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Abstract

This article studies nonparametric estimation of a regression model for d ≥ 2 potentially non-

stationary regressors. It provides the first nonparametric procedure for a wide and important range

of practical problems, for which there has been no applicable nonparametric estimation technique

before. Additive regression allows to circumvent the usual nonparametric curse of dimensionality

and the additionally present, nonstationary curse of dimensionality while still pertaining high mod-

eling flexibility. Estimation of an additive conditional mean function can be conducted under weak

conditions: It is sufficient that the response Y and all univariate Xj and pairs of bivariate marginal

components Xjk of the vector of all covariates X are (potentially nonstationary) β-null Harris re-

current processes. The full dimensional vector of regressors X itself, however, is not required to be

Harris recurrent. This is particularly important since e.g. random walks are Harris recurrent only

up to dimension two.

Under different types of independence assumptions, asymptotic distributions are derived for the gen-

eral case of a (potentially nonstationary) β–null Harris recurrent noise term ε but also for the special

case of ε being stationary mixing. The later case deserves special attention since the model might be

regarded as an additive type of cointegration model. In contrast to existing more general approaches,

the number of cointegrated regressors is not restricted. Finite sample properties are illustrated in a

simulation study.
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1 Introduction

In this paper we present nonparametric approaches for a general regression set–up under very weak

conditions on the covariate process. In particular, the introduced framework provides a first way for

nonparametric inference with high dimensional stochastically nonstationary regressors. The setup is mo-

tivated by and generalizes cointegration approaches in parametric econometric time series analysis with

stochastically nonstationary components. Though results should be of general interest in all application

areas where there is no theoretically justified parametric functional form for a regression function, and

where an appropriate model involves more than two stochastically nonstationary covariates, of which

the fit into standard unit root and long-memory categories might even be controversial. Such settings

include among many others e.g. economic exchange rate (Taylor and Sarno, 1998) and demand models

(Lewbel and Ng, 2005), but also weather, energy and climate studies (Engle, Granger, Rice, and Weiss,

1986; Harbaugh, Levinson, and Wilson, 2002; Grossman and Krueger, 1995).

In the univariate case, recent literature has established consistency and asymptotic distribution results

for nonparametric kernel regression with stochastically nonstationary covariates in the class of (β-) null

Harris recurrent processes, which contains mixing processes as subclass but also random walk type

processes. Technically, the literature separates into two different strains: See Phillips and Park (1998),

Wang and Phillips (2009b) and Wang and Phillips (2009a) for local time, linear embedding techniques and

Karlsen and Tjøstheim (1998), Karlsen and Tjøstheim (2001) and Karlsen, Myklebust, and Tjøstheim

(2007) for a general Markov coupling time approach.

For multivariate stochastically nonstationary covariates, however, these existing results can generally

not be used, since as in the random walk case, such regressors fail to be compoundly recurrent already

from dimension two or three on. Corresponding to the standard nonparametric curse of dimensionality

where feasibility deteriorates with an increasing number of covariates, we call this a nonstationary curse

of dimensionality, where feasibility entirely vanishes at very low dimensions depending on the type of

underlying nonstationarity.

In this paper, we introduce a general flexible model framework, where the compound covariate vector

can be transient and where it is sufficient for nonparametric type inference if pairs of it satisfy a recurrence

property. Weakening assumptions from full dimensional recurrence to pairwise recurrence is key for a

multivariate nonparametric regression method without restricting dimensions as smaller than three or

nonstationarity as close to stationarity. Reaching this generality in the data, however, the estimated

regression function must be additive. Since fully nonparametric estimation is not possible in this case,

this seems a mild restriction which still allows for sufficient model flexibility. In this sense, additive

estimation countervails two curses of dimensionality: the nonstationary one and as usual the standard

stationary one.

Denote observations by subscripts and dimension components by superscripts. In the entire paper

we use the shorthand notation Xjk = (Xj , Xk). Then given a random design of n joint observations

of (X,Y ) ∈ Rd × R, we estimate an additive conditional mean function m : Rd → R with component
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functions mj : R→ R for j = 1, . . . , d and scalar m0 by

Yi = m0 +

d∑
j=1

mj(X
j
i ) + εi (1.1)

for all i ∈ {1, . . . , n} under suitable identification conditions for mj , j = 1, . . . , d. We assume there is no

concurvity, i.e. for m1, . . . ,md nontrivial we cannot have m1(x1) + · · ·+md(x
d) = 0 for all (x1, . . . , xd).

The response Y and all univariate Xj and pairs of bivariate marginal components Xjk of the covariate

vector X belong to the class of β–null Harris recurrent processes.

We introduce a new general backfitting type estimation procedure for the additive model (1.1) which

builds on estimation of low dimensional objects only, and for which recurrence of components of the

covariate vector is thus sufficient. In the special case of stationary covariates it reduces to smooth

backfitting (see Mammen, Linton, and Nielsen (1999)). The asymptotic distribution of the estimation

method is derived under different type of independence assumptions on the error, where subcases can

be regarded as nonparametric type of cointegration relations. While obtained rates and variances are

univariate in form, their driving underlying type of nonstationarity is two-dimensional. Furthermore we

investigate to which extent the estimation procedure is robust to model misspecification. We compare its

performance to tailored methods improving on robustness in this respect at the price of more restrictive

assumptions on the covariates.

For deriving the asymptotic properties of the proposed estimation technique, we show non-standard

uniform consistency results for kernel estimators with β–null Harris recurrent processes. These might be

of interest on their own.

The paper is structured as follows. In the next section necessary concepts and notations of Markov

theory will be presented to keep the paper self-contained. Section 3 introduces framework and estimation

techniques and the subsequent section provides convergence and asymptotic results. Extensions are

briefly discussed. The finite sample behavior is illustrated in a simulation study in Section 5. The last

section concludes. All proofs are contained in the appendix.

2 Motivation and Basic Framework

This section introduces necessary notions and the basic framework for nonparametric regression with

multivariate nonstationary covariates. Furthermore form and peculiarities of standard kernel estimators

in this general setting are explained motivating the definition of additional tailored versions. These are

fundamental in the sequel. For technical details on Markov chain properties we refer to the comprehensive

monographs Meyn and Tweedie (1993) and Nummelin (1984).

2.1 Notation and Basic Concepts from Markov Theory

Let {Xi}ni=1 be a multivariate aperiodic φ–irreducible Markov chain with transition probability P on

the state space (E, E) with E ⊆ Rd. The irreducibility ensures that the process does not degenerate to
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a subspace of the original space E, i.e. it guarantees the existence of a non-trivial measure φ such that

for any set A ∈ E with φ(A) > 0 it is
∑
n P

n(x,A) > 0 for any starting point x ∈ E. As for inference

only sets of positive φ-measure are of interest, denote the class of non–negative measurable functions

with φ-positive support by E+. A set A ⊆ R is in E+ if 1A ∈ E+. We need the following short-hand

notation: For any non–negative measurable function η and any measure λ define the operator kernel

η ⊗ λ by η ⊗ λ(x,A) := η(x)λ(A), for all (x,A) ∈ (E, E). For some general operator kernel P denote

Pη(x) :=
∫
A
P (x, dy)η(y) is a function, λP (A) :=

∫
Rn λ(dx)P (x,A) is a measure and λPη(x,A) :=∫

A

∫
Rn λ(dx)P (x, dy)η(y) is a real number.

Definition 2.1 (small sets and functions). A function η ∈ E+ is small for a process X with transition

probability P if there exist a measure λ, a positive constant b > 0 and an integer m ≥ 1 such that

Pm ≥ bη ⊗ λ . (2.1)

A set A is small if 1A is small. If the measure λ satisfies (2.1) for some η, b and m, then λ is a small

measure.

For every φ–irreducible Markov chain (Xi)i there exists a triplet (s, ν,m0) with a bounded function

0 < s(x) ≤ 1 at all x, and probability measure ν satisfying (2.1) with b = 1. For ease of notation, we

assume throughout the paper that m0 = 1. Since ν is independent of x, the chain regenerates in small

sets and for a process with continuous state space small sets cannot be singletons. In practice, however,

detecting small sets from data is a challenge since topological size and form depend on the observed

but unknown underlying process. However, every small set is compact if, as for random walks and α-

stable processes, X additionally satisfies the Feller property, a continuity assumption on the transition

probability operator (see Feller (1971); Meyn and Tweedie (1993)).

We furthermore assume that X or components of it are β–null Harris recurrent. As in a univariate

setting, this is the key assumption for nonparametric kernel type inference to be possible (see Karlsen

and Tjøstheim (2001); Karlsen, Myklebust, and Tjøstheim (2007)). On top of simple Harris recurrence,

which requires a process X to return almost surely to any neighborhood Nx,h = {y | ‖y − x‖ ≤ h} of

any x ∈ Rd for any h with φ(Nx,h) > 0, β–null Harris recurrence requires more structure of the average

number of recurrences over all sample paths without losing processes of practical relevance (see Chen

(2000); Darling and Kac (1957)).

Definition 2.2 (β–null Harris recurrence). The chain (Xi) is β–null recurrent if there exists a small

non–negative function f , an initial measure λ, a constant 0 < β ≤ 1 and a function Lf which is slowly

varying at infinity1 such that

Eλ

[
n∑
i=0

f(Xi)

]
∼ 1

Γ(1 + β)
nβLf (n) for n −→∞ , (2.2)

where Eλ denotes the conditional expectation given that the initial distribution of X0 is λ.

1A function L is slowly varying at infinity if limλ→∞
L(λx)
L(λ)

= 1 for all x
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Note that β is global and characterizes the type of nonstationarity of the chain (Xi) in a single

parameter with smaller β indicating more nonstationarity. In particular, β is not specific to the choice

of the small function f , which can be easily shown by Orey’s theorem (see e.g. Karlsen and Tjøstheim

(2001), Lemma 3.1). In one dimension, β–null Harris recurrence is a very weak requirement which

allows for a wide class of processes including stationary or positive recurrent processes with but also

nonstationary processes of long-memory or unit-root type. Instead of a stationary density, such processes

are generally characterized by an invariant measure, which is generally only finite on small sets and

otherwise σ-finite. Throughout the paper, we assume that any invariant measure has a density π that

can thus be estimated.

Examples 1 (β–null Harris recurrent processes). The class of β–null Harris recurrent processes contains

• for β = 1: all stationary linear, but also nonlinear time series like nonlinear autoregressive models

under certain conditions (see e.g. Example 3.1 in Karlsen and Tjøstheim (2001) and the exponential

autoregressive process in Cline and Pu (1999));

• for β = 1/2: the univariate random walk and various nonlinear threshold models containing scalar

unit root components (see Meyn and Tweedie (1993), p. 503 ff and (Myklebust, Karlsen, and

Tjøstheim, 2010) for a wide range of examples);

• for β < 1: ARFIMA(d) models with d ∈ (0, 0.5), univariate α–stable processes for 1 < α ≤ 2 with

β = 1− 1
α (see Sato (1999)), multivariate α–stable processes if dimension d ≤ α ≤ 2, in particular

the bivariate random walk with β = 0.

Furthermore scalar or bivariate mean-reverting processes, e.g. the Ornstein–Uhlenbeck process dXt =

−aXt dt+ dWt for a ≥ 0, are β–null Harris recurrent. General conditions on diffusion models satisfying

β–null Harris recurrence are discussed in Höpfner and Löcherbach (2000), Examples 3.5. and Bandi and

Phillips (2004) exploiting the explicit linear form of the trend and of the Brownian type stochastic part.

For larger dimensions, however, recurrence amounts to an increasingly harder criterion for fully

compound nonstationary processes to satisfy, e.g. independent random walks are only β–null Harris

recurrent up to dimension two and transient beyond. Generally, with increasing dimensions beyond

two, β–null Harris recurrence gradually excludes most nonstationary processes and thus cannot allow for

substantially more generality as standard mixing settings in high dimensional multivariate regression.

Thus, as growing dimensions cause nonstationary processes to drop out of the standard estimation

framework, this can be regarded as a nonstationary curse of dimensionality which does not just deteriorate

finite sample performance of estimators but rules out estimation completely.

Therefore we introduce the class of pairwise β–null Harris recurrent processes.

Definition 2.3 (pairwise β–null Harris recurrence ). A multivariate process X is pairwise β–null Harris

recurrent if all pairs of components of X are β–null Harris recurrent.
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Note that this class is significantly richer than the fully β–null Harris recurrent processes and in

particular allows for nonstationarity in any dimension. In particular, it includes the practically important

case of any d-dimensional vector of random walks independent of their correlation structure. This is also

true for all processes with univariate min1≤j≤d β
j ≥ 1/2. Processes with βj < 1/2 are more nonstationary

in their univariate recurrence behavior than a random walk but can still be pairwise β–null Harris

recurrent under restricted dependence structures.

Denote the sequence of consecutive recurrence times of a β–null Harris recurrent process X in Rd

by (τk)Tk=0(n) with 0 ≤ τk ≤ n, where the maximal number of recurrences for a given sample size is

T (n) = maxk {k : τk ≤ n}. Note that while any such recurrence time is also a regeneration time for any

marginal components of X, recurrences of marginal components might be more frequent depending on

dimension and their type of nonstationarity. Therefore we need to distinguish in particular (τ jl )
T j(n)
l=1

the sequence of recurrence times for the univariate marginal process Xj and (τ jkl )
T jk(n)
l=1 for the bivariate

Xjk where the inclusion holds
{
τ jkl

}
l
⊆
{
τ jl

}
l

for any 0 ≤ j, k ≤ d but not the other way around.

These recurrence times allow a split chain decomposition of any φ–irreducible Harris recurrent process

into blocks of identically distributed parts. This is of major importance for deriving asymptotic results

in this setting. All definitions in the following also have marginal analogues. For any g ∈ L1
π(Rd,R) it is

Sn(g) :=

n∑
i=0

g(Xi) = U0(g) +

T (n)∑
k=1

Uk(g) + U(n)(g) , (2.3)

with τ−1 := 1 and blocks

Uk(g) =


∑τk
i=τk−1+1 g(Xi) when 0 ≤ k ≤ T (n)∑n
i=τT (n)+1 g(Xi) when k = (n)

(2.4)

where {(Uk, (τk − τk−1))}T (n)
k=1 are iid with common marginal distribution U = U(g) of Uk, mean µ =

µ(g) = EU(g) = πs(g), and variance σ = σ(g) = VU(g). The stochastic quantity T (n) plays the role of

effective sample size as T (n)→∞ a.s. for n→∞. As for a β–null Harris recurrent process, T (n) is on

average over all paths of order nβL(n), the actual size of T (n) ≤ n a.s. and its distribution over sample

paths depend on the regularity β of the underlying process and is not observable. As estimation of β

means estimating the tail index of a recurrence time process, the small sample performance of any such

estimator will be very poor independent from the chosen procedure. Therefore we directly introduce the

observable quantity

TC(n) :=

n∑
i=0

1C(Xi) (2.5)

for C ∈ E+. If C is small for X, TC(n) and T (n) are asymptotically equivalent in the sense TC(n)
T (n)

a.s.−→ c

with c > 0 constant (Remark 3.5. in Karlsen and Tjøstheim (2001)).

2.2 Kernel Estimators and Peculiarities for Multivariate Nonstationary Data

We observe the multivariate pairwise β–null Harris recurrent process X on a fixed bounded set G =

G1 × . . . × Gd of the state space E, where Gj ⊆ Ej ⊆ R is bounded for all j = 1, . . . , d. While for
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stationary data, the measure of the full dimensional data generating process exists and is bounded by

definition on its entire support, for nonstationary data, a restricted bounded support is crucial and

sufficient for a continuous invariant measure to be finite. This is easy to see in the case of a univariate

random walk where the invariant measure is the Lebesgue measure. It holds for general pairwise β–null

Harris recurrent processes, as the entire space can be covered by small sets, on which any of the existing

invariant measures πjk is finite (see Meyn and Tweedie (1993)), and for any bounded set there exists a

collection of small sets of which a finite number is sufficient to cover it. Thus we work on a bounded

support not just for convenience simplifying technicalities such as integration steps in an estimation

procedure, but because it is systematically important as a minimal condition for integrals with respect

to the invariant measure to exist.

In practice of finite samples, the empirical support of the data is naturally bounded and wlog we

can assume the data to be in [0, 1]d after a monotone transformation. But in asymptotic derivations

restricting the support of a nonstationary process to be bounded has a systematic impact. The fixed

truncation of the support imposes a bias on any estimation procedure as the amount of data outside

G depends on the degree of underlying nonstationarity of the process and might therefore vary along

different dimensions and directions. Asymptotically the available amount of data points and actual

elements of different marginal component processes within G might generally differ almost surely even

if Gj = Gk for k 6= j depending on the type of nonstationarity of the marginal processes. We will work

with the following index sets

Ijk(Xs) =
{
i ∈ {1, . . . , n} |Xs

i ∈ Gs, i < τsT jk(n)+1

}
(2.6)

for each j, k ∈ {1, . . . , d}, s any possible nontrivial subset of the powerset D of {1, . . . , d}, and with the

convention τsT s(n)+1 := n − 1. The univariate index set Ij can be obtained from (2.6) with j = k and

If analogously with scaling according to full dimensional X ∈ G instead of Xjk. Note that on average

over all sample paths the last restriction in (2.6) is binding for all nontrivial s ∈ D which do not contain

the two elements j, k if for the respective types of nonstationarity it is βs > βjk. Since recurrence

properties generally improve for decreasing dimensionality, this is in particular most likely the case for

the univariate marginals with s ∈ {j, k}. In order to “balance” estimation with objects based on Xjk

and Xs the last requirement in (2.6) imposes components Xs to artificially have the same number of

effective observations as Xjk on G on average by reducing the number of blocks in the split chain (2.4).

Note that observed effective sample sizes are path dependent, thus a speed adjustment with deterministic

factors would not work. For a fixed Xs it is |If | ≤ |Ijk| ≤ |Ij | ≤ n where the absolute value indicates

the number of elements in the set on average over all sample paths. If clear from the context we will

omit Xs as argument of I in the following. As T (n) and τ are not directly observable, operationalize the

index set choice according to (2.6) by TC(n) as in (2.5) and entry times of C. In a stationary setting,

such technical complications are not needed since asymptotically speeds for different components to hit

G and recurrence properties are all of the same order n independent of their dimension.
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The basic underlying estimation technique will be kernel smoothing with product kernels. Denote

Kx,h(Xi) =

d∏
j=1

Kxj ,hj (X
j
i ) (2.7)

where each univariate factor satisfies for all xj ∈ Gj∫
Gj
Kxj ,hj (u

j)duj = 1 . (2.8)

Since Gj is bounded, a standard way to fulfill (2.8) are boundary modified kernels

Kvj ,hj (u
j) =

K(1/hj(u
j − vj))∫

Gj K(1/hj(wj − vj))dwj
, (2.9)

where in (2.9) K is a standard univariate kernel function which is symmetric about 0, bounded with

compact support Sj = [−cj , cj ] with 0 < cj < ∞ and integrating to 1 on Sj . The kernel K may also

depend on j, which is suppressed in the following for ease of notation. Note that for vj and uj in the

interior G̊j,2hj the modified kernels coincide with standard kernels

Kvj ,hj (u
j) = 1/hjK(1/hj(u

j − vj)) . (2.10)

It is G̊j,2hj := Gj\∂Gj,2hj where ∂Gj,2hj =
{
x| ‖x− c‖ ≤ 2hjcj for any c from the boundary

}
is the 2hj

ring boundary of Gj for a kernel with support Sj .

Assumption 1. 1. K(uj) and K(uj) · (uj)k are Lipschitz-continuous for any u ∈ R and any power

k < 2p+1 with Lipschitz constant L̃ > 0, where p indicates the minimal existing number of partial

derivatives of m over all directions.

2. Sjkx = xjk ⊕ Sjk =
{
xjk + u|u ∈ Sjk

}
is small for all xjk ∈ Gjk where Sjk is the support of the

bivariate kernel.

In the remaining part of this section, regard j and k as elements of the power set of {1, . . . , d} for

obtaining general definitions from the stated univariate and bivariate ones. For standard kernel density

and regression estimators in a nonstationary setting, recurrence frequency T j(n) and index sets Ij must

be carefully in line with dimension and direction of the underlying Xj in Gj . Set

π̂j(x
j) =

1

T j(n)

∑
i∈Ij

Kxj ,hj (X
j
i ) , (2.11)

m̂j(x
j) =

∑
i∈Ij Kxj ,hj (X

j
i )Yi∑

i∈Ij Kxj ,hj (X
j
i )

, (2.12)

and operationalize (2.11) with T jC(n) as in (2.5) for an appropriate small set. For β–null Harris recurrent

Xj , the two estimators provide pointwise consistent estimates of the invariant measure density and a

general nonparametric link function mj respectively. This has been shown in Karlsen, Myklebust, and

Tjøstheim (2007) and Karlsen and Tjøstheim (2001) for univariate Xj , but also holds in dimensions

q > 1 if the compound q-vector is β–null Harris recurrent, with βq generally smaller than βj . Rates of
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convergence of (2.11) and (2.12) are driven by the recurrence frequency T j(n) and the occupation time

L̂j(x
j) =

∑
i∈Ij Kxj ,hj (X

j
i ) respectively, acting as effective sample sizes. Asymptotically in both cases,

they are on average of size (nβ
j

h)−1/2 deteriorating with smaller βj , which we denote as nonstationary

curse of dimensionality. For higher dimensional estimators rates (nβ
q

hq)−1/2 also show the standard

curse of dimensionality plus a potentially more severe nonstationary curse through βq. Though in our

estimation method later, we also need basic estimators for objects in direction j or jl with effective

sample sizes not greater than in the case jk in order to artificially balance speeds of univariate and

different bivariate estimators if necessary

π̂
(k)
j (xj) =

1

T jk(n)

∑
i∈Ijk

Kxj ,hjk(Xj
i ) (2.13)

m̂
(k)
j (xj) =

∑
i∈Ijk Kxj ,hjk(Xj

i )Yi∑
i∈Ijk Kxj ,hjk(Xj

i )
. . (2.14)

Analogously to (2.13) set π̂
(k)
jl (xjl), which is π̂

(k)
j (xj) for l = j, and π̂jl(x

jl) for l = k. Define L̂
(k)
j (xj) as

the numerator of (2.13)

L̂
(k)
j (xj) =

∑
i∈Ijk

Kxj ,hjk(Xj
i ) (2.15)

For a full dimensional β–null Harris recurrent process analogues to (2.13) and (2.13) with speed of the

compound X are denoted by π̂fj and m̂f
j . The nonstationary character for the estimators in (2.13) and

(2.14) is determined by the two–dimensional type βjk. Hence rates of convergence of π̂
(k)
j and m̂

(k)
j to πj

and mj respectively are asymptotically on average of order (nβ
jk

h)−1/2 - which is univariate in form but

of bivariate type of nonstationarity. For π̂
(k)
jl convergence to πjl occurs at most with rate (nβ

jk

h2)−1/2

on average. If βjl < βjk the slower rate governed by βjl prevails. In the other slowed-down cases set for

fix j and k

Ljk =

{
l 6= j|L̂(k)

j ·
(
L̂

(l)
j

)−1

= OP (1)

}
. (2.16)

This set collects all indices of components which are less or equally nonstationary in pair with Xj than

component k is, on the realized path of the underlying data. In particular 1 ≤ λjk = |Ljk| ≤ d − 1, as

Ljk contains at least component k itself.

3 Generalized Smooth Backfitting Estimation (GSBE)

Kernel type estimation of a fully general nonparametric regression setting with more than two nonsta-

tionary covariates might be inconsistent. In this case, the compound vector of regressors is generally

transient implying that additive functionals such as the kernel estimators do not converge in general.

But when restricting the functional form of the regression problem as additive, in most of these set-

tings inference is possible for a specific estimation strategy. In this section, we introduce an appropriate

framework of general classes of admissible processes for additive estimation using that low-dimensional

subcomponents of transient compound vectors are often recurrent, as illustrated in the last section. In
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this setting, we develop corresponding estimation methods which thus allow to circumvent the nonsta-

tionary curse of dimensionality. As in the stationary subcase, the proposed estimators also countervail

the stationary curse of dimensionality. Though here, improved finite sample performance just appears as

a positive side effect of additive estimation, given that for most higher dimensional nonstationary data

a more general structural relation cannot be estimated at all.

We develop estimation techniques of smooth backfitting type (Mammen, Linton, and Nielsen, 1999),

where the iterative estimation steps entirely consist of low-dimensional invariant density estimators and

regression smoothers only. For this class of estimators it is sufficient if corresponding low-dimensional

components of the covariate vector are β–null Harris recurrent. Note that other kernel based tech-

niques for additive estimation such as marginal integration (Linton and Nielsen, 1995; Tjøstheim and

Auestad, 1994) or two–step local partitioned regression (Christopeit and Hoderlein, 2006) would need

full–dimensional invariant measure densities in a pre–step, requiring recurrence of the full-dimensional

processes and thus suffering from the same nonstationary curse of dimensionality as fully nonparametric

regression. And even in the restrictive class of full dimensional recurrent X, their slow preestimation

step would lead to only inferior rates.

Assume throughout this section that the regression model has additive form as in (1.1). Furthermore

all mentioned densities of invariant measures and all stated integrals exist, i.e. the regression functions

mj are in the respective weighted L2–spaces.

As a starting point for estimation and illustration of the later estimation method, assume that

estimates of the additive component functions from nonstationary β–null Harris recurrent data also

minimize the smoothed sum of squares

∑
i∈I

∫
(Yi −m0 −

d∑
k=1

mk(xk))2Kx,h(Xi) dx (3.1)

under the constraints for all j = 1, . . . , d∫
Gj
mj(x

j)π̂j(x
j)dxj = 0 , (3.2)

as in the standard stationary smooth backfitting case (SBE). Minimization of (3.1) and standard kernel

calculations lead to the following defining system of integral equations. SBE estimators (m̃0, . . . , m̃d)

solve

m̃j(x
j) = m̂j(x

j)− m̃0,j −
∑
k 6=j

∫
Gk
m̃k(xk)

L̂jk(xjk)

L̂j(xj)
dxk (3.3)

with m̃0,j =

∫
Gj m̂j(x

j)π̂j(x
j)dxj∫

Gj π̂j(x
j)dxj

=
1

n

n∑
i=1

Yi , (3.4)

where L̂jk and L̂j are occupation time estimates and m̂j is a marginal Nadaraya–Watson pilot estimator

as defined below (2.11) and as in (2.12) respectively. Identification and the form of the constant terms

m̃0,j in (3.4) result from the norming conditions (3.2).
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In contrast to the stationary case, however, generally on average the recurrence frequency of Xjk

might be asymptotically of slower order than for Xj . Therefore the quotient
L̂jk

L̂j
=

π̂jk
π̂j

T jk(n)
T j(n) in the

projection part of (3.3) converges to zero almost surely on average over all sample paths. Thus for a

valid estimation procedure effective sample sizes and hence speeds of the involved estimators must be

artificially synchronized. Since (3.3) only contains one- and two dimensional objects, the fastest common

scale to do so is two–dimensional. Such a procedure appears to be applicable if covariate processes have

at least bivariate invariant measures for all pairs of components. We therefore introduce the class of

pairwise β–null Harris recurrent processes as defined in Definition 2.3 which is general enough to contain

many practically relevant high-dimensional nonstationary processes, which are compoundly transient, but

which still allows for consistent nonparametric estimation of an additive structural model as shown in the

next section. Up to our knowledge, this framework is new to the literature and the obtained estimation

method is the first available procedure for nonparametric estimation with multivariate nonstationary

regressors.

For balancing terms in (3.3) we must use potentially slower than standard estimators π̂
(k)
j , π̂

(k)
jl and

m̂
(k)
j of bivariate nonstationary type βjk as defined in (2.13) and (2.14). Also in the backfitting operator

for component j, the impact of other directions on any pair of components containing Xj might now

differ depending on respective occupation times of component pairs. To ensure consistency, the procedure

must reflect this. Define the generalized smooth backfitting estimates (GSBE) (m̃j)
d
j=1 for the class of

pairwise β–null Harris recurrent regressors X as solutions to

m̃j(x
j) =

1

d− 1

∑
k 6=j

(
m̂

(k)
j (xj)− m̃(k)

0,j

)
−
∑
k 6=j

∑
l 6=j

∫
Gl
m̃l(x

l)
π̂

(k)
jl (xjl)

π̂
(k)
j (xj)

dxl

 , (3.5)

with constants

m̃
(k)
0,j =

∫
Gj m̂

(k)
j (xj)π̂

(k)
j (xj)dxj∫

Gj π̂
(k)
j (xj)dxj

=
1

T jk(n)

∑
i∈Ijk

Yi . (3.6)

They follow from appropriate analogues of the norming constraints (3.2) on solutions of GSBE equations∑
k 6=j

∫
Gj
mj(x

j)π
(k)
j (xj)dxj = 0 . (3.7)

Note that asymptotically in the projection part of (3.5) only elements l ∈ Ljk prevail, while all others

vanish. If all pairs of components of X have the same type of nonstationarity, the backfitting equations

reduce to

m̃j(x
j) =

1

d− 1

∑
k 6=j

(
m̂

(k)
j (xj)− m̃(k)

0,j

)
−
∑
k 6=j

∫
Gk
m̃k(xk)

π̂jk(xjk)

π̂
(k)
j (xj)

dxk ,

since λjk = d− 1 and π̂
(k)
jl = π̂jl in this case. In particular, (3.5) fully reduces to (3.3) and the norming

constraint (3.7) to (3.2) for the special case of identical one- and two-dimensional scales, i.e. an almost

stationary added component in the pair. Thus standard smooth backfitting appears as a subcase of

generalized smooth backfitting for sufficiently stationary data.
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Numerically, we obtain the generalized smooth backfitting estimates as solution to (3.5) via iteration.

For each component j start at an arbitrary initial guess m̃
[0]
j , e.g. the marginal Nadaraya–Watson

estimator m̃
[0]
j = m̂j . Then denote the rth step iterate of the jth component with m̃

[r]
j . Hence iterate

according to

m̃
[r]
j (xj) =

1

d− 1

∑
k 6=j

m̂(k)
j (xj)− m̃(k)

0,j −
∑
l<j

∫
Gl
m̃

[r]
l (xl)

π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

dxl−

−
∑
l>j

∫
Gl
m̃

[r−1]
l (xl)

π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

dxl

 (3.8)

until a convergence criterion is fulfilled. Note that
∑
k 6=j m̃

(k)
0,j is only different from zero, when the

norming condition (3.7) is violated. If we directly set

m0 =

d∑
j=1

1

d− 1

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Yi , (3.9)

the centering term m̃
(k)
0,j can be omitted from the algorithm.

Remark 1. Note that the use of boundary modified kernels in (3.5) and (3.8) is crucial in order to obtain

unbiased solutions of GSBE also on the boundary of G. Otherwise the density weight in the backfitting

operator should be altered from
π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

to
π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

−
∫
π̂
(k)
jl (xjl) dxj∫
π̂
(k)
j (xj) dxj

and the centering m̃
(k)
0,j can no longer

be omitted from the algorithm but must be used in its original integral form (3.6) which no longer reduces

to a constant on the boundary. These modifications are the corresponding general analogues to the ones

in the standard SBE setting.

3.1 Adaptive GSBE and Projection Properties

For stationary data, the form of the defining equations of the SBE estimator (3.3) has been motivated

via a projection argument (3.1) as the corresponding first order conditions for obtaining the best additive

fit to the data in a suitably π̂–weighted empirical L2–norm. This implies that even if the underlying true

model is not additive, SBE provides reasonable and controllable estimates as additive projections. But

for GSBE, in general admissible processes are only pairwise β–null Harris recurrent such that an invariant

measure π of the full dimensional compound process might not exist and the projection property in the

general sense cannot prevail. The question, however, is, to what extend and in which sense it can be

recovered for general data and how it can be improved upon under which conditions. For simplicity, we

use an operator representation of the backfitting problem (3.5) as a Fredholm equation of the second

kind in the corresponding (empirically) weighted L2 Hilbert spaces which will also prove valuable for the

presentation of the asymptotic results. Componentwise in j = 1, . . . , d it is

m̃j(x
j) =

1

d− 1

∑
k 6=j

(1− Φ̂jk)m̂
(k)
j (xj)−

∑
k 6=j

∑
l 6=j

[Â
(k)
jl m̃l](x

j) (3.10)
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with centering operator Φ̂jk[m̂
(k)
j ] =

∫
m̂

(k)
j (xj)π̂

(k)
j (xj)dxj∫

π̂
(k)
j (xj)dxj

= 1
T jk(n)

∑
i∈Ijk Yi and projection operators

Â
(k)
jl for l 6= j defined as

[Â
(k)
jl ml](x

j) =
1

d− 1

∫
Gl
ml(x

l)
π̂

(k)
jl (xjl)

π̂
(k)
j (xj)

dxl . (3.11)

Asymptotically it converges to zero for all l /∈ Ljk, projecting any function f ∈ L2
πl

onto L2
πj . Thus the

limiting operator is

[Ajlml](x
j) =

1

d− 1

∫
Gl
ml(x

l)
πjl(x

jl)

πj(xj)
dxl for l ∈ Ljk (3.12)

and zero otherwise.

Use vector and matrix notation m̃ = (m̃1(x1), . . . , m̃d(x
d))T ∈ Rd and m̂ = (m̂1(x1), . . . , m̂d(x

d))T ∈

Rd×d where m̂j(x
j) = (m̂

(1)
j (xj), . . . , m̂

(d)
j (xj))T ∈ Rd to obtain the simplest operator form of (3.5)

(I − Â)m̃ =
1

d− 1
diag

(
(1− Φ̂)m̂

)
(3.13)

with I the identity and operator matrix entries ((ajl)) := −
∑
k 6=j Â

(k)
jl for all j 6= k and diag(Â) = 0,

((φjk)) = Φ̂jk for all j 6= k and diag(Φ̂) = 0, ((1jk)) = 1 for all j 6= k and diag(1) = 0. By setting

m0 =
∑d
j=1

1
d−1

∑
k 6=j

1
T jk(n)

∑
i∈Ijk Yi the centering term can be omitted and the right hand side reduces

to m̂II = 1
d−1diag

(
1m̂)

)
∈ Rd.

The construction of GSBE focused on the weakest assumptions on the covariate process in terms of

stationarity assumptions. Under the admissible generality in the data, however, the backfitting operator

cannot keep its full projection characteristic as in the standard stationary case. Corresponding to the

pairwise scaling of the algorithm, GSBE as defined in (3.5) yields the best approximation to the data

via minimizing the distance in the following (semi)norm on the space of additive functions

1

d− 1

∑
k 6=j

∑
i∈Ijk

∫
G

(Yi −m1(x1)− . . .−md(x
d))2Kx,h(Xi) dx (3.14)

in mj subject to the centering constraints (3.7) for each j = 1, . . . , d. Simple calculations show that

the GSBE equations (3.5) are the corresponding first order conditions for these optimization problems

(for cross-terms see bias calculations in the appendix). As the metric according to (3.14) is designed in

terms of pairs of covariates, it yields a best additive approximation to a general true structural model

only in a pairwise sense. Thus for more general underlying models, additional components to pairs are

treated as design independent. Such a projection behavior is in the stationary case known from marginal

integration.

This projection quality can be improved upon, when the underlying data is restricted to be “less

nonstationary”. Assuming that all sub–tuples of dimension γ > 2 of the covariate vector are β–null

Harris recurrent, allows to scale the backfitting equations (3.3) according to γ dimensional compound

component processes. This enhances the projection character of the obtained estimates in comparison

to GSBE as they yield the best additive approximation in a general γ–wise sense even if the true model

is not additive. For γ = d and scaling according to the full dimensional process, this is the additive

projection of a fully general nonparametric relationship at the price of the full nonstationary curse of
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dimensionality. In general, such γ–adapted smooth backfitting type estimators do not only admit a much

smaller class of processes only, but their rates of convergence are governed by types of nonstationarity

of the compound γ–tuples of covariates, which are much slower than for GSBE. Hence for feasibility

aspects these modifications are less important than GSBE. See Subsection 4.2 for details.

4 Asymptotic Results

In this section, we state the full set of conditions under which we then derive the asymptotic expansion of

GSBE if the underlying true model is additive. For all proofs we refer to the Appendix. Countervailing

the nonparametric curse of dimensionality, GSBE is scaled according to bivariate types of nonstation-

arity. We will see that due to the generality in the data inducing such design, GSBE can only reduce

the nonstationary curse of dimensionality up to bivariate types of β, whereas the standard curse of

dimensionality can be fully cured by imposing the additive structure.

4.1 Assumptions and Asymptotic Results for GSBE

Assumption 2. 1. X is an φ-irreducible aperiodic Markov chain.

2. All pairs Xjk are β–null Harris recurrent with parameter βjk for all j, k = 1, . . . , d, j 6= k.

3. All invariant densities πjk exist, are bounded, bounded away from zero and have continuous second

partial derivatives on Gjk, for j, k = 1, . . . , d, j 6= k.

As pointed out in Section 2, finiteness of the pairwise invariant measures is not restrictive for bounded

G. Identification and asymptotic expansion of generalized smooth backfitting estimates (3.5) can be

obtained by the following assumptions on any bivariate marginal process Xjk of X.

Assumption 3. 1. The compound chain (Xjk, ε) is a φ-irreducible β–null Harris recurrent Markov

chain with transition probability operator Pjkε and density πjkε of the invariant measure, where

πεjk(xjk) =
∫
G0 πjk,ε(x

jk, ε) dε > 0 for all xjk ∈ Gjk and πεjk(Gjk) <∞

2. µε|jk(xjk) = 0 and σ2
ε|jk(xjk) <∞ for all xjk ∈ Gjk where both quantities are defined with respect

to invariant measures µε|jk(xjk) =
∫
ε
πjkε(x

jk,ε)
πεjk(xjk)

dε and σ2
ε|jk(xjk) =

∫
ε2
πjkε(x

jk,ε)
πεjk(xjk)

dε.

3. The marginal transition function Pjk is independent of any initial distribution. And for sets Ah ∈

B∞(R3) with limh→0Ah = ∅ it is for the compound transition probability: limh→0 lim supξ→xjk
∫
P ((ξ, ε), Ah) |ε| dε =

0 for all xjk ∈ Gjk.

4. ε has bounded support G0 and the set Ḡjk ⊗ G0 is small for (Xjk, ε), where inth
(
Ḡjk
)

= Gjk.

5. The support of the function m is in G. Its second partial derivatives and are Lipschitz continuous.
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Finiteness of the measure πεjk on Gjk in Assumption 3.1 implies that the asymptotic behavior of the

compound process (Xjk, ε) is dominated by the β–null structure of the Xjk component (see Karlsen,

Myklebust, and Tjøstheim (2007), Lemma 6.1.). It is πjk(x) = c πεjk(x) with constant c <∞. Thus πεjk

also inherits differentiability properties of πjk from Assumption 2. In Assumption 3.2, the identifying

conditional independence criterion is specified. All subsequent assumptions are needed to control the

asymptotic behavior of the compound chain. Assumption 3.3 states a local uniform continuity assumption

on the transition probability operator P , which allows to control and simplify the variance part in the

smoothing as shown in Lemma 5.1. in Karlsen and Tjøstheim (2001). In contrast to the standard or

minor Assumptions 3.1 - 3.3, Assumptions 3.4 might appear unusual and artificial. Abstracting from

boundedness would require a new way to even prove the standard scalar results in this setting. Smallness,

however, is crucial for controlling stochastic terms of the form fx(Xjk
i , εi) = Kh,xjk(Xjk

i )εi for xjk ∈ Gjk
in the estimators. Under Assumption 1 on the smoothness of the kernel, f is in particular bounded and

therefore small and thus special (see Proposition 5.13. in Nummelin (1984)). This implies

sup
y∈Gjk×G0

Ey
τ∑
i=1

Kh,xjk(Xjk
i )εi <∞ for all xjk ∈ Gjk . (4.1)

With Assumption 3.5 also f̃xjk(Xjk
i ) = Kh,xjk(Xjk

i )mjk(Xjk
i ) is special for each xjk ∈ Gjk and fulfills

(4.1). Compare that in Karlsen, Myklebust, and Tjøstheim (2007) equivalent pointwise conditions were

needed to obtain central limit theorems in such a general framework. The support of m must be restricted

to G to control bias terms of the estimator where index sets and observations of different directions mix.

This is specific to the nonstationarity in the data and does not appear in stationary SBE.

Remark 2. Note that Assumptions 3 only require a conditional independence condition with respect to

invariant measures. Thus short term dependence between residual and covariates is admissible as long

as it vanishes asymptotically. This is a much weaker requirement than full independence (see Examples

6.1. and 6.2. in Karlsen, Myklebust, and Tjøstheim (2007) for examples of asymptotically but not fully

independent residuals). Thus the estimation problem remains well–posed as long as dependence vanishes

asymptotically. In econometrics this is of great importance, as it is contrary to results in the iid case,

where any form of endogeneity directly leads to ill–posedness of the problem requiring regularization

methods which yield a severely deteriorated small sample behavior (compare Carrasco, Florens, and

Renault (2003)). In a special subcase this has been treated in Wang and Phillips (2009b).

If ε is ergodic and independent of X, the boundedness and smallness assumption simplify to standard

mixing and moment conditions. The subcases with ε stationary are of particular interest since they

can be regarded as an additive cointegration type model. Assume the following holds for any bivariate

marginal process Xjk with j, k = 1, . . . , d, j 6= k.

Assumption 3*. 1. Xjk and ε are independent Harris recurrent Markov chains.

2. ε is ergodic strongly α–mixing with mixing rate satisfying
∑
l l

[2/k]∨1αl <∞, µ(ε) =
∫
επε(ε) dε =

0 and
∫
εp(k+1)πε(ε) dε <∞ with p, k ≥ 1.
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3. For setsAh ∈ B∞(R2) with limh→0Ah = ∅ the transition probability ofXjk fulfills lim supξ→x limh→0 P ((ξ), Ah) =

0 for all x ∈ Gjk.

4. The support of the function m is in G. Its second partial derivatives and are Lipschitz continuous.

Remark 3. If all moments on the residual process are finite, it is sufficient if there exists a δ > 0 such

that
∑
l α

1−δ
l <∞ for the mixing coefficients.

Note that in general we need the existence of at least the 8th moment in the error term. Though if

ε is strictly stationary linear, the moment conditions in Assumption 3* can be relaxed. If ε is strictly

stationary linear, it can be written as εi =
∑∞
k=0 akei−k with coefficients

∑
k |ak| < ∞ and e strictly

stationary with Ee0 = 0, Ee4
0 < ∞, and φ–mixing2 with

∑
l φ

1/2
l < ∞. These conditions can replace

Assumption 3*.2. They are trivially fulfilled for ei iid.

For each component function mj there will be the worst case bivariate nonstationary type dominating

the asymptotic behavior through its smallest effective sample size. Therefore denote βj+ = βjk0 =

mink 6=j β
jk and with this k0 set L̂j+ = L̂

(k0)
j for all j = 1, . . . , d. Set Qklj = βjl/βjk for βjl < βjk and

Qklj = −1/2 for βjl = βjk. Fix 0 < δj+ < 1, then L(n)n−δj+ → 0 with the corresponding slowly varying

function for the process Xjk0 from (2.2). Hence we get the following closed form expansion.

Theorem 4.1. Let the model be additive as in (1.1) fulfilling the centering condition (3.7) and let

Assumptions 1-3 hold. Choose a bandwidth sequence such that hj+ = n−λβ
j+

with 0 < λ < min(1 −
δj++κ
βj+ , 1/2− 1/2Qklj ) for all l, k and κ > 0 is arbitrarily small. Then the algorithm (3.8) converges with

geometric rate and for the estimators m̃j(x
j), j = 1, . . . , d we find√

L̂j+(xj)hj+
(
m̃j(x

j)−mj(x
j)−Bj(xj)

) D−−→ N(0, σ2
j+(xj)

κ2
0(xj)

κ0(xj)2

)
. (4.2)

The bias Bj consists of two main parts Bj(x
j) = BAj (xj) + BBj (xj). The stationary part BBj coincides

in form with the one in the stationary subcase of SBE under the stated bandwidth conditions. The

nonstationary part BAj is specific to GSBE. Both terms vanish with order h2
j+ in the interior and with

order hj+ on the boundary. Exact forms are given below. The variance is

σ2
j+(xj) =

∫
ε2
πk0jε (xj , ε)

π
(k0)
j (xj)

dε .

Note that the restriction on the bandwidth implies nβj+−δj+hj+ � nκ →∞. As κ > 0 can be arbi-

trarily small, this imposes only a mild additional requirement in comparison to marginal local constant

estimation in this setting which only needs nβj+−δj+hj+ → ∞. The second restriction guarantees the

standard leading bias terms as in the stationary setting. If nonstationary types βjl differ, it ensures

that they are far enough apart such that βjk < (1 − 2λ)βjl wlog for βjk < βjl. In case of violation,

the procedure would still be consistent, but leading bias terms were of smaller order than h2 and of

nonstandard form. If all βjl are equal for all l, the restriction is not binding.

2See Hall and Heyde (1980), page 277 for an exact definition of φ–mixing
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As in the stationary case, the deterministic bias BBj in Theorem 4.1 consists of three main parts.

BBj (xj) = hj+
κ1(xj)

κ0(xj)
m′j(x

j) +
1

2
h2
j+

κ2(xj)

κ0(xj)
m′′j (xj) +

(
(I −A)−1B̄

)
(j)

(xj)− bj,n

In addition to the marginal Nadaraya–Watson bias for data Xj
i with i ∈ Ijk0 there is the constant

shift bj,n from norming and centering and a design density dependent part
(
(I −A)−1B̄

)
(j)

(xj). With

A the limit of the backfitting operator matrix as with entries as in (3.12), component functions b̄j for

j ∈ {1, . . . , d} of B̄(x) = (b̄1(x1), . . . , b̄d(x
d))T are defined as

b̄j(x
j) = h2

j+

bj +
∑
k 6=j

∫
G(j)
k

bjk(xk)
πjk(xk)

πj
dxk

 (xj) ,

with bj(x
j) = κ2(xj)

κ0(xj)

(
m′j(x

j)

πj(xj)
πj
′(xj)

)
and bjk(xjk) = κ2(xj)

κ0(xj)

(
m′k(xk)
πjk(xjk)

∂πjk(xjk)
∂xk

)
. Most importantly it is

b̄j = O
(
h2
j+

)
. Furthermore the centering constant bj,n only affects the level and not the shape of the

estimator and is given by bj,n = µ(j)

(
Φ̂jm̂j

)
where the centering operator is defined in (3.10), and it is

h2
j+bj,n = O(1) due to the centering constraint in the algorithm.

The price for nonstationarity in BBj occurs through the two dimensional type of nonstationarity driving

the rates of order h2
j+ in the interior of Gj instead of the significantly faster o(h2

j ) as in the standard

univariate regression case. Furthermore as generally no full dimensional π exists, the design dependent

deterministic bias part resembles its counterpart in the stationary case in form, but lacks its projection

interpretation in the empirical L2,π-norm.

For the stochastic bias it is BAj = ((I −A)−1B̄A)j , where B̄A has components b̄Aj of the form

b̄Aj (xj) =
T (j+)ε(n)

L̂j+(xj)

∫
Kxj ,h(Xj+)επ

(k0)
jε dεdxj .

It vanishes with oP (h2
j+) under the stated bandwidth assumptions (See Karlsen, Myklebust, and Tjøstheim

(2007)). This results in the following Corollary.

Corollary 4.2. Let the model be additive as in (1.1) fulfilling the centering condition (3.7) and let

Assumptions 1-3 hold. Assume we can choose a bandwidth sequence such that hj+ = n−λβ
j+

with

1/5 < λ < min(1 − δj++κ
βj+ , 1/2 − 1/2Qklj ) where κ > 0 is arbitrarily small. Then the algorithm (3.8)

converges with geometric rate and for the estimators m̃j(x
j), j = 1, . . . , d we find√

L̂j+(xj)hj+
(
m̃j(x

j)−mj(x
j)
) D−−→ N(0, σ2

j+(xj)
κ2

0(xj)

κ0(xj)2

)
. (4.3)

The variance is as in Theorem 4.1.

With the bound from above on the bandwidth, the bias from Theorem 4.1 vanishes. As δ and κ are

small such a choice of bandwidth is possible. The following remarks apply to Theorem 4.1 and Corollary

4.2.

Remarks 4. 1. The marginal variance σ2
j+(xj) of the jth additive component is in form exactly the

variance of the one–dimensional smoother. Though the rate of convergence is of univariate character
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in its form but governed by the worst case bivariate nonstationarity type βj+ for each component

function.

2. In the case of identical asymptotic order of L̂j+ for all j, the convergence of all component functions

in (4.3) holds jointly to a multivariate normal with variance where the only non-zero elements are

on the diagonal (σ1+, . . . , σd+). This is the case if all pairwise β’s coincide - thus all pairs of

regressors are of the same type of nonstationarity.

3. The underlying true model can be more general than just additive. For at least pairwise additive

models, GSBE yields the best additive approximation (see (3.14)).

4. The results also hold more generally for a model with transformed error term gε(ε) when replacing

ε in Assumption 5.3 by gε(ε). Then Theorem 4.1 holds with modified asymptotic bias BAj (xj) and

variance σj(x
j) as described in Karlsen, Myklebust, and Tjøstheim (2007).

With stronger independence assumptions on the error term, the stochastic bias BAj term in Theorem

4.1 can be omitted. If we enforce the independence assumption between Xj and ε, from conditional

independence to full independence, we can simplify the boundedness and small set assumptions to more

familiar moment conditions. If in addition ε is assumed to be stationary, also the variance is no longer

only a second moment with respect to an invariant measure but with respect to the stationary density

of ε, hence a “real” variance.

Theorem 4.3. Let the same set of assumptions as in Theorem 4.1 hold, but replace Assumptions 3 by

Assumptions 3*. Choose a bandwidth sequence such that h = n−λβ
j+

with 0 < λ < min(1− δj++κ
βj+ , 1/2−

1/2Qklj ) where κ > 0 is arbitrarily small. And impose

p > 1 +
βj+(3 + λ(1− 1

k+1 ))− 2ω − 3δj+ + 2

2ω

with 0 < ω < κj+ in Assumption 3*.

Then the algorithm converges and we get the following asymptotic expansion for the smooth backfitting

estimates (m̃j)
d
j=1√
L̂

(k0)
j (xj)hj+

(
m̃j(x

j)−mj(x
j)−BBj (xj)

) D−−→ N
(

0, σ2
j (xj)

κ2
0(xj)

κ0(xj)2

)
with deterministic bias as in Theorem 4.1 and simplified variance

σ2
j (xj) = σ2

j =

∫
ε2πε(ε) dε ,

where πε is the stationary density of ε.

In this setting the stochastic bias BAj is zero due to the independence and zero mean assumption.

Observe that in all of the above theorems, the convergence of estimated component functions in

GSBE is not jointly - as the scaling of the algorithm and rates of convergence are specific to and can

differ for each component. In the special case of one nonstationary regressor and all other regressors
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stationary, the nonstationarity influences the rates in all component functions due to choice of effective

observations in the estimation. In such an extreme case, tailored methods can improve on feasibility

by using the information which regressors are stationary and providing faster rates in these directions.

This, however, is technically involved and therefore treated in another paper.

4.2 Discussion

Optimality of the GSBE estimates can be judged against the oracle bound. The infeasible oracle estimator

estimates each component function as if all other components were known correctly. It is defined as

m̈j(x
j) =

1

d− 1

∑
k 6=j

∑
i∈Ijk Y

∗
i Kxj ,h(Xj

i )∑
i∈Ijk Kxj ,h(Xj

i )
with Y ∗i = Yi −

∑
k 6=j

mk(Xk
i ) (4.4)

Under standard regularity assumptions as in Karlsen, Myklebust, and Tjøstheim (2007) and Assumptions

2 and 3, this infeasible estimator converges with rate
√
L̂j+(xj)hj+ and has variance σ2

j+(xj). These – of

univariate form and worst case bivariate type of nonstationarity – are also obtained by GSBE. Due to its

local constant form, GSBE contains a design dependent projected part in addition to the oracle bias. We

conjecture that a local linear version of GSBE would also reach the oracle bias of a respective local linear

benchmark as in the stationary setting. Though as asymptotic results have not even been derived for

general nonparametric local linear estimation in this setting in the literature so far, a thorough treatment

of this case is beyond the scope of this paper.

If more than just pairs but all higher γ dimensional components of the covariate vector are β–

null Harris recurrent, tailored GSBE type methods can improve on projection character and thus on

admissible model generality. This was briefly indicated in subsection 3.1. We will shortly illustrate

options and implications in the case γ = d of a fully β–null Harris recurrent process to highlight the

result for GSBE. In this setting, construct all relevant objects according to the full dimensional process

analogous to (2.13),(2.14) and replace corresponding objects in the GSBE equation (3.5) by π̂fj , π̂fjk and

m̂f
j . Then such adapted GSBE equations reduce in form to the standard smooth backfitting equations

(3.3). Therefore projection properties hold as in the stationary case where the algorithm yields the best

additive fit without restrictions even if the underlying model is not additive. However, we will see that

with this procedure we can reduce the standard stationary type curse of dimensionality, whereas the

nonparametric curse of dimensionality remains untouched.

Define the adapted GSBE estimators m̃j(x
j), j = 1, . . . , d as the iterative solution of the set of equa-

tions (3.3) and the normalization (3.2) with the above mentioned modifications. With m̃0 = 1
T (n)

∑
i∈I Yi

centering can be omitted in the algorithm. Asymptotic properties of the estimators under the most gen-

eral assumptions on the error are stated in the following theorem.

Theorem 4.4. Let the model be additive as in (1.1) and analogues for X
(f)
jk to Assumptions 1-3 hold.

Choose a bandwidth sequence such that h = n−λβf with 0 < λ < 1− δf+κ
βf

where κ > 0 is arbitrarily small.

Then the algorithm (3.8) converges with geometric rate and for the estimators m̃j(x
j), j = 1, . . . , d we
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find √
L̂fj(x

j)hf
(
m̃j(x

j)−mj(x
j)−Bj(xj)

) D−−→ N(0, (σfj )2(xj)
κ2

0(xj)

κ0(xj)2

)
. (4.5)

The bias Bj consists of two major parts Bj(x
j) = BAj (xj)+BBj (xj), a stationary part BBj which remains

and equals the one in the stationary subcase of SBE and a nonstationary part BAj . Both terms vanish of

order h2 in the interior and of order h on the boundary. Exact are analogues to the corresponding terms

in Theorem 4.1. The variance is

(σf )2
j (x

j) =

∫
ε2
πfjε(x

j , ε)

πfj (xj)
dε .

Note that the speed of convergence for the smooth backfitting estimator is governed by the effective

sample size L̂fxj ,h of the full dimensional process which is in general significantly smaller than the rates

from GSBE as stated above. The procedure is oracle in rate and variance on the effective observations

Xi ∈ G.

5 Finite Sample Behavior: A Simple Simulation Study

In this section we present simulation results illustrating the finite sample performance of GSBE. In

particular we focus on settings where the full dimensional vector of covariates X is no longer recurrent

but only pairwise recurrent - thus where general nonparametric estimation might yield inconsistent

results. In order to demonstrate that the number of regressors does not affect GSBE, we generate

covariates as five dimensional random walks.

In all simulation experiments estimation is repeated 500 times from n = 1000 or n = 10000 observa-

tions. Figure 1 is based on the following model for i = 1, . . . , n

Yi =

5∑
j=1

mj(X
j
i ) + εi

Xi = Xi−1 + ei ,

where X0 = (0, 0, 0, 0, 0)T and mj(x) = cos(2π(x − 0.5)) for j ∈ {2, 4} and mj(x) = sin(πx) for j ∈

{1, 3, 5}. The residuals are independent ε ∼ N(0,
√

0.5) and e ∼ N(0, σ) with σ = ((σjk))jk ∈ R5×5. To

underline the robustness of the method, we simulate settings with independent random walks as well as

cases with correlation, where some off–diagonal elements σkj are strictly positive. For comparison we also

use a local linear version of GSBE which however only provides mild improvements in the finite sample

bias (see Table 1) but shows robustness problems in regions of sparse data. The specific model setup is

chosen in order to have an easy comparison to the stationary smooth backfitting case, in particular to the

extensive simulation study in Nielsen and Sperlich (2005) which focuses on trigonometric relationships.

Practically, such models appear in macroeconomic business cycle literature.

In contrast to stationary data, a general β–null Harris recurrent process can cluster in some regions

of the space while leaving others almost empty depending on the starting point of the process. And this
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Figure 1: Pointwise median local constant type GSBE fit (violet dashed) in comparison to the respective

true function (black solid) for 1000 observations. The shaded areas denote respective interquartile ranges

i.e. the 75% and 25% gridpointwise quantiles over all iterations.

phenomenon becomes even more pronounced the higher the dimension of the process. Therefore in finite

samples, we can either keep a point x fixed and wait until there are sufficiently many observations in a

small neighborhood of x or we can choose a central realization-dependent value of x such as the mode

of the sample with additional stochastics entering the problem. Results are, however, quite similar and

Figure 2 is representative for both situations.

The issue of a correct finite sample choice of bandwidth is still open, as the theorems only provide

asymptotic guidance and β is unknown and hard to estimate from data with 1000 observations (see

Remark 3.7. in Karlsen and Tjøstheim (2001)). Here it proved to be useful to select a local bandwidth

depending on x via a cross validation criterion for the best componentwise fit. However, rigorous proofs

for such a local bandwidth choice require the development of empirical process tools in a Harris recurrent

setting. This is quite involved and treated in a separate paper (see also a first attempt in Guerre (2004)).

We use hj(x
j) ∼ maxk

(∑
i∈Ijk 1Nxj (Xj

i )
)−1/5

for a fixed small neighborhood around xj . Nonstationary

analogues of global cross validation procedures as in Nielsen and Sperlich (2005) are not advisable as

they might even in a stationary case induce additional bias of unknown size. We conjecture that the

penalized least squares criteria for SBE as in Mammen and Park (2005) can be extended to the general

GSBE setting. While simulation results are promising, a theoretical proof for these methods in a β–null

Harris recurrent setting requires non-standard higher order expansions which are left for future research.

In the implementation of the algorithm any iteration steps are performed on a fixed grid in each

direction. Furthermore without loss of generality the empirical support of the data is transformed to the

cuboid [0, 1]d. In order to reduce numerical errors in the integrals, M = 101 equidistant grid points are

chosen. For the algorithm to stop, the following quotient criterion is employed: If

∑M
i=1

(
m̃

[r−1]
j (xji )− m̃

[r]
j (xji )

)2

∑M
i=1(m̃

[r]
j (xji ))

2 + 0.0001
< 0.0001 (5.1)
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Figure 2: Asymptotic performance of GSBE in component function m2 using observations in NxM ,h,

where xM is the modal point of the sample: Estimated pdfs of the left hand side of (4.2) for 1000

(dashed blue) and 5000 (magenta dashed dotted) time series observations are compared to the normal

pdf (solid black). The corresponding qq-plot for 1000 observations is on the right

is fulfilled for all j = 1, . . . , d at the M grid points, then end at iteration step r. In the local linear case

the algorithm needs on average 20.442 iterations in order to converge while only 15.406 are needed in the

local constant case. For comparison, in the stationary convergence is reached after about 6 iterations (see

Nielsen and Sperlich (2005)). We compare the fit of different estimators via the median of the integrated

square error ISEk for each additive component.

ISE(mj) =
1

101

101∑
l=1

(mj(x
j
l )− m̃j(x

j
l ))

2 for all j ∈ {1, . . . , 5} , (5.2)

on the grid 0 = x0 < . . . < xl < . . . < x100 = 1 with xl = l · 0.01, l = {0, . . . , 100}.

6 Conclusion

We have introduced a nonparametric estimation procedure, which allows to estimate a regression problem

with many potentially nonstationary covariates. Consistent estimators can be obtained even if under-

lying full-dimensional processes are transient, as long as all possible pairs satisfy a recurrence property.

Estimating an additive model allows to circumvent the nonstationary curse of dimensionality as well as

the standard ordinary one. Thus obtained rates of convergence and asymptotic variance of GSBE are

of univariate form but are governed by the worst case bivariate type of nonstationarity and the corre-

sponding β. In the special case of a stationary residual ε, results can be regarded as estimates of additive

nonlinear type of cointegration relations.

As in the preceding literature on nonparametric regression for nonstationary covariates, the framework

allows for stochastically nonstationary regressors of random walk type but does not cover deterministic

trends. Thus the function m might contain a constant m0, but a deterministic term depending on the
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Table 1:

type of fit underlying data medianISE on [0, 1]5

N σjj σkj m1 m2 m3 m4 m5

Local linear 10,000 1 0 0.012 0.007 0.009 0.007 0.012

Local constant 10,000 1 0 0.026 0.016 0.031 0.019 0.029

Local linear 10,000 1 0.2 0.013 0.009 0.011 0.008 0.012

Local constant 10,000 1 0.2 0.027 0.016 0.031 0.018 0.027

Local linear 1,000 1 0 0.022 0.018 0.018 0.018 0.021

Local constant 1,000 1 0 0.031 0.021 0.034 0.022 0.033

Local linear 1,000 1 0.2 0.027 0.021 0.019 0.020 0.026

Local constant 1,000 1 0.2 0.030 0.017 0.033 0.020 0.033

time parameter is not included in the model. Though extending the model in this direction would in-

troduce challenging problems: properties of estimates for both m and the trend are interrelated and not

straightforward to derive even if a parametric form of trend is assumed, and in addition to Harris recur-

rence properties, appropriate assumptions on the deterministic growth rate of response and regressors

are required. This is therefore left for future research.

Though with increasing availability of large data sets, such as e.g. high-frequency data in finance,

data on energy consumption, and recent weather and climate data, the method can be a very useful

tool in analyzing and testing structural form assumptions. Therefore a clear goal in future research is

to develop general statistical testing procedures for cointegration relations with many regressors as done

in the case of univariate autoregression in Gao, King, Lu, and Tjøstheim (2009). For implementation

of the method in finite samples, however, correct choices of bandwidth in this setting are still an open

issue. Furthermore appropriate bootstrap procedures using recurrence times as natural determinants

of block sizes are needed. For increased feasibility, we are also working on general semiparametric

techniques including cases where some regressors are known to be stationary (Schienle, 2008). This

extends (partially) linear models considered in Cai, Li, and Park (2009) or Bandi and Phillips (2007) for

linear process structure.
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A Proofs

A.1 Preliminaries

In the following, we will make frequently use of uniform consistency results for the density estimator of

the invariant measure

π̂jk(xjk) = πjk(xjk) + oP
(
n−α1βjk+ε1

)
(A.1)

m̂j(x
j) = mj(x

j) + oP
(
n−α2βj+ε2

)
(A.2)

uniformly in xjk ∈ G̊jk with ε1, ε2 > 0 small and in the univariate case for j = k, α1 = 2/5, in the

bivariate case j 6= k, α1 = 3/10, and α2 = 2/5 for optimal bandwidth choice h = n−β/5. To our

knowledge these results are nonstandard and new to the literature for the generality of β–null Harris

recurrent processes. They will be derived below in Lemma A.2 and A.3,A.4.

Decompose the one–dimensional pilot smoothers with bivariate type rate of convergence m̂
(k)
j (xj) into

bias m̂
(k),B
j (xj) and stochastic part m̂

(k),A
j (xj) as the underlying model (1.1) has an additively separable

error term

m̂
(k)
j (xj) =

∑
i∈Ijk Kh,xj (X

j
i )Yi∑

i∈Ijk Kh,xj (X
j
i )

=

(∑
i∈Ijk Kh,xj (X

j
i )m(Xi)∑

i∈Ijk Kh,xj (X
j
i )

)
+

(∑
i∈Ijk Kh,xj (X

j
i )εi∑

i∈Ijk Kh,xj (X
j
i )

)
=: m̂

(k),B
j (xj) + m̂

(k),A
j (xj) . (A.3)

As SBE only conducts linear operations on functions, this bias variance separation is preserved in the

estimates (m̃j(x
j))dj=1. Thus we have

m̃j(x
j) = m̃B

j (xj) + m̃A
j (xj) , (A.4)

where each of the parts (m̃s
j(x

j))dj=1 with superscript s ∈ {A,B} separately solves the defining equations

(3.13) for all j = 1, . . . , d

m̃s
j(x

j) =
1

d− 1
diag([I − Φ]m̂s)j(x

j) + ([A]m̃s)j(x
j) . (A.5)

with backfitting projection operator as defined in (3.11).

A.2 Proofs of the Theorems

From the operator backfitting equation (3.13), we can deduce:

m̃ = (I − Â)−1 1

d− 1
diag(1− Φ̂)m̂− (I − Â)−1(I − Â)m

= (I −A)−1

[
1

d− 1
diag(1− Φ̂)m̂− (I − Â)m

]
+

+
(

(I − Â)−1 − (I −A)−1
)[ 1

d− 1
(1− Φ̂)m̂− (I − Â)m

]
. (A.6)
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If we set m0 as in (3.9), the centering operation with Φ can be omitted. With the uniform results (A.17),

it follows from Mammen and Linton (2005) equation (41) that the second summand is negligible for the

bias since
(

(I − Â)−1 − (I −A)−1
)

= OP (h2
jk0

) in the interior. Set m̂II
j = 1

d−1 (diag(1m̂))j . Focussing

on the term in squared bracket it can be shown with the uniform results (A.17) and (A.27) that uniformly

over all xj ∈ G̊j

m̂II
j (xj) = [(I − Â)m]j(x

j) +

[
(I −A)

(
h
κ1

κ0
m′ +

1

2
h2κ2

κ0
m′′
)]

(j)

(xj) +

+

1

2
h2κ2

κ0

bj +
∑
k 6=j

∫
Gk

bjk(xk)
πjk(xk)

πj
dxk

 (xj) + B̄Aj (xj) + oP (n−2/5β+ε1) ,(A.7)

where h depends on jk0 and bj , bjk, B̄
A
j are as specified below Theorem 4.1. Then the bias expression of

GSBE is obtained from plugging (A.7) into (A.6). With the uniform result (A.4) and direct analogues of

Theorem 2 and 3 in Mammen, Linton, and Nielsen (1999), the asymptotic distribution of GSBE follows

from m̂II,A
j of which the asymptotic distribution corresponds the one of the dominating term m̂

(k0),A
j .

Asymptotic normality of m̂
(k0),A
j follows from Theorem 5.1. in Karlsen, Myklebust, and Tjøstheim

(2007).

We are therefore left with the calculation of the explicit bias expansion (A.7) and the proof of explicit

uniform results of type (A.1) and (A.2).

Definition A.1. For g ∈ L1(πjk), h ∈ L1(πjε) we use the following short hand notation

µjk(g) =

∫
Gjk

g(u)πjk(uv) dudv (A.8)

µ(jε)(h⊗ g) :=

∫∫
h(u)g(v)πjε(u, v) dudv (A.9)

For functions with support in

Proof of Expansion (A.7)

With m̂II
j as before, it is for the bias part

sup
xj∈G̊j

∣∣∣m̂II,B
j (xj)− ν̂n,j(xj)

∣∣∣ = oP (
∑
k 6=j

h2
jk) (A.10)

sup
xj∈∂Gj

∣∣∣m̂II,B
j (xj)− ν̂n,j(xj)

∣∣∣ = oP (
∑
k 6=j

hjk) (A.11)
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where

ν̂n,j(x
j) = mj(x

j) +
1

d− 1

∑
k 6=j

∑
l 6=j

∫
Gl

(
ml(x

l)
π̂jl(x

j)

π̂
(k)
j (xj)

)
dxl +

+
1

d− 1

κ1(xj)

κ0(xj)

∑
k 6=j

hjk

m′j(xj) +
∑
l∈Ljk

∫
Gl

(
m′l(x

l)
π̂jl(x

jl)

π̂
(k)
j (xj)

)
dxl

+

+
1

d− 1

κ2(xj)

κ0(xj)

∑
k 6=j

h2
jk

(
1

2
m′′j (xj) +m′j(x

j)
πj
′(xj)

πj(xj)
+

+
∑
l∈Ljk

∫
Gl

(
m′l(x

l)
∂πjl(x

jl)

∂xlπjl(xjl)
+

1

2
m′′l (xl)

)
πjl(x

jl)

πj(xj)
dxl

 .

Furthermore the stochastic part vanishes according to

sup
xj∈Gj

∣∣∣∣∣∣m̂II,A
j (xj)− 1

d− 1

∑
k 6=j

µ(jε)(Kxj ,h ⊗ idε)
Tjkε(n)

L̂
(k)
j (xj)

∣∣∣∣∣∣ = oP

∑
k 6=j

1√
nβjk−δhjk

 . (A.12)

Combining the expansions for bias part (A.10) and (A.11) with the result for the stochastic part (A.12)

yields (A.7) for appropriate bandwidth choices as in all theorems.

Proof. The statement (A.12) for the stochastic part is a direct consequence from the uniform result

(A.4), which is shown below.

For the bias part, decompose
(
diag(1m̂B)

)
j

in the following way

(
diag(1m̂B

j )
)

(xj) =
∑
k 6=j

m̂
(k),B
j (xj) =

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )m(Xi)

π̂
(k)
j (xj)

=
∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )
(
m0 +

∑d
l=1ml(X

l
i)
)

π̂
(k)
j (xj)

(A.13)

Convergence holds due to the quotient limit theorem (see e.g. Meyn and Tweedie (1993)). Expand

(A.13) for each summand separately. In the numerator of (A.13) distinguish between three cases l = j

or l = k 6= j and l 6= (j ∨ k) in the summands Khjk,xjml. We will see that the last case has some

nonstationary peculiarities. For l = j it is with (A.27) and standard kernel calculations∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )mj(X

j
i )

π̂
(k)
j (xj)

=
∑
k 6=j

mj(x
j) +

µjk
(
Khjk,xj (·)mj(·)

)
−mj(x

j)µjk
(
Khjk,xj (·)

)
µjk

(
Khjk,xj (·)

) +Rnjk,jk

=
∑
k 6=j

mj(x
j) + hjk

κ1(xj)

κ0(xj)
m′j(x

j) + h2
jk

κ2(xj)

κ0(xj)

(
m′j(x

j)

πj(xj)
π′j(x

j) +
1

2
m′′j (xj)

)
+Rnjk,jk + oP (h2

jk)

= (d− 1)mj(x
j) +

∑
k 6=j

hjk
κ1(xj)

κ0(xj)
m′j(x

j) + h2
jk

κ2(xj)

κ0(xj)

(
m′j(x

j)

πj(xj)
π′j(x

j) +
1

2
m′′j (xj)

)
+ oP (h2

jk)

= (d− 1)

(
mj(x

j) + hj+
κ1(xj)

κ0(xj)
m′j(x

j) + h2
j+

κ2(xj)

κ0(xj)

(
m′j(x

j)

πj(xj)
π′j(x

j) +
1

2
m′′j (xj)

)
+ oP (h2

j+)

)
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The last equation is true since for

sup
xj∈Gj

∣∣Rnjk,jk(xj)
∣∣

= sup
xj∈Gj

∣∣∣∣∣∣ 1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )mj(X

j
i )

π̂
(k)
j (xj)

−
µjk

(
Khjk,xj (·)mj(·)

)
µjk

(
Khjk,xj (·)

)
∣∣∣∣∣∣

= sup
xj∈Gj

∣∣∣∣∣∣ 1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )mj(X

j
i )− µ(Khjk,xjmj)

π̂
(k)
j (xj)

+

+
µ(Khjk,xjmj)

π̂
(k)
j (xj)

−
µjk

(
Khjk,xj (·)mj(·)

)
µjk

(
Khjk,xj (·)

) ∣∣∣∣∣ = oP

(
1√

hjknβjk−δjk

)
= oP (h2

jk) .

The details of this follow exactly from the proof of expansion (A.2) in Lemma A.2 for the deterministic

part. For l = k 6= j standard kernel calculations lead to

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )mk(Xk

i )

π̂
(k)
j (xj)

=
∑
k 6=j

1

T jk(n)

∑
i∈Ijk

∫
Gk

Khjk,xj (X
j
i )Khjk,xk(Xk

i )mk(Xk
i )

π̂
(k)
j (xj)

dxk

=
∑
k 6=j

∑
i∈Ijk

∫
Gk

Khjk,xj (X
j
i )Khjk,xk(Xk

i )

T jk(n)π̂
(k)
j (xj)

(
mk(xk)+

+m′k(xk)(Xk
i − xk) +

1

2
m′′k(xk)(Xk

i − xk)2

)
dxk + oP (h2

jk)

=
∑
k 6=j

[∫
Gk

π̂jk(xjk)

π̂
(k)
j (xj)

mk(xk)dxk + hjk

∫
Gk

π̂jk(xjk)

π̂
(k)
j (xj)

κ1(xj)

κ0(xj)
m′k(xk)dxk +

+ h2
jk

κ2(xj)

κ0(xj)

∫
Gk

(
∂πjk(xjk)

πjk(xjk)∂xk
m′k(xk) +

1

2
m′′k(xk)

)
πjk(xjk)

πj(xj)
dxk

]
+Rnjk,jk(xj) + oP (h2

jk)

For the second to last equation, standard kernel arguments are applied together with (A.17) and Lemma

A.3. Exact details follow from Mammen, Linton, and Nielsen (1999) equations (118)-(122). It involves

particular showing uniform convergence of order h2
jk of the following expressions against their respective

means,

tlj(x
j) = Khjk,xj (X

j
i )

∫
Gk
Khjk,xk(Xk

i )(Xk
i − xk)lm

(l)
k (xk) dxk

with l ∈ {1, 2}, which can be expanded into the terms above. This is achieved along the lines of Lemma

A.3. The last equation is true since supxj∈Gj
∣∣Rn,j(xj)∣∣ = oP (h2

jk). This is shown as before.

For l 6= (j ∨ k) the fact that we might use different data in different directions complicates the

expansion. We study

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )ml(X

l
i)

π̂
(k)
j (xj)

. (A.14)
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For the index set Ijk, data of the marginal X l might also be found outside Gl. Though these points have

no effect in the overall expansion since ml(z) = 0 for z ∈ R\Gl under Assumption 3.5. or 3*.5. Thus

expand the λjk non-zero terms in the numerator of (A.14) if l ∈ Ljk as defined in (2.16)

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj (X
j
i )ml(X

l
i)

π̂
(k)
j (xj)

=
∑
k 6=j

1

T jk(n)

∑
i∈Ijk

∫
Gl

Khjk,xj (X
j
i )Khjl,xl(X

l
i)ml(X

l
i)

π̂
(k)
j (xj)

dxl

=
∑
k 6=j

[∫
Gl

π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

ml(x
l)dxl + hjk

∫
Gl

π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

κ1(xj)

κ0(xj)
m′l(x

l)dxl +

+ h2
jk

κ2(xj)

κ0(xj)

∫
Gl

(
∂πjl(x

jl)

πj(xjl)∂xl
m′l(x

l) +
1

2
m′′l (xl)

)
πjl(x

jl)

πj(xj)
dxl
]

+Rn,jk(xj) + oP (h2
jk) .

Recall that Ljk collects all summand in (A.14) where numerator and denominator converge almost

surely to a nonzero limit. For all other l the last term in the above expansion vanishes as it is of order

h2
jk · L̂jl(xj)/L̂jk(xj) smaller than h2

jk.

In total adding up with oP (
∑
k 6=j h

2
jk) = oP (h2

j+), claims (A.10) and (A.11) have been proven which

yield the expansion terms in (A.7)

A.3 Proof of the Uniform Results

A.3.1 Proof of (A.1)

To ease notation, indices and superscripts indicating components to be marginal j or jk specific will be

generally omitted. We write idε for the identity on the support of ε, i.e., idε(u) = u for u ∈ G0. Assume

the split chain component U is defined as in (2.3). We need the following moment bounds on U(Kx,h)

Lemma A.1. Let Assumptions 1-2 hold. Then it is µ(|Kx,h|) = EU(|Kx,h|) = π(|Kx,h|) = µ+o(1) with

−∞ < µ <∞ and

EUq(|Kx,h|) ≤ C1h
−(q−1)d for q > 1 (A.15)

where C1 <∞. With Assumption 3 or Assumption 3* in addition it is

EUp(|Kx,h ⊗ idε|) ≤ C2h
−(p− 1

ν )d (A.16)

with C2 <∞ and ν = 1 and p > 1 arbitrary for Assumption 3 and ν = k+ 1 and p as in Assumption 3*

under the latter. All relations also hold uniformly over x in compact sets.

Proof. For the proof of the pointwise bounds see Lemma 5.1. and 5.2. in Karlsen and Tjøstheim (2001)

for (A.15), for (A.16) see the end of the proof of Theorem 6.1. and Theorem A.1. in Karlsen, Myklebust,

and Tjøstheim (2007) under dependence and smallness and Theorem 5.3. in Karlsen, Myklebust, and

28



Tjøstheim (2007) under independence and mixing conditions. The uniform results are straightforward

extensions and essentially follow since Assumption 1(ii) implies that Sx,h = x⊕ hS is small and any for

the sup relevant expression in the proof of Lemma 5.1. and 5.2. in Karlsen and Tjøstheim (2001) can

thus be bounded by

sup
v∈Sx,h

Ev
τ∑
i=0

1Sx,h(Xi) ≤ sup
v∈Sx,h

πs(v) |Sx,h| ≤ C .

Lemma A.2. Let X be β–null Harris recurrent with continuously differentiable invariant density π. Let

Assumptions 1 hold and choose a bandwidth h = n−λβ/d with 0 < λ < 1 − δ+κ
β where κ > 0 arbitrarily

small. Then

sup
x∈G̊h

|π̂(x)− π(x)| = oP

(
h2 +

1√
nβ−δhd

)
(A.17)

On the boundary, the rate of bias is only of order h instead of h2.

Note that under the stated conditions it is nβ−δhd = nκ →∞ with κ > 0.

Proof. It is sufficient to show that for cn = h2 +
√
n−β+δh−d or on the boundary c′n = h+

√
n−β+δh−d

respectively, and for all η, η′ > 0 there exist constants c, c′ > 0 such that

sup
n

P

(
sup
x∈G̊
|π̂(x)− π(x)| ≥ c · cn

)
= η (A.18)

and with c′ and η′ on the boundary. In fact we will even show almost sure convergence. To shorten

notation we write cn instead of c · cn for c ∈ R. In the following C is an arbitrary constant which might

vary from line to line.

Split up into variance and bias part. For the interior G̊h it is:

P

(
sup
x∈G̊h

|π̂(x)− π(x)| ≥ cn

)

≤ P

(
sup
x∈G̊h

|π̂(x)− µ(Kx,h)|+ sup
x∈G̊h

|µ(Kx,h)− π(x)| ≥ cn

)

≤ P

(
sup
x∈G̊h

|π̂(x)− µ(Kx,h)| ≥ cn
2

)
+ P

(
sup
x∈G̊h

|µ(Kx,h)− π(x)| ≥ cn
2

)
= Si1 + Si2 ,

Since G ⊂ Rd is bounded, for the C1h-ring-boundary ∂Gh we get:

P
(

sup
x∈∂Gh

∣∣∣∣π̂(x)− π(x)

∫
G
Kh,x(u)du

∣∣∣∣ ≥ cn)
≤ P

(
sup
x∈∂Gh

|π̂(x)− µ(Kx,h)| ≥ cn
2

)
+ P

(
sup
x∈∂Gh

∣∣∣∣µ(Kx,h)− π(x)

∫
G
Kh,x(u)du

∣∣∣∣ ≥ cn
2

)
= Sb1 + Sb2 ,
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For the bias parts Si2 and Sb2, standard analysis with the usual kernel arguments carries over. Since we

have for x in the interior G̊C1h that
∫
G Kh,x(u)du = 1, we can treat Si2 and Sb2 together:

µ(Kx,h)− π(x)

∫
G
Kh,x(u)du =

∫
Bx(C1h)∩G

(π(x+ hu)− π(x))K(u)du

= (π′(x))h

∫
Bx(C1h)∩G

uK(u)du+O(h2)

=

 O(h2) for x ∈ G̊h
O(h) for x ∈ ∂Gh

,

since for x ∈ ∂Gh the ball Bx(C1h) is not entirely in G. Thus the with symmetry of the kernel the

integral is not zero as in the case for x in the interior.

Now treat the stochastic term S1 = P
(
supx∈G |π̂(x)− µ(Kx,h)| ≥ cn

2

)
. Here we do not have to

distinguish between cases of x on the boundary or not. As G is compact, there exists a cover of l(n)

open balls L1, . . . , Lk, . . . , Ll(n) with radius c1
l(n)1/d

for an appropriate constant c1 and with centers in xk

and
⋃l(n)
k=1 Lk ⊇ G. Set

l(n) =
√
nβd(1+λd)−δ; . (A.19)

The maximal distance attainable between elements inside one of the balls is the diameter

max
a,b∈Lk

‖a− b‖ ≤ 2c1
l(n)1/d

=
c

l(n)1/d
for all k ∈ {1, . . . , l(n)} . (A.20)

Then

P
(

sup
x∈G
|π̂(x)− µ(Kx,h)| ≥ cn

2

)
= P

(
max

1≤k≤l(n)
sup

x∈G∩Lk
|π̂(x)− µ(Kx,h)| ≥ cn

2

)
≤ P

(
max

1≤k≤l(n)
sup

x∈G∩Lk
|π̂(x)− π̂(xk)| ≥ cn

6

)
+ P

(
max

1≤k≤l(n)
|π̂(xk)− µ(Kxk,h)| ≥ cn

6

)
+P
(

max
1≤k≤l(n)

sup
x∈G∩Lk

|µ(Kxk,h)− µ(Kx,h)| ≥ cn
6

)
= Q1 +Q2 +Q3 .

The first and the third term, Q1 and Q3, are easy to handle and therefore treated first. Look at Q1:

sup
x∈G∩Lk

|π̂(x)− π̂(xk)| =
1

T (n)
sup

x∈G∩Lk

∣∣∣∣∣
n∑
i=1

(Kh,x(Xi)−Kh,xk(Xi))

∣∣∣∣∣
≤ sup

x∈G∩Lk

L̃

hd+1
n

‖x− xk‖ P− a.s.

≤ L̃c1

hd+1
n l(n)1/d

P− a.s. .

The first P − a.s relation is a consequence of the quotient limit theorem (see, e.g. Meyn and Tweedie

(1993)), while the inequalities thereafter follow directly from (A.20) and the Lipschitz assumption on the

kernel in Assumption 1.
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Since the integral operator and everything inside is continuous, obviously we also get

max1≤k≤l(n) supx∈G∩Lk |µ(Kxk,h)− µ(Kx,h)| = O
(

1

hd+1
n l(n)1/d

)
a.s.. Thus when imposing cn = O

(
hd+1
n l(n)1/d

)
,

then Q1 and Q3 are oP (1).

Q2, the second term, however, needs some extra considerations: On the grid of the xk-balls we can

simplify in the standard way as

P
(

max
1≤k≤l(n)

|π̂(xk)− µ(Kxk,h)| ≥ cn
6

)
= P

(
max

1≤k≤l(n)

∣∣∣∣∣ 1

T (n)

n∑
i=1

Kxk,h − µ(Kxk,h)

∣∣∣∣∣ ≥ cn
6

)

= P

 max
1≤k≤l(n)

∣∣∣∣∣∣ 1

T (n)

U0,xk,h +

T (n)∑
j=1

Wj,xk,h + Un,xk,h

∣∣∣∣∣∣ ≥ cn
6

 ,

where the sum is rewritten in terms of the centered split chain components Wj,x,h = Uj,x,h − µ(Kx,h)

where Uj,x,h is the j–th component of the split chain of Kx,h as defined in (2.4). As parts of a split

chain all Wj,x,h are iid Wx,h for a given x ∈ G. And obviously from the definition it is E(Wx,h) = 0. It

is easy to show that max1≤k≤l(n)
|U0,xk,h|
T (n) = o(1) a.s. and max1≤k≤l(n)

|Un,xk,h|
T (n) = o(1) a.s. (see proof of

Theorem 5.1. in Karlsen and Tjøstheim (2001)).

Therefore it suffices to look at P
(

max1≤k≤l(n)

∣∣∣ 1
T (n)

∑T (n)
j=1 Wj,x,h

∣∣∣ ≥ c′n). Since c′n differs from cn only

by a constant, we continue notation with cn. As the norming T (n) is stochastic and not independent of

Wx,h, use a truncation argument. There exist δ
(1)
n , δ

(2)
n such that

P

 max
1≤k≤l(n)

1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,xk,h

∣∣∣∣∣∣ ≥ cn


≤ P

 max
1≤k≤l(n)

1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,xk,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n

+ oP (νn) , (A.21)

with νn → 0 negligible. Set δ
(1)
n = nβ−α and δ

(2)
n = nβ+α with 0 < δ ≤ α � 1. Then inequality (A.21)

follows since

P

 max
1≤k≤l(n)

1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,xk,h

∣∣∣∣∣∣ ≥ cn, T (n) ≤ δ(1)
n

 ≤ P
(
T (n) ≤ nβ−α

)
≤ 1− (1− n−α)nβ

(1 + n−α)nβ + 1
=

2n−αnβ + 1

(1 + n−α)nβ + 1
= O(n−α)

where in the second line we use the first assertion of the proof of Theorem 2.1 in Chen (2000). And

together with

P

 max
1≤k≤l(n)

1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,xk,h

∣∣∣∣∣∣ ≥ cn, T (n) ≥ δ(2)
n

 ≤ P
(
T (n) ≤ nβ+α

)
≤ T (n)m

(Ls(n)nβ)m
· (Ls(n)nβ)m

(nβ+α)m
= O

(
(Ls(n))mn−αm

)
we obtain (A.21). In order to obtain the last line we use Markov inequality for m > 1 and that the first

quotient factor is bounded as shown in Karlsen and Tjøstheim (2001) Lemma 3.3..
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Continuing from (A.21) with α > 0 it is on the grid

P

 max
1≤k≤l(n)

1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,xk,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n


≤ l(n) · sup

x∈G
P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,x,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n

 . (A.22)

For truncating in the elements of the sum, define:

ξk,x,h = Uk,x,h1|Uk,x,h|≤Rn − E(Uk,x,h1|Uk,x,h|≤Rn)

ηk,x,h = Uk,x,h1|Uk,x,h|>Rn − E(Uk,x,h1|Uk,x,h|>Rn)

with h−d � Rn � nβ−α � nβ−δ. These restrictions result from (A.24) and (A.25) below

P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

Wj,x,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n


≤ P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

ξj,x,h

∣∣∣∣∣∣ ≥ cn
2
, δ(1)
n ≤ T (n) ≤ δ(2)

n


+P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

ηj,x,h

∣∣∣∣∣∣ ≥ cn
2
, δ(1)
n ≤ T (n) ≤ δ(2)

n

 (A.23)

Treat the two terms separately and continue with cn.

P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

ξj,x,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n

 ≤ dδ(2)n e∑
k=bδ(1)n c

P

1

k

∣∣∣∣∣∣
k∑
j=1

ξj,x,h

∣∣∣∣∣∣ > cn


≤ C

dδ(2)n e∑
k=bδ(1)n c

2 exp

(
−2c2nk

R2
n

)
≤ C exp

(
−c

2
nbδ

(1)
n c

R2
n

)
, (A.24)

where bzc is the largest possible integer smaller or equal z and dze is the smallest possible integer greater

or equal z. We obtain (A.24) with the standard Hoeffding inequality for iid bounded observations.

For the second term denote the event

Ai =
{
|Uj,x,h| > Rn for j ∈ J = {j1, . . . , ji} and δ

(1)
n ≤ T (n) ≤ δ(2)

n

}⋂
Ci = Bi

⋂
Ci with Ci = {

∑
J |Uj,x,h| (P(|Uj,x,h| > Rn) + 1) > cn}.

Then it is

P

 1

T (n)

∣∣∣∣∣∣
T (n)∑
j=1

ηj,x,h

∣∣∣∣∣∣ ≥ cn, δ(1)
n ≤ T (n) ≤ δ(2)

n


≤ P

T (n)⋃
i=1

Ai

 ≤ T (n)∑
i=1

P (Ai) ≤ T (n)P (B1)

≤ (δ(1)
n )2P (|Uj,x,h| > Rn) ≤ C(δ(1)

n )2h(1−q)dR−qn , (A.25)

where the last inequality follows from Markov inequality and moment bounds on E (|Uj,x,h|q) for q ≥ 2

by Lemma A.1 equation (A.15).
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Thus putting (A.22), (A.23),(A.24), and (A.25) together, it is

∑
l(n)P

(
1

T (n)

∣∣∣∣∣
n∑
i=0

Wi,x,h

∣∣∣∣∣ ≥ cn
)
<∞ , (A.26)

for appropriate δ
(1)
n , δ

(2)
n , Rn, h, cn. For simplicity set δ

(1)
n = nβ−α, δ

(2)
n = nβ+α, Rn = nβ−γ . Set 0 < δ <

α < γ < β and γ such that Rn � h−d. Such a choice is possible due to the mild restriction on h in

the assumptions. With l(n) as in defined in (A.19) we can choose q large enough, such that from (A.25)

l(n)(δ
(1)
n )2h(1−q)dR−qn < n−1 in order to fulfill (A.22). With cn = O(n1/2(β−δ)hd/2) = O(hd+1l(n)1/d)

we obtain summability in (A.26) of part (A.24) and satisfy the convergence conditions for the terms Q1

and Q3.

Therefore with these choices (A.26) holds, resulting in the entire term S1 being o(1) due to Borel–

Cantelli lemma. The final rate combines the rates of the stochastic term S1 and the bias term S2 = O(h2)

or S2 = O(h) on the boundary.

Remark 5. In the proof above in the case d = 1 e.g. the choices λ = α = 1/5, δ = 1/10 and γ = 2/5 are

possible. Then q ≥ 10 allows to satisfy the conditions.

A.3.2 Proof of (A.2)

In order to show (A.2), bias and variance part are treated separately according to the decomposition

(A.3). The following two Lemmas can be easily generalized to x ∈ Rd and m : Rd → R, but here

univariate results are sufficient.

Lemma A.3. Let either Assumptions 1-3 or Assumptions 1,2, and 3* hold. Choose a bandwidth h =

n−λβ with 0 < λ < 1− δ+κ
β where κ > 0 arbitrarily small

sup
xj∈G̊jh

∣∣m̂B
j (xj)−mj(x

j)
∣∣ = OP

(
h2
)
. (A.27)

On the boundary the rate of bias is of order h instead of h2.

Proof. With standard kernel calculations and Taylor expansion it is E
(
m̂B
j (xj)|Xj

1 , . . . , X
j
n

)
= mj(x

j)+

Rn,h(xj), where Rn,h(xj) =
rn,h(xj)
π̂j(xj)

and the leading terms in the numerator rn,h(xj) have the form

rn,h(xj) = hm
(1)
j (xj)

1

T j(n)

n∑
i=1

Si,1j (xj)+

+h2m
(2)
j (xj)

1

T j(n)

n∑
i=1

Si,2j (xj)(1 + o(1)) (A.28)

with Si,lj (xj) = Kh,xj (X
j
i )
(

(Xji−x
j)

h

)l
for l ∈ {1, 2}. To obtain the result, the only thing left to show is

that for the centered Si,l?j with Si,l?j (xj) = Si,lj (xj)− π̂j(xj)µ(Si,lj (xj)) it is

sup
xj

1

T j(n)

n∑
i=1

Si,l?j (xj) = oP (1)
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for l ∈ {1, 2}. This follows from the previous Lemma A.2 with kernel ulK(u) instead of K(u). The first

term in (A.28) vanishes apart from the boundary and the final result follows with Lemma A.2 in the

denominator.

Lemma A.4. Let Assumptions 1 - 3 or 1 - 3* hold. Choose a bandwidth h = n−λβ with 0 < λ < 1− δ+κ
β

where κ > 0 arbitrarily small, then

sup
xj∈Gj

∣∣∣∣∣m̂A
j (xj)− µ(jε)(Kxj ,h ⊗ idε)

Tjε(n)

L̂j(xj)

∣∣∣∣∣ = oP

(
1√

nβ−δh

)
.

Proof. The proof follows along the lines of lemma A.17 above, where in the dominating numerator the

split chain parts Uk(Kx,h ⊗ idε) are for the compound chain (Xj , ε). We obtain

sup
xj

1

T jε(n)

n∑
i=0

(
Kh,xj (X

j
i )εi − µ(jε)(Kxj ,h ⊗ idε)

)
= oP

(
1√

nβ−δh

)
with the analogous truncation steps as in Lemma A.2 and using the respective moment bound (A.16)

in (A.25). As under Assumptions 3 bound (A.16) holds for arbitrary q we can set for the Borel-Cantelli

argument to hold

q > 1 +
β(3 + λ)− 2ω − 3δ + 2

2ω

with ω = δ + κ − γ and γ > 0 in Rn = nβ−γ chosen such that ω > 0 in addition to 0 < δ < α < γ.

As δ − γ < 0 it is ω < κ. Under mixing residuals in Assumption 3* the same considerations amount to

requiring for p in E(|ε|p(k+1)
) <∞ that

p > 1 +
β(3 + λ(1− 1

k+1 ))− 2ω − 3δ + 2

2ω

with 0 < ω < κ. Note that under this condition the bandwidth requirement for controlling U0 in Karlsen,

Myklebust, and Tjøstheim (2007) Theorem 5.5 is automatically fulfilled. In both cases the final result

follows with Lemma A.2 in the denominator.

Remarks 6. 1. In general, the stochastic bias term µ(jε)(Kxj ,h(·) ⊗ idε)
Tjε(n)

L̂j(xj)
is op(1) (see (6.23) in

Karlsen, Myklebust, and Tjøstheim (2007)). With bandwidth h < n1/5β+δ the term vanishes.

2. Under Assumptions 1,2 and 3, we get for m̂
(k)
j rates with bivariate βjk on Gjk and a stochastic bias

µ
(k)
(jε)(Kxj ,h(·)⊗ idε)

T
(k)
jε (n)

L̂
(k)
j (xj)

.

3. If ε and Xj are independent, or only asymptotically independent, then it is πjε = πj · πε. Thus

µ(jε)(Kxj ,h(X)⊗ idε)
T jε(n)

L̂j(xj)
= 0 under Assumption 3∗.
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