρt (ω)) = dist(Z̃t(ω), ζ∗(t, ω)) and ζ∗
T

(t, ω)σ(t, ω) ∈ Ãρt (ω).

Finally using the fact that the strategy (0, . . . , 0) belongs to Ãρ· we have that

∫ T

0

||ζ∗T (u)σ(u)||
2
du ≤ 2

∫ T

0

||ζ∗T (u)σ(u)− Z̃u||
2
du+ 2

∫ T

0

||Z̃u||
2
du

= 2

∫ T

0

dist(Z̃u, Ãρu)2du+ 2

∫ T

0

||Z̃u||
2
du

≤ 4

∫ T

0

||Z̃u||
2
du <∞.

�

To finalize, we must show that the quadratic–growth BSDE (3.1) admits a solution. To this end

we need the following result of Briand and Hu [BriandHu08] , which extends the results of Koby-

lanski [Ko00]:

Theorem 3.2. Let h : [0, T ]× Ω× Rm → R be measurable. Assume that there exists a predictable

process α and positive constants C1, C2 satisfying α ≥ 0 and

E

[
exp

(
C1

∫ T

0

αsds

)]
<∞.

Then if h is such that

(1) z 7→ h(u, z) is continuous

(2) |h(u, z)| ≤ C2‖z‖2 + αu,

12



then the BSDE (3.1) with driver h admits a solution (Y, Z) where Y and Z are predictable processes

with Y bounded and Z satisfying E
(∫ T

0
‖Z(t)‖2dt

) 1
2

<∞.

The previous result allows us to show that the BSDE (3.1) with driver (3.2) admits a unique

solution.

Corollary 3.3. There exists a unique pair of predictable processes (Y, Z) with Y bounded and Z

satisfying E
(∫ T

0
‖Z(t)‖2dt

)
<∞ solution to the BSDE (3.1) with driver (3.2).

Proof. We apply Theorem 3.2, and measurability of h is guaranteed by Theorem 3.1 The continuity

in z of the driver is straightforward, as are the growth conditions, given Assumption 2.3.

�

We conclude with the existence of an optimal strategy to the optimization problem (2.9).

Theorem 3.4. Under the assumptions made above there exists an acceptable strategy ζ∗ that solves

the power utility maximization problem (2.9). If we define the value function v(x) as:

v(x) , maxζ∈AρE(Up(X
ζ(T ))), x > 0

with Aρ the set of admissible Rn-valued predictable processes ζ with ζ(t) ∈ Aρt for all t in [0, T ] and

Xζ(0) = x, then it holds that

v(x) = Up(x) exp(Y0),

where (Y,Z) is a solution to the BSDE (3.1) with driver (3.2) and

ζ∗
T

(u)σ(u) ∈ Proj
(
Z̃(u), Ãρu

)
.

Proof. The existence of a solution to the BSDE (3.1) is guaranteed by Corollary 3.3. Hence using

the martingale optimality principle, the processes Rζ are well–defined and satisfy requirements (a)

and (b). In addition, by construction, the processes ζ∗ such that Rζ
∗

is a martingale are those

such that ζ∗
T

(u)σ(u) ∈ Proj(Z̃(u), Ãρu). Theorem 3.1 yields that these elements ζ∗ are admissible

strategies, thus optimal. Take such an optimal strategy ζ∗. We have that

v(x) = E(Up(X
ζ∗(T )) = E(Up(R

ζ∗(T )) = Rζ
∗
(0) = Up(x) exp(Y0).

�

The previous result admits a dynamic version:

Theorem 3.5. Let v(t, x) be the dynamic value function defined as:

v(t, x) := esssup
ζ∈At

E

(
Up

(
x+

∫ T

t

ζ(s)Xζs
dSs
Ss

)∣∣∣Ft) t ∈ [0, T ], x > 0,

where At := {ζ ∈ Aρ, ζ(s) = 0, s < t}. Then

v(t, x) = Up(x) exp(Yt),

where (Y,Z) is a solution to the BSDE (3.1) with driver (3.2) and

ζ∗
T

(u)σ(u) ∈ Proj(Z̃(u), Ãρu).
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Proof. Let ζ any element of A and ζ∗ such that the associated Rζ
∗

is a martingale. Then by

definition of the Rζ processes, we have that Rζ(t) = Up(x) exp(Yt) since ζ(s) = 0 for s < t and so

E

(
Up

(
x+

∫ T

t

ζ(s)Xζs
dSs
Ss

)∣∣∣Ft)
= E

(
Rζ(T )|Ft

)
≤ Rζ(t) = Up(x) exp(Yt) = E

(
Rζ
∗
(T )|Ft

)
= E

(
Up

(
x+

∫ T

t

ζ∗(s)Xζ
∗

s

dSs
Ss

)∣∣∣Ft) .
Hence, v(t, x) = Up(x) exp(Yt).

�

Remark 3.6. Sometimes one might be interested in another version of the dynamic value function

above. Given an element ζ in Aρ they may consider the quantity

v(t,Xζt ) := esssup
ζ̃∈At,ζ

E

(
Up

(
Xζt +

∫ T

t

ζ̃(s)X ζ̃s
dSs
Ss

)∣∣∣Ft) , t ∈ [0, T ],

where At,ζ := {ζ̃ ∈ Aρ, ζ̃(s) = ζ(s), s ≤ t}. Then we have that v(t,Xζt ) = Up(X
ζ
t ) exp(Yt) where

(Y,Z) is the unique solution of the BSDE (3.1) with driver (3.2).

Remark 3.7. The stochastic process exp(Yt) in the expression of the value function is sometimes

called the opportunity process, since it gives the value of the optimal wealth with initial capital one

unit of currency (see [N10]).

Remark 3.8. Note finally that for the sake of the explanation, we have chosen to fix the risk aversion

coefficient p in (0, 1) but we can also consider the case where p < 0. Then the driver h in (3.2) has

to be modified suitably.

4. Three Important Risk Measures

The purpose of this section is to show and exploit certain properties of VaR, TVaR and LEL.

These are actually families of risk measures, parameterized by an (exogenously chosen) percentile

parameter α, as well as the risk constraint parameters KV ,KT ,KL ∈ (0, 1)3. We will assume that

α is fixed and constant and that it satisfies α ∈ (0, 1/2). This technical assumption relates well to

the practice, where the typical values of α are 0.05 or 0.1. Following [PirZit09] we have the formal

definitions:

Definition 4.1. The value–at–risk VaR = VaR(x, ζµ, ζσ) - corresponding to the current wealth

x, the portfolio rate of return ζµ and volatility ζσ - is the positive part of the upper α-percentile of

the projected loss distribution L = L(x, ζµ, ζσ), i.e.,

VaR = γ+α = max(0, γα), where γα uniquely satisfies P[L ≥ γα] = α.

3In this section we assume that, contingent on the choice of risk measure, the “risk limit” Kt remains constant

over [0, T ].
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Definition 4.2. The tail value–at–risk TVaR = TVaR(x, ζµ, ζσ) is the positive part of the mean

of the distribution of the projected loss distribution, conditioned on the loss being more severe than

α–percentile, i.e.,

TVaR = w+
α , where γα satisfies P[L ≥ γα] = α, and wα = E[L|L ≥ γα].

The third measure of risk - LEL - is similar to TVaR, except that it does not take the market

rate–of–return in consideration. More precisely, we have the following definition:

Definition 4.3. The limited expected loss LEL = LEL(x, ζσ) is the tail value–of–risk cor-

responding to the loss distribution L = L(x, 0, ζσ) in which the portfolio rate of return is set to

zero.

All three VaR, TVaR and LEL measure the risk of a large loss in absolute terms. If we define

the relative projected wealth loss as the distribution of the quantity Xζ(t0)−Xζ(t0+τ)
Xζ(t0)

(under the

simplifying assumptions 1. and 2. from Subsection 2.3 above), definitions of the analogous relative

quantities VaRr, TVaRr and LELr can readily be given. In fact, due to the multiplicative structure

of the wealth equations (2.3) and (2.4), given that the wealth at t is x, we have the following

expressions:

ρvar
t (E(ζ, t)− 1) =

VaR(x, ζµ, ζσ)

x
, ρtvar

t (E(ζ, t)− 1) =
TVaR(x, ζµ, ζσ)

x
, and

ρlel
t (E(ζ, t)− 1) =

LEL(x, ζµ, ζσ)

x
.

As we would expect, the relative risk limits VaRr, TVaRr and LELr no longer depend on the

current level of wealth x.

4.1. Some explicit expressions. As a consequence of the fact that the distribution appearing in

(2.7) is normal, explicit formulae can be given for the values of all three risk measures appearing

above.

Proposition 4.4. For ζµ ∈ R and ζσ > 0, we have

ρvar
t (E(ζ, t)− 1) =

[
1− exp

(
Q̃(ζµ, ζσ)τ +N−1(α)ζσ

√
τ
)]+

(4.1)

ρtvar
t (E(ζ, t)− 1) =

[
1− 1

αe
τ(r+ζµ)N(N−1(α)− ζσ

√
τ)
]+
, and (4.2)

ρlel
t (E(ζ, t)− 1) =

[
1− 1

αe
rτN

(
N−1(α)− ζσ

√
τ
)]+

, (4.3)

where N : R→ (0, 1) is the cumulative distribution function of a standard normal random variable.

Proof. See Proposition 2.16 in [PirZit09].

�

In the light of this result it becomes clear that the risk measures considered in this section meet

the Assumption 2.5.
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4.2. A common form of the risk constraints. In this section we find some properties of the

constraint sets Aρk , k ∈ {V, T, L}. The following result follows from straightforward computations.

Lemma 4.5. Each constraint set Aρkt , k ∈ {V, T, L}, can be expressed as

Aρkt =
{
ζ ∈ Rm : fk(ζ′µ(t), ||ζ′(t)σ(t)||) ≤ Kk

}
,

for some function fk : R×[0,∞)→ R∪{∞} , and positive Kk which satisfies the following properties:

(1) fk ∈ C1(R× [0,∞)) is jointly convex, fk(0, 0) ≤ 0.

(2) For each (ζµ, ζσ) ∈ R× [0,∞), the sections fk(ζµ, ·) and fk(·, ζσ) are (respectively) strictly

increasing and decreasing.

(3) fk(0, 0) < 0 and there exist constants κi > 0, i ∈ {1, 2, 3} such that for all (ζµ, ζσ) ∈
R× [0,∞)

fk(ζµ, ζσ) ≥ κ1ζ2σ − κ2ζµ − κ3

As consequences of Lemma 4.5 we have the convexity and compactness of the constraint sets

considered in this section. The following result is Proposition 4.3 from [PirZit09].

Proposition 4.6. The constraint set Aρk , k ∈ {V, T, L} is convex and compact.

4.3. A Three–Fund Separation Result. In this section we want to further characterize the

optimal investment strategy. In order to ease the exposition we drop the subscript k. The convexity

of Aρ will imply the uniqueness of optimal trading strategy ζ∗, this fact turns out to be useful in

numerical implementations. Indeed, let us recall that ζ∗ is given by

ζ∗
T

(u)σ(u) ∈ Proj(Z̃(u), Ãρu), u ∈ [0, T ].

The convexity of Aρ leads to the likewise property of Ãρ which in turn yields the uniqueness of the

projection.

Theorem 4.7. There exist two stochastic processes β∗1 and β∗2 such that the optimal strategy ζ∗

can be decomposed as

ζ∗(t) =
β∗1(t)

1− p
ζM (t) + β∗2(t)(σ(t)σ

′
(t))−1σ(t)Z(t), 0 ≤ t ≤ T, (4.4)

where Z(t), 0 ≤ t ≤ T is part of the (Y,Z) solution of BSDE (3.1) with driver (3.2).

Proof. We cover the case p ≥ 0 only (the case p < 0 can be obtained by a similar argument). Let

us recall that for a fixed path ω, the optimal strategy ζ∗(t) solves

ζ∗(t) = arg min
ζ∈A(t)

{
−pζ′(µ(t) + pσ(t)Z(t))− p− p2

2
||ζ′σ(t)||2

}
.

The convex, quadratic functional

ζ → H(t, ζ) , −pζ′(µ(t) + pσ(t)Z(t))− p− p2

2
||ζ′σ(t)||2

is minimized over the constraint set A(t) at the unique point ζ∗(t), which is on the boundary of

A(t). Thus, for a fixed path, ζ∗(t) minimizes H(t, ζ) over the constraint f(ζ′µ(t), ||ζ′σ(t)||) = K,
16



(see Proposition 4.5). The solution ζ∗(t) is not the zero vector, since f(0, 0) ≤ 0. For ζ 6= 0, it

follows that

∇f(ζ′µ(t), ||ζ′σ(t)||) = f1(ζ′µ(t), ||ζ′σ(t)||)µ(t)− f2(ζ′µ(t), ||ζ′σ(t)||)
||ζ′σ(t)||

σ(t)σ′(t)ζ,

where f1 and f2 stand for the partial derivatives of function f . According to the Karush–Kuhn–

Tucker conditions, either ∇f(ζ′µ(t), ||ζ′σ(t)||) = 0 or else there is a positive λ such that

∇H(t, ζ) = λ∇f(ζ′µ(t), ||ζ′σ(t)||). (4.5)

In both cases, straightforward computations show that ζ∗(t) is of the form given in (4.4).

�

Theorem 4.7 is a three–fund separation result. It simply says that a utility–maximizing investor

subject to regulatory constraints will invest his wealth into three funds: 1. the savings account; 2.

a risky fund with return ζM (t), t ∈ [0, T ]; 3. a risky fund with return (σ(t)σT (t))−1σT (t)Z(t), t ∈
[0, T ]. Most of the results in financial literature are usually two–funds separation ones (optimal

wealth being invested into a savings account and a risky fund). We would obtain such a result

if we restricted ourselves to the more simplistic model in which stocks returns and volatilities are

deterministic. It is for the randomness of stocks returns and volatilities that the optimal investment

consists of an extra risky fund. Investment in this fund can be regarded as a hedge against risk

carried in stochastic stock returns and volatilities.

5. A numerically implemented example

In this section we present numerical simulations for the constrained optimal strategies and the

associated constrained opportunity processes. Recall that by opportunity process, we mean the

process exp(Yt) which appears in the value function v(t, x) given in Theorem 3.5, that is v(t, x) =
xp

p exp(Yt). The opportunity process represents the value function of an investor with initial capital

one dollar; it is a stochastic process and in the figures below we present one sample path. For

simplicity and the numerical tractability of the analysis we assume that we deal with one risky

asset (n = 1), one bond with rate zero (r = 0) and one Brownian motion (m = 1). In addition, we

assume that the risky asset is given by the following SDE:

dSt = St(1[−1,1](Wt)dt+ dWt), t ∈ [0, 1] (T = 1), S0 = 1.

Our simulation relies on numerical schemes for quadratic growth BSDEs. We use the scheme of Dos

Reis and Imkeller [DRI10, DR10], which in a nutshell relies on a truncation argument of the driver,

and it reduces the numerical simulation problem to the one of a BSDE with a Lipschitz–growth

driver . For the latter we use the so–called forward scheme of Bender and Denk [BenDen07].

5.1. VaR. In Figure 5.1, we consider the risk measure VaR (given in (4.1)) with the following set

of parameters: p=0.85, α=0.10, K=0.3. The time discretization is 1/N with N=15 and τ=1/15.

5.2. TVar. In Figure 5.2, we consider the risk measure TVar (given in (4.2)) with the same set of

parameters: p=0.85, α=0.10, K=0.3. The time discretization is 1/N with N=15 and τ=1/15.
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(b) Constrained and unconstrained optimal strategies.

Figure 1. Plots of the constrained and unconstrained opportunity processes and

optimal strategies for VaR.

5.3. LEL. In Figure 5.3, we consider the risk measure LEL (given in (4.3)) with the same set of

parameters: p=0.85, α=0.10, K=0.3. The time discretization is 1/N with N=15 and τ=1/15.

6. Conclusions

We have analyzed, within an incomplete–market framework, the portfolio–choice problem of a

risk averse agent (who is characterized by CRRA preferences), when risk constraints are imposed

continuously throughout the investment phase. Using BSDE technology, in the spirit of [HIM05],

has enabled us to allow for a broad range of risk measures that give rise to the risk constraints,

the latter being (possibly) time–dependent. In order to use such technology, we have made use
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Figure 2. Plots of the constrained and unconstrained opportunity processes and

optimal strategies for TVar.

of Measurable Selections theory, specifically when addressing the issue of the driver of the BSDE

at hand. We have characterized the optimal (constrained) investment strategies, and in the case

of VaRr, TVaRr and LELr we have provided explicit (unique) expressions for them. Here we

have shown that optimal strategies may be described as investments in three funds, which is in

contrast with the classical two–fund separation theorems. Finally, using recent results in [DRI10],

we have provided some examples that showcase the way in which our dynamic risk constraints limit

investment strategies and impact utility at maturity.
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Figure 3. Plots of the constrained and unconstrained opportunity processes and

optimal strategies for LEL.

Appendix A. Properties of the constraint sets Aρt
Several analytical properties of the (instantaneous) constraint sets Aρt are established in this

section. The analysis requires some core concepts of the theory of measurable correspondences4.

We require the following auxiliary correspondences:

Aρt,k(ω) ,
{
ζ ∈ [−k, k]n

∣∣∣ ρt(E(ζ, t)− 1)(ω)−Kt(ω) ≤ 0
}
, k ∈ N.

The purpose of artificially bounding the values of Aρ· is to make use of the theory of compact–valued

correspondences, which exhibit many desirable properties.

4For a comprehensive overview of the theory of measurable correspondences, we refer the reader to [AB06] and [].
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Lemma A.1. For any m ∈ N, the correspondence Aρ·,k : [0, T ]×Ω� Rn is non–empty and compact

valued for almost all (t, ω) ∈ [0, T ]× Ω.

Proof. The non–vacuity follows from the fact that ζ ≡ 0, i.e. no wealth invested in risky assets,

is an acceptable position. To show closeness of the sets Aρt,k(ω), fix ω ∈ Ω and consider a sequence{
ζn
}
⊂ Aρt,k(ω) such that ζn → ζ. Using Assumption 2.5 it holds that

ρt(E(ζ, t)− 1)(ω)−Kt(ω) = lim
n→∞

ρt(E(ζn, t)− 1)(ω)−Kt(ω) ≤ 0

holds for all t ∈ [0, T ] and which implies that ζ ∈ At(ω). The latter, together with the fact that

ζ ∈ [−k, k]n finalizes the proof.

�

Definition A.2. A correspondence φ between a measurable space (Θ,G) and a topological space X

is said to be weakly measurable if for all F ⊂ X closed, the lower inverse of F, defined as

φl(F ) , {θ ∈ Θ | φ(θ) ∩ F 6= ∅} ,

belongs to G.

In the case of compact–valued correspondences, weak–measurability and Borel measurability (in

terms of the Borel σ–algebra generated by the Hausdorff metric) are equivalent notions. Given

a correspondence φ : Ω × [0, T ] �7→ Rn we define the corresponding closure correspondence via

φ̄(ω, t) , φ(ω, t). For notational purposes let

f
(
(t, ω), ζ

)
= ρt(E(ζ, t)− 1)(ω)−Kt(ω).

Recall that P denotes the predictable σ–algebra on [0, T ]×Ω. The function f
(
(·, ·), ·

)
is a Carathéodory

function with respect to P, i.e. it is continuous in ζ and P–measurable in (t, ω).

Proposition A.3. For any k ∈ N, the correspondence Aρ·,k : [0, T ]× Ω� Rn is weakly

P–measurable.

Proof. Let F ⊂ Rn be closed and consider
{
ζm
}∞
m=1

⊂ F dense. For η ∈ N let

ηAρt,k(ω) ,

{
ζ ∈ [−k, k]n

∣∣∣ f((t, ω), ζ
)
<

1

η

}
.

We have that(
ηAρ·,k

)l
(F ) =

{
(t, ω) ∈ [0, T ]× Ω

∣∣ f((t, ω), ζ
)
<

1

η
for some ζ ∈ F

}
=

{
(t, ω) ∈ [0, T ]× Ω

∣∣ f((t, ω), ζm
)
<

1

η
for some m ∈ N

}
=

∞⋃
m=1

f−1
(
(·, ·), ζ

)(
−∞, 1

η

)
.

The second equality holds because f is continuous in ζ,
{
ζm
}∞
l=1

is dense and (∞, 1/η) is open.

Since f is Carathéodory, then f−1
(
(·, ·), ζ

)(
−∞, 1η

)
∈ P, hence for all η ∈ N, the correspondence
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ηAρ·,k is weakly P–measurable. Next we have

Aρt,k(ω) ⊂ ηAρt,k(ω) ⊂
{
ζ ∈ [−k, k]n

∣∣∣ f((t, ω), ζ
)
≤ 1

η

}
,

where the second inclusion follows again from the continuity of f in ζ. This implies that

Aρt,k(ω) =

∞⋂
η=1

ηAρt,k(ω),

and

graph
(
Aρ·,k(·)

)
=

∞⋂
η=1

graph
(
ηAρ·,k(·)

)
.

The graph of the closure of a weakly–measurable correspondence is measurable, hence graph
(
Aρt,k

)
is measurable, by virtue of being the (denumerable) intersection of measurable graphs. Since a

compact–valued correspondence with a measurable graph is itself weakly–measurable (see Lemma

18.4 (part 3) and Corollary 18.8 in [AB06]), we conclude that the correspondence (t, ω)�7→ Aρt,k(ω)

has such property.

�

The following theorem, whose proof can be found in [AB06], page 595, plays an important role in

the proof of predictability of our BSDE’s driver:

Theorem A.4. A nonempty–valued correspondence mapping a measurable space into a sepa-

rable, metrizable space is weakly–measurable if and only if its associated distance function is a

Carathéodory function.
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