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Spectral estimation of covolatility
from noisy observations using local weights
Markus Bibinger1 & Markus Reiß1

Institute of Mathematics, Humboldt-Universität zu Berlin

ABSTRACT. We propose localized spectral estimators for the quadratic covariation and the spot
covolatility of diffusion processes which are observed discretely with additive observation noise. The
eligibility of this approach to lead to an appropriate estimation for time-varying volatilities stems
from an asymptotic equivalence of the underlying statistical model to a white noise model with cor-
relation and volatility processes being constant over small intervals. The asymptotic equivalence of
the continuous-time and the discrete-time experiments are proved by a construction with linear in-
terpolation in one direction and local means for the other. The new estimator outperforms earlier
nonparametric approaches in the considered model. We investigate its finite sample size character-
istics in simulations and draw a comparison between the various proposed methods.
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1 Introduction

The estimation of the quadratic (co-)variation of semimartingales is of large interest in statistics and finan-
cial econometrics. Especially, statistical models taking market microstructure frictions into account have
attracted a lot of attention in recent years. Inspired by empirical studies of the characteristics of high-
frequency financial data, a prominent approach is to describe asset prices as a superposition of a discretely
sampled semimartingale with an independent additive noise component.
The finding that observations of a Brownian motion with noise on a discretely arranged grid possesses the
LAN-property in Le Cam’s sense with the rate n−1/4 by Gloter & Jacod (2001), instead of the usual n−1/2

rate in the absence of noise, has provided the optimal rate and a parametric efficiency bound for the asymp-
totic variance as a benchmark for this estimation problem. Interestingly, the nuisance quantity, namely the
noise level, can be estimated with the usual faster rate in this model in contrast to the parameter of interest.
This is caused by observation errors with non-decreasing variances perturbing diffusion increments of or-
der n−1/2. These features carry over to the estimation problem of covariation in a multidimensional setting
as has been shown in Bibinger (2011a).
The key role of quantifying integrated (co-)volatilities in portfolio optimization and risk management has
stimulated an increasing interest in estimation methods for these models starting with Aït-Sahalia et al.
(2005) and Zhang et al. (2005). Subsequently three nonparametric approaches for integrated volatility es-
timation have been suggested, the multi-scale realized volatility by Zhang (2006), a pre-average strategy
by Jacod et al. (2009) and the realized kernels from Barndorff-Nielsen et al. (2008). All estimators are
based on quadratic forms of the observations and depend on a globally chosen tuning parameter. For that
reason, when ignoring the treatment of end-effects, all three share a similar asymptotic behavior. They
attain the optimal rate, but cannot be asymptotically efficient for time-varying volatility functions. Still,
several robustness results to more realistic models incorporating non-i. i. d. noise and stochastic volatilities
with leverage have been established and make these approaches quite attractive.

1Financial support from the Deutsche Forschungsgemeinschaft via SFB 649 ‘Ökonomisches Risiko’, Humboldt-Universität zu
Berlin, is gratefully acknowledged.
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An alternative approach for the estimation of the quadratic variation arising in Aït-Sahalia et al. (2005)
from the parametric point of view is based on the MLE for this model. It turned out in Xiu (2010) that the
MLE for integrated volatility can cope with a nonparametric volatility specification. This quasi-maximum
likelihood estimator (QMLE) also attains the optimal rate. Asymptotic efficiency, however, is achieved
only in the parametric setup with constant volatility. In Reiß (2011) an asymptotically efficient estima-
tor based on spectral theory and localized MLEs for asymptotically shrinking blocks has been constructed.
The idea stems from an asymptotic equivalence result in the spirit of Grama & Nussbaum (2002) pertaining
the underlying nonparametric setting and a piecewise constant local parametric approximation. In Curci &
Corsi (2011) a related estimation strategy using a discrete sine transform approach is considered and tested
in an application study.
Ongoing progress in this research area has recently led to estimation approaches for the integrated co-
volatility in multidimensional models. The above-mentioned methods carry over to a multidimensional
setting. Rate-optimal estimators, which also cope with asynchronous observations, have been established
by Christensen et al. (2010), Aït-Sahalia et al. (2010) and Bibinger (2011a), while Barndorff-Nielsen et al.
(2011) focusses on positive-definite (co)volatility matrix estimators.
The motivation and contribution of the article at hand is twofold. First, we step forward towards a deeper
understanding of the statistical properties of covariation estimation from noisy discretely observed diffu-
sions. In particular, we prove that observing two correlated diffusion processes with noise at synchronous
times is asymptotically equivalent (in the sense of Le Cam’s equivalence of statistical experiments) to ob-
servations in a related continuous time white noise model. The procedure is completely explicit and thus
allows to transfer estimators and tests from one model to the other with the same asymptotic properties. In
particular, for bounded loss functions asymptotic efficiency results are the same in both model sequences.
The white noise model itself is asymptotically equivalent to a piecewise constructed parametric model.
That result is an extension of the one-dimensional findings in Reiß (2011) and gives rise to our local spec-
tral approach. The second contribution are our nonparametric spectral estimators of covolatility (SPECV)
for both, the integrated covolatility (i.e. covariation) and the spot (i.e. instantaneous) covolatility. The
estimators are based on certain empirical bivariate Fourier coefficients on each block in time which in the
piecewise parametric white noise model are just independent Gaussian vectors in R2 with volatilities and
covolatilities appearing in the covariance structures. This very simple structure allows a straight-forward
analysis and often reduces the estimation variance compared to the previously suggested methods. This is
corroborated by simulation results which show good finite-sample properties.
The article is arranged in three upcoming sections and an appendix comprising the technical proofs. Sec-
tion 2 is devoted to the underlying statistical experiments and the asymptotic equivalence results. In Section
3, we develop the SPECV, spectral estimator of covolatility, and investigate its mathematical properties. A
discussion and simulation study is provided in Section 4, where the SPECV of integrated covolatility is
compared to concurrent nonparametric approaches. Owing to its local spectral construction principle, the
new approach outperforms earlier methods if the correlation or volatility processes vary in time.

2 Asymptotic equivalence of the discrete regression-type and the con-
tinuous white noise experiment

Consider the statistical experiment in which a two-dimensional discrete time process Z̃ defined by

Z̃tn
i

= Ztn
i

+ εi, 0 ≤ i ≤ n with Zt = Z0 +

Z t

0
Σ

1/2
s dBs, t ∈ [0, 1](E0)

is observed, where B is a two-dimensional standard Brownian motion and

Σt =

�
(σXt )2 ρtσ

X
t σ

Y
t

ρtσ
X
t σ

Y
t (σYt )2

�
the (spot) volatility matrix. The signal part of Z̃ = (X̃, Ỹ )> denoted Z = (X,Y )

>, which is called
efficient price process in finance, is independent of the observation noise ε = (εX , εY )>. The observation



Spectral covolatility estimation 3

errors (εi) are i. i. d. centred normal with covariance matrix

H =

�
η2
X ηXY

ηXY η2
Y

�
.

We consider time-varying volatility matrices Σ belonging to a Hölder ball of order α ∈ (0, 1] and radius
R > 0, i.e. Σ ∈ Cα(R) with

Cα(R) = {f ∈ Cα([0, 1],R2×2)|‖f‖Cα ≤ R} where ‖f‖Cα := ‖f‖∞ + sup
x6=y

‖f(x)− f(y)‖
|x− y|α

.

We denote the spectral norm in R2×2 always by ‖ · ‖ and define ‖f‖∞ := supt∈[0,1] ‖f(t)‖.
In (E0) we allow for a non-equidistant synchronous observation scheme (tni )0≤i≤n, but we will have to im-
pose that the sampling can be transferred to an equidistant scheme by a quantile transformation independent
of n.

Assumption 1. Suppose that there exists a differentiable distribution function F : [0, 1] → [0, 1] with
F (0) = 0, F (1) = 1 and F ′ > 0, such that the observation times in (E0) are generated by tni =
F−1(i/n), i = 0, . . . , n.

Note that we only consider deterministic designs of observation times. Under random sampling schemes
the estimators should have similar properties, but the mathematical analysis is much harder.
We use a similar notation for the white noise experiment

dZ̃t = Zt dt+ n−
1/2H

1/2 dWt , t ∈ [0, 1] ,(E1)

with the covariance matrix H of ε, Zt = Z0 +
R t

0 Σ
1/2
s dBs and a standard two-dimensional Brownian

motion W independent of B.
In the following, we shall prove the results for an equidistant setting tni = i/n, i = 0, . . . , n. This is
founded on the connection between a sampling scheme based on a quantile transformation of the equidistant
grid and an equidistantly observed process with transformed volatility matrix by the identity in law

ZFu := ZF−1(u) =

Z u

0
(ΣFs )

1/2 dBs with ΣFs = ΣF−1(s)(F
−1)′(s),

which follows directly from the identity for covariance functions of these Gaussian processes via Itô isom-
etry. Hence, upcoming results can be generalized for all F satisfying Assumption 1, replacing everywhere
Z by ZF , tni by i/n and Σ by ΣF . Yet, the ease in dealing with transformations in the white noise model
even gives another useful representation for non-equidistant design. Experiment (E1) in terms of observing
ZF in noise is equivalent to observing

dZ̃F (t) = ZtF
′(t) dt+ n−

1/2H
1/2F ′(t)1/2 dWt , t ∈ [0, 1],

see below for the exact notion of Le Cam equivalence which can be easily verified here by the identity of
likelihood processes. Dividing by F ′(t) yields further equivalence with observing

dZt = Zt dt+ (nF ′(t))−
1/2H

1/2 dWt , t ∈ [0, 1]. (1)

As we shall establish next, experiments (E0) and (E1) will be asymptotically equivalent for n → ∞ and
the formulation (1) has a very intuitive meaning: the local noise level at t is proportional to (nF ′(t))−1/2,
one over the square root of the local sample size nF ′(t).

Definition 1. Let E0(n, α,R,Σ) with n ∈ N, α ∈ (0, 1], R,Σ ≥ 0 be the statistical experiment generated
by observations from (E0) with tni = i/n. The unknown parameter Σ in (E0) belongs to the class Cα(R)
and satisfies Σt ≥ ΣE2 for all t ∈ [0, 1] with the identity matrix E2 ∈ R2×2, i.e. the smallest eigenvalues
of Σt are larger than Σ.

Analogously, let E1(n, α,R,Σ) be the statistical experiment generated by observing (E1) with the same
parameter class for Σ.
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For the following results, we will briefly recall the notion of asymptotic equivalence, Le Cam deficiency
and Le Cam distance. We refer interested readers to Le Cam & Yang (2000) for more information on the un-
derlying theory. For statistical experiments E0 =

�
X0,F0, {P0

θ |θ ∈ Θ}
�

and E1 =
�
X1,F1, {P1

θ |θ ∈ Θ}
�

with the same parameter set Θ defined on (possibly) different Polish spaces, their Le Cam deficiency is
defined by

δ (E0,E1) = inf
K

sup
θ∈Θ
‖KP0

θ − P1
θ‖TV ,

where the infimum is taken over all Markov kernels (or randomisations) K from (X0,F0) to (X1,F1). The
Le Cam distance is defined by

∆ (E0,E1) = max (δ (E1,E0) , δ (E0,E1)) .

If

lim
n→∞

∆ (En0 ,E
n
1 ) = 0

holds for sequences of experiments (En0 )n and (En1 )n, then these sequences are called asymptotically equiv-
alent.
The construction of the Markov kernel K will be explicit in all the proofs given in this article in terms of
data transformations and randomisations.

Theorem 1. The statistical experiments E0(n, α,R,Σ) and E1(n, α,R,Σ) are for any α > 0 and n→∞
asymptotically equivalent. More precisely, the Le Cam distance is of order

∆ (E0,E1) = O
�
Rn−(α∧1/2)H−1

�
, (2)

where H denotes the smallest eigenvalue of H.

We explicitly state how asymptotic terms hinge on H, since this is of interest when considering noise
levels decreasing with n. A concise proof of this theorem is given in the appendix. The strategy of proof
follows the same principle as for the one-dimensional setting in Reiß (2011). For the proof that (E0) is
at least as informative as (E1), we construct a continuous time observation by linear interpolation. The
interpolated process Ẑ is a centred Gaussian process on [0, 1]. The associated covariance operator Ĉ on
L2
�
[0, 1],R2

�
is such that the difference (C̄ − Ĉ), where C̄ is the covariance operator in a white noise

model comprising the interpolated signal term, is positive (semi-) definite. For this reason observations
from such a white noise model can be generated by adding an independent Gaussian noise component to
Ẑ. Now a process Z̄ from this white noise model and Z̃ in (E1) can be defined on the same probability
space and it suffices to show that the total variation distance of the laws converges uniformly over Σ to
zero. This is accomplished by bounding the squared Hellinger distance. For the proof of the intuitive
converse, that (E1) is at least as informative as (E0), we take means symmetrically around the points
(i/n), 1 ≤ i ≤ (n − 1) from (E1) and verify that the Hellinger distance between the processes generated
in this manner and Z̃ from (E0) tends to zero.
An important setting in which the volatility processes follow again semimartingales is covered by Theorem
1 for the case that Z remains conditionally Gaussian.

Definition 2. Write btch = bt/hch for h > 0, assume h−1, nh ∈ N and let Zht = Z0 +
R t

0 Σ
1/2
bsch dBs with

a two-dimensional standard Brownian motion B. Let Σt belong to Cα(R) and satisfy Σt ≥ ΣE2. Define
the process

dZ̃t = Zht dt+ n−
1/2H

1/2 dWt, t ∈ [0, 1],(E2)

where W is a standard Brownian motion independent of B. The statistical model generated by the obser-
vations from (E2) is denoted by E2(n, h, α,R,Σ).
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In experiment (E2) we thus observe a process with a volatility matrix which is constant on each block
[kh, (k + 1)h), k = 0, 1, . . . , h−1 − 1. It is intuitive that for small block sizes h and sufficient Hölder
regularity α this piecewise constant approximation is sufficiently close to render the approximation error
statistically negligible. This is made precise in the following theorem.

Theorem 2. Assume hα = O

�
n−1/4

�
for 1/2 < α ≤ 1 and Σ > 0. Then the statistical experiments

E1(n, α,R,Σ) and E2(n, h, α,R,Σ) are asymptotically equivalent:

∆ (E1,E2) = O
�
RhαΣ−3/4H−1/4n

1/4
�
. (3)

The asymptotic equivalence results lead to a new approach for the covariation estimation problem.
Following the idea for the scalar case from Reiß (2011), we consider an orthonormal system in L2([0, 1])
of specific cosine functions with support on the blocks [kh, (k+1)h] and frequencies of order j ≥ 1. Their
antiderivatives are sine functions on the same support and will also play a crucial role. We set

ϕjk(t) =

r
2

h
cos
�
jπh−1 (t− kh)

�
1[kh,(k+1)h](t), j ≥ 1 , k = 0, . . . , h−1 − 1 , (4a)

Φjk(t) =

�√
2hn sin

�
jπ

2nh

��−1

sin
�
jπh−1(t− kh)

�
1[kh,(k+1)h](t), j ≥ 1 , k = 0, . . . , h−1 − 1 . (4b)

Differently from Reiß (2011), we appropriately renormalize the antiderivatives (4b) to be equipped for the
discrete analysis. The functions (4a) and (4b), evaluated on the grid given by the observation times, provide
spectral weights for local blockwise averages. By virtue of the transformation for general observation
schemes discussed above, we may for ease of exposition consider the equidistant grid:

x̃jk =
nX
l=1

�
X̃ l

n
− X̃ l−1

n

�
Φjk

�
l

n

�
, (5a)

ỹjk =
nX
l=1

�
Ỹ l
n
− Ỹ l−1

n

�
Φjk

�
l

n

�
. (5b)

Since Φj(h−1−1)(1) = 0, the last addend is zero for all blocks k. We stress that by the indicator functions
in (4a) and (4b) and since Φjk(kh) = Φjk((k + 1)h) = 0, the sums in (5a) and (5b) only extend over
l = k · nh + 1, . . . , (k + 1) · nh − 1. Therefore, families (x̃jk, ỹjk)j are uncorrelated and thus by
Gaussianity independent for different blocks k. Besides the independence between blocks, we additionally
benefit from the orthogonality of each family of functions associated with a specific period or frequency.
The orthogonality relations

R
ϕjkϕik = 0 and

R
ΦjkΦik = 0 ∀i 6= j in L2([0, 1]) will remain valid for the

discretized versions and the corresponding sums when i, j ∈ {1, . . . , nh}. For the purpose of explicitly
analyzing the discrete terms, we introduce the notion of empirical scalar products:

〈f, g〉n :=
1

n

nX
l=1

f

�
l

n

�
g

�
l

n

�
and ‖f‖2n :=

1

n

nX
l=1

f2

�
l

n

�
= 〈f, f〉n , (6a)

[f, g]n :=
1

n

nX
l=1

f

�
l − 1

2

n

�
g

�
l − 1

2

n

�
, for f, g : [0, 1]→ R . (6b)

By abuse of notation for a vector Z = (Z1, . . . , Zn) and f : [0, 1]→ R, we will also write

〈Z, f〉n :=
1

n

nX
l=1

Zl f

�
l

n

�
and [Z, f ]n :=

1

n

nX
l=1

Zl f

�
l − 1

2

n

�
. (6c)
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For two vectors Z and Z̃ it is convenient to introduce the notation

〈Z, Z̃〉nh;k :=
1

n

nX
l=1

ZlZ̃l1[(kh,(k+1)h]

�
l

n

�
=

1

n

nhX
i=0

Zknh+iZ̃knh+i . (6d)

The following identity is a main ingredient in the construction of the estimator and for its error analysis
below.

Proposition 1. For the blockwise weighted sums x̃jk, ỹjk , j ∈ {1, . . . , nh}, k ∈ {0, . . . , h−1 − 1}, the
following summation by parts formula holds true:

ỹjk =
nX
l=1

∆Ỹl Φjk

�
l

n

�
= −

n−1X
l=0

Ỹ l
n
ϕjk

�
l + 1

2

n

�
1

n
(7)

= 〈n∆Y,Φjk〉n −
�
εY , ϕjk

�
n
,

and for x̃jk analogously, where ∆ denotes the backward difference operator ∆Ỹl := Ỹ l
n
− Ỹ l−1

n
and

∆Y =
�
∆Ỹ1, . . . ,∆Ỹn

�
. Moreover, we have the following orthogonality identities:

[ϕjk, ϕrk]n = δjr , j, r ∈ {1, . . . , nh} , k = 0, . . . , h−1 − 1 , (8a)

〈Φjk,Φrk〉n = ‖Φjk‖2n δjr , j, r ∈ {1, . . . , nh} , k = 0, . . . , h−1 − 1 , (8b)

where δjr is Kronecker’s delta. The empirical norm

‖Φjk‖2n =
�
4n2 sin2 (jπ/(2nh))

�−1
, k ∈ {0, . . . , h−1 − 1}, (9)

does not depend on the block k and appears in our estimator in the next section.

The two representations of the blockwise sums in (7) are very useful when disentangling the estimation
error emerging from the two independent error sources: discretization and observation noise. In particular,
we use the left-hand side which involves the increments of the processes only when considering the signal
parts X and Y . For the analysis of cross terms and the pure noise parts the right-hand side of (7) permits
a significant simplification. In the next section, we use these ideas and the insight into the structure of
the estimation problem to construct a new estimation approach for the quadratic covariation and the spot
covolatility of diffusion processes based on the original model (E0). The final estimator for the quadratic
covariation appears as a linear combination of the products of the local spectral averages x̃jkỹjk over all
j and k combined with a bias correction. We will benefit from the asymptotic equivalence results for the
mathematical analysis of our estimator by the following conclusion that we can straiten the analysis to the
statistical experiment

Z̃htn
i

= Zhtn
i

+ εi, 0 ≤ i ≤ n with Zht = Z0 +

Z t

0
Σ

1/2
bsch dBs, t ∈ [0, 1] ,(E3)

where we have noisy discrete observations with the volatility matrix being constant on blocks.

Proposition 2. For nh ∈ N, α,R > 0 and Σ ≥ 0 the statistical experiments E2(n, h, α,R,Σ) and
E3(n, h, α,R,Σ) with tni = i/n are asymptotically equivalent:

∆ (E2,E3) = O
�
RH−1n−

1/2
�
. (10)

Consequently, observing Z̃ in (E0) is asymptotically equivalent to observations of Z̃h from (E3). Note
that for constant Σkh on each block, the Φjk have the same structure as the eigenvectors of the covariance
matrix associated with the vector of the (nh − 1) observed increments on the block. The local weighted
sums (5a) and (5b) on each block hence constitute the corresponding Karhunen-Loève expansion. We refer
to Bibinger (2011a) and for the one-dimensional case to Gloter & Jacod (2001) and Curci & Corsi (2011)
for the explicit computation of the eigenvalues and eigenvectors.
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3 Local spectral estimation of covolatility

In the sequel, we always assume hα = O

�
n−1/4

�
, Assumption 1 on the sampling scheme and that the

volatility matrix belongs to Cα(R) for some α > 1/2 and R > 0 and is bounded from below by a positive
constant. By virtue of Proposition 2, we can then work within the simpler model (E3). We present all
results for the equidistant design tni = i/n, noting again that the general case follows by substituting Z̃ by
Z̃F , Σ by ΣF etc. Interestingly, integrated volatility is even invariant under this transformation:Z 1

0
ΣFu du =

Z 1

0
ΣF−1(u)(F

−1)′(u) du =

Z 1

0
Σt dt.

For estimation purposes this means that we can just neglect the design in the implementation. The invari-
ance property, however, does not hold for powers of Σ or for polynomials in σX , σY of degree different
from two such that the asymptotic variance will significantly depend on the design function F .

On each of the independent blocks, we have observations (5a) and (5b) with

(x̃jk, ỹjk) ∼ N

�
0 ,

�
η2
X/n+ ‖Φjk‖2n(σXkh)2 ηXY /n+ ‖Φjk‖2nρkhσXkhσYkh

ηXY /n+ ‖Φjk‖2nρkhσXkhσYkh η2
Y /n+ ‖Φjk‖2n(σYkh)2

��
,

independently for all j, k, what can be proved by a standard calculation. We will postpone a detailed
computation of estimation errors to the Appendix B. For each j, k fixed, the empirical covariance yields
a natural estimator of the spot covolatility ρkhσ

X
khσ

Y
kh on each block provided we correct the bias by

subtracting ηXY /n.

Remark 1. In the following we assume for the ease of exposition that ηXY is known. Yet we can estimate
ηXY from the observations with faster rate

√
n by

ÔηXY =
1

2n

nX
l=1

�
Ỹ l
n
− Ỹ l−1

n

� �
X̃ l

n
− X̃ l−1

n

�
(11)

or as well by −n−1
P
l(Ỹl/n − Ỹ(l−1)/n)(X̃(l+1)/n − X̃l/n). For the first estimator

√
n-consistency and a

central limit theorem can be proved in the spirit of Zhang et al. (2005) for its one-dimensional counterpart
1/(2n)

P
l(X̃l/n−X̃(l−1)/n)2. The second estimator and its one-dimensional analogue−n−1

P
l(X̃l/n−

X̃(l−1)/n)(X̃(l+1)/n − X̃l/n) have a slightly bigger variance but the benefit of no finite sample bias due to
the quadratic (co-)variation of the signal part.

By using just the lowest frequency j = 1 in each block, we obtain a simple rate-optimal estimator of
integrated covolatility when summing over all blocks [kh, (k + 1)h] multiplied by the block length h:

ÓIC(SPECV,j=1)
= h

h−1−1X
k=0

‖Φ1k‖−2
n (x̃1kỹ1k − ηXY /n) . (12)

By independence between the blocks, its variance is of order O(h−3(η2
X/n+ h2)(η2

Y /n+ h2)). For fixed
noise levels ηX , ηY , ηXY the rate-optimal choice h ∼ n−1/2 thus yields a variance of order O(n−1/2)
(note that for α > 1/2 and h ∼ n−1/2 the condition hα = O(n−1/4) always holds).

It is possible to obtain a pointwise estimator of the spot covolatility SCVt := ρtσ
X
t σ

Y
t by the average

of the spectral estimators over a set Kt of K adjacent blocks containing t:

ŜCV t = K−1
X
k∈Kt

‖Φ1k‖−2
n (x̃1kỹ1k − ηXY /n) . (13)

Since the observation times in Kt have at most distance Kh to t, the approximation error bound for the
α-Hölder continuous function Σ yields a squared bias of order O((Kh)2α). The variance is O(K−1)
for h ∼> n−1/2, and we obtain for the rate-optimal choices h ∼ n−1/2, K ∼ nα/(2α+1) a root mean
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squared error of order O(n−α/(4α+2)). Standard nonparametric techniques based on Gaussian measure
concentration then even give the same rate times a log-factor in n for uniform loss in t, i.e.

E
�

sup
t∈[0,1]

|ŜCV t − SCVt|
�

= O
�
(n/ log n)−α/(4α+2)

�
.

For estimation of the integrated covolatility we are not content with rate-optimality, but we also want to
minimize the asymptotic variance. By independence we gain in efficiency by using on each block a convex
combination of the estimators over all frequencies j. In order to estimate the integrated covolatility, we
then just sum these estimators over all blocks. We end up with the following spectral estimation approach
with local weights wjk, satisfying

P
j wjk = 1:

ÓIC(SPECV )

w,n =
h−1−1X
k=0

h
nhX
j=1

wjk‖Φjk‖−2
n (x̃jkỹjk − ηXY /n) . (14)

The optimal weights (minimizing the variance) depend on the unknown spot volatility matrix. As will be
shown in the proof of Theorem 3, they are given by woraclejk = wj(Σkh) with

wj(Σ) =

�
‖Φjk‖−4

n
η2Xη

2
Y+η2XY
n2 +(1 + ρ2)(σXσY )2 +‖Φjk‖−2

n

�
(σX)2 η

2
Y

n +(σY )2 η
2
X

n

��−1

Pnh
r=1

�
‖Φrk‖−4

n
η2
X
η2
Y

+η2
XY

n2 +(1+ρ2)(σXσY )2 +‖Φrk‖−2
n

�
(σX)2 η

2
Y

n +(σY )2 η
2
X

n

��−1 . (15)

They give rise to the oracle version of our spectral estimator of covolatility (SPECV)

ÓIC(SPECV )

oracle,n =
h−1−1X
k=0

h
nhX
j=1

wj(Σkh)‖Φjk‖−2
n (x̃jkỹjk − ηXY /n) . (16)

Using adequate consistent pilot estimates, we obtain a feasible estimator which is asymptotically as
efficient as the oracle estimator. Besides (13) we need the corresponding estimators for the spot volatilities
(σXt )2, (σYt )2:

(̂σXt )2 = K−1
X
k∈Kt

‖Φ1k‖−2
n

�
x̃2

1k − η2
X/n

�
, (̂σYt )2 = K−1

X
k∈Kt

‖Φ1k‖−2
n

�
ỹ2

1k − η2
Y /n

�
, (17)

which also satisfy

E
�

sup
t∈[0,1]

���(̂σXt )2 − (σXt )2
��+
��(̂σYt )2 − (σXY )2

���� = O
�
(n/ log n)−α/(4α+2)

�
for h ∼ n−1/2, K ∼ nα/(2α+1). In particular, all estimators are uniformly (in t) consistent provided
the sample size tends to zero. By using just a negligible fraction of the data with sample size mn → ∞,
mn = O(n), we dispose of a uniformly consistent estimator bΣt,n of Σt which is independent from the
SPECV estimator when the latter is based on the remaining n − mn = n(1 − O(1)) observations. This
gives a concrete construction for the pilot estimator used in the following main theorem.

Theorem 3. We observe from model (E0) with Σ ∈ Cα(R), R > 0, α > 1/2 and Σ > 0. Choose
h ∼ n−1/2 log (n). The resulting adaptive spectral estimator of covolatility (SPECV) for the integrated
covolatility is

ÓIC(SPECV )

n =
h−1−1X
k=0

h
nhX
j=1

wj
�bΣkh,n� ‖Φjk‖−2

n (x̃jkỹjk − ηXY /n) (18)
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with a pilot estimator bΣt,n of the spot covolatility matrix Σt inserted into the oracle weight formula (15).
If bΣt,n is uniformly in t ∈ [0, 1] consistent and independent of the data used in (x̃jk, ỹjk)jk, then both the
adaptive and the oracle SPECV estimator satisfy the same central limit theorem:

n
1/4

�ÓIC(SPECV )

oracle,n −
Z 1

0
ρtσ

X
t σ

Y
t dt

�
 N

�
0, (η2

Xη
2
Y + η2

XY )1/4

Z 1

0
vs ds

�
, (19)

n
1/4

�ÓIC(SPECV )

n −
Z 1

0
ρtσ

X
t σ

Y
t dt

�
 N

�
0, (η2

Xη
2
Y + η2

XY )1/4

Z 1

0
vs ds

�
, (20)

with

vt =
È

2(A2
t −Bt)Bt

�q
At +

È
A2
t −Bt − sgn

�
A2
t −Bt

�q
At −

È
A2
t −Bt

�−1

(21)

and At = 1/
È
η2
Xη

2
Y + η2

XY

�
η2
Y

�
σXt
�2

+ η2
X

�
σYt
�2� and Bt = 4

�
σXt σ

Y
t

�2
(1 + ρ2

t ).

The independence of the pilot estimator from the data used in the main estimator is assumed for techni-
cal reasons. It is believed that the result continues to hold without this assumption, which is also confirmed
in simulations. In the Appendix B we learn that high spectral frequencies have decreasing weights and ex-
ceeding some threshold will asymptotically not contribute to the estimation. For practicable and tractable
application of the SPECV it suffices to sum up frequencies in (18) only up to a spectral cut-off Jn � nh.
We refer to Reiß (2011) for more information on the cut-off.

We give a complete overview on the estimation of the (co)volatility matrix here by recalling the accord-
ing univariate estimator for the integrated volatilities:

ÓIV (SPEV )

n =
h−1−1X
k=0

h
nhX
j=1

wXj
�
σ̂Xkh
�
‖Φjk‖−2

n

�
x̃2
jk − η2

X/n
�
, (22)

which we call SPEV, with the oracle weights

wXj
�
σX
�

=

�
‖Φjk‖−2

n (η2
X/n) + (σX)2

�−2Pnh
l=1

�
‖Φlk‖−2

n (η2
X/n) + (σX)2

�−2

and analogously for Ỹ .
In general, the noise levels ηX , ηY , ηXY are unknown, but they can be estimated with faster rate

√
n

as mentioned above. A result with preestimated error covariance matrix ÒH can be derived as for the
preestimated Σkh above. Furthermore, it is of high practical interest to study how our covolatility estimator
behaves under vanishing microstructure noise level, i.e. in the case H = 0. In that case the oracle weights
are all equal wjk = 1/(nh) and on each block we estimate the block covolatility by the sum

(nh)−1
nhX
j=1

‖Φjk‖−2
n 〈∆X,nΦjk〉n〈∆Y, nΦjk〉n

of discrete Fourier coefficients with respect to (Φjk)1≤j≤nh. By Parseval identity this sum is equal to
n〈∆X,∆Y 〉nh;k. In conclusion, in the case H = 0 and for oracle weights our SPECV estimator reduces
to the realized covolatility, which is the natural estimator in this situation.

Let us finally mention that the pilot estimators (17) and the estimator (22) slightly differ from the one
in Reiß (2011) because we use the accurate Φjk for the discrete setup and their empirical norms defined
above.

4 Discussion and simulations
As mentioned before, previously proposed nonparametric approaches have in common that they are quad-
ratic forms of the observation vectors and when choosing corresponding weights or weight functions trans-
late into each other and show accordant asymptotic properties. Nevertheless, each method is motivated
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Figure 1: Asymptotic variances of estimators for the covolatility in specific scalar case (left) and with time
varying volatilities (right).

from a slightly different point of view. The first two-scales realized volatility (TSRV) approach by Zhang
et al. (2005) for the integrated volatility has been grounded on a subsampling method and a bias correction.
Disregarding the bias correction, the subsampling estimator is the mean of lower frequent and hence less
noise-sensitive realized volatilities. Zhang (2006) has extended this procedure to a linear combination us-
ing different time-scales (MSRV). The kernel approach by Barndorff-Nielsen et al. (2008) can be viewed as
a linear combination of empirical autocovariances. Finally, the pre-average principle by Jacod et al. (2009)
pursuant to its name incorporates (pre-) averaged weighted observations on blocks. The latter is closest to
our methodology, but using Haar functions instead of (4b).
For all three the trade-off between the error due to noise and discretization is handled by choosing a global
tuning parameter c

√
n, where c is a constant, minimizing the MSE to order n−1/2. Thus, the optimal

convergence rate is attained. If we neglect in support of these methods the possible asymptotic influence
of end effects, they have an asymptotic variance structure Nc−3 + Dc + Cc−1, where the signal part D
depends in our notation on Σ, the noise part N on H and the cross term C on both. Minimization leads to

c =
��
−C +

√
C2 + 12ND

�
/6N

�−1/2
. The oracle solution is proportional to η−1 for equal noise vari-

ances η2 of X̃ and Ỹ . Interestingly, Barndorff-Nielsen et al. (2008) have succeeded in the univariate case
with constant volatility in approximately attaining the lower bound from Gloter & Jacod (2001) by a clever
selection method for their bandwidth and weights and also a feasible version with Tukey-Hanning kernels
comes very close to that bound. Essentially, the main difference to our proposed approach is that we do
not need to fix a tuning parameter and weights globally – but are able to adapt weights locally dependent
on the observations only on each particular block.
We content ourselves with the findings in an idealized statistical model which gives insight into the fun-
damental structure of the estimation problem. Note, that an i. i. d. assumption on the noise and Hölder-
continuity conditions on the volatility processes are customary in the strand of literature on nonparametric
estimation methods. In our opinion, it is convenient to look at methods derived from a simple model and
inspect the effect of misspecification on them. In the microstructure noise setup, we might first think of
a diffusion with constant parameters. Xiu (2010) has taken a path in this vein with reviving the classical
MLE in this framework and proving its robustness to a typical nonparametric setup. A local parametric
approach is more flexible and increases in general the performance. More surprising than the accordance
of asymptotic properties for the aforementioned three nonparametric methods, is that Xiu (2010) reports
that the Quasi-MLE approach is in this sense asymptotically equivalent to the kernel approach as well.
This is not the case for our SPEV/SPECV approach what underlines the originality of our local spectral
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Normal Q−Q Plot
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Figure 2: Boxplots for constant (left) and time varying (right) spot correlation and volatilities and normal
QQ-Plots for MSRC and SPECV estimates in the time varying setting.

estimation method. Extensions of the theory that investigate the properties of the SPEV/SPECV in more
general models, e.g. incorporating stochastic volatility and non-Gaussian errors, remain an open task for
further research. For the moment the simple structure of SPEV/SPECV makes us confident that it can be
robust to much more general model specifications.

Let us give concrete examples to compare the asymptotic variances of our SPECV and the other meth-
ods. For the simple parametric setting with constant σX = 2 and σY = 1 and η := ηX = ηY = 1,
in Figure 1 we depict the asymptotic variances for ρ ∈ (−1, 1) of the SPECV from Theorem 3, of the
multi-scale realized covariance as deduced in Bibinger (2011b), of the pre-average estimator as given in
Christensen et al. (2010) and of the QMLE from Aït-Sahalia et al. (2010), all with an optimal oracle tuning
parameter selected as described above. The asymptotic variances are proportional to η, so that Figure 1
rescaled by η is meaningful for arbitrary noise levels. The SPECV has the smallest asymptotic variance
and the QMLE the largest in this particular setup, all to the same optimal rate of convergence. The kernel
method according to Barndorff-Nielsen et al. (2011) is not included, since the multivariate version has a
non-optimal n1/5-rate by oversmoothing to the benefit of positive semi-definiteness. We stress that we in-
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tentionally have picked unequal constant volatilities here to the disadvantage of the QMLE which relies on
the polarization identity. For equal volatilities σX = σY in our model X + Y and X − Y are independent
and the polarized QMLE (also a polarized SPEV concurrent to the SPECV) will not suffer a disadvantage
by polarization. From the comparison to the Fisher information in Bibinger (2011a), we can learn that the
QMLE and the SPECV exhibit asymptotic efficiency for ρ = 0 in this setting. The approach presented
in Barndorff-Nielsen et al. (2008) to derive asymptotic efficiency in the one-dimensional scalar case can
easily be extended to a bivariate synchronous setting and renders a rate-optimal approach, asymptotically
efficient for ρ = 0 as well. Yet none of these estimators is asymptotically efficient on the whole parameter
space (ρ, σX , σY ) ∈ ((0, 1),R+,R+) and it is beyond the scope of this article to finish the quest for a
globally asymptotically efficient estimator that outperforms the concurrent methods in each case.
Here we aim at providing with SPECV a method that performs well for time varying functions by lo-
cal adaptivity and thus focus on that setting in the following. For this purpose we compare asymptotic
variances in the same spirit for ρ ∈ (−1, 1) and

σXt = 0.1− 0.08 · sin (πt), t ∈ [0, 1] ,

σYt = 0.15− 0.07 · sin ((6/7) · πt), t ∈ [0, 1] ,

which will as well be considered for the simulation part below. We add the theoretical asymptotic vari-
ance of a simple extension of the optimal kernel estimator for integrated volatility from Barndorff-Nielsen
et al. (2008), which can be approximated by Tukey-Hanning kernels. This approach features the smallest
asymptotic variance in a wide domain of ρ among the compared non-locally adaptive methods. Even so,
the SPECV clearly comes below this benchmark. The right display of Figure 1 shows that the gains of
SPECV compared to the previously proposed methods are much more distinctively than in the scalar case.
After this theoretical comparison and the conclusion that the SPECV is preferable, especially in the general
nonparametric setting, we shed light on the finite sample size behaviour of our approach in a Monte Carlo
study.

In the first simulation, we compare the SPECV with the multiscale realized covariance (MSRC), both with
an oracle choice of weights and tuning parameter, respectively. First, we implement a simple parametric
model with n = 30000 equidistant observations of X̃ and Ỹ , where σX = σY = 1, ρ = 1/2 and noise
levels ηX = ηY = 0.1. The implemented MSRC as given in Bibinger (2011a) is for synchronous observa-
tions a direct extension of the MSRV by Zhang (2006) and translates asymptotically to the kernel estimator
with a cubic kernel. It is known to have a good finite sample size behavior. We implement the SPECV with
an adequate heuristic choice h = 1/30 such that nh = 1000.
The empirical distribution of the estimates from 10 000 MC iterations are visualized in a boxplot in Figure
2. The SPECV estimates have an empirical variance of 0.49·

√
n and the MSRC of 0.71·

√
n. The empirical

finding is that in this setting the SPECV is closer to its theoretical asymptotic variance of about 0.46 than
the MSRC to its theoretical value of 0.52.
Our main focus will be the non-scalar case. For an example of deterministic time-varying functions, set

σXt = 0.1− 0.08 · sin (πt), t ∈ [0, 1] ,

σYt = 0.15− 0.07 · sin ((6/7) · πt), t ∈ [0, 1] ,

ρt = 0.5 + 0.01 · sin (πt), t ∈ [0, 1] ,

where the volatilities are higher at the beginning and end of the observed interval and the correlation is only
slowly varying, which mimics the basic realistic features. We keep the noise levels ηX = ηY = 0.1 fixed
and rather high compared to the signal part. The known integrated covolatility equals 0.00269 here. Since
the noise level is high and dominates the signal part, the frequencies chosen according to the above given
selection rule for the MSRC estimator become large (over 1 000) and the computing time increases for these
kind of nonparametric estimators. As can be seen in the right boxplot of Figure 2, the SPECV outperforms
the MSRC for non-constant volatilities and correlation more clearly. This confirms that the spectral local
technique is more adequate to capture the effect of time-varying volatilities by local adaptation, not only
theoretically but significantly in the finite sample case. The QQ-Plots in Figure 2 inspect the normal
approximation for the two estimators from this Monte Carlo study in the time varying case.
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Estimator RMSE

ÓIV (SPEV )

n for
R 1

0

�
σXt
�2
dt 0.0072

ÓIV (SPEV )

n for
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0

�
σYt
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dt 0.0086

ÓIC(SPECV )

n for
R 1

0 ρtσ
X
t σ

X
t dt 0.0034

ÓIC(MSRC)
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0 ρtσ
X
t σ

X
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MSRC(oracle) SPECV(oracle) SPECV(adaptive)

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Table 3: Comparison of root mean squared errors of MC (co-)volatility estimates.

Figure 4: Boxplot of 10000 MC iterations of the oracle MSRC and oracle/adaptive SPECV.

We conclude the simulation study with an implementation of the adaptive SPEV/SPECV. We use pilot
estimators (13) and (17) for Σ at times l · nh, l = 0, . . . , 30, with K = 30 adjacent blocks.
The 10 000 MC estimates of the adaptive SPECV are illustrated in Figure 4. Table 3 summarizes the root
mean squared errors of all three adaptive SPEV/SPECV estimators and the oracle SPECV and the oracle
MSRC. The performance of the adaptive version of SPECV can not keep up with the oracle version, but
in our simulation it is still slightly better than the oracle MSRC. For an adaptive MSRC the root mean
squared error will clearly become larger and we refer to Bibinger (2011b) for the method and simulation
results pertaining this point.
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A Appendix: Proofs of asymptotic equivalence

Proof of Theorem 1
We start with the constructive proof that (E0) is at least as informative as (E1). We use the linear B-splines

bi(t) = 1[ i−1
n , i+1

n ](t) min

�
1 + n

�
t− i

n

�
, 1− n

�
t− i

n

��
,

i. e. supp bi = [(i− 1)/n, (i+ 1)/n] , bi(i/n) = 1, and bi linear on [(i− 1)/n, i/n] and [i/n, (i+ 1)/n].
Consider the centred Gaussian process Ẑ defined by

Ẑt =
nX
i=1

Z̃ibi(t) =
nX
i=1

Z i
n
bi(t) +

nX
i=1

εibi(t) . (23)

The covariance function of Ẑ is

E
�
ẐtẐ

>
s

�
=

nX
i,j=1

A

�
i ∧ j
n

�
bi(t)bj(s) + H

nX
i=1

bi(t)bi(s)

with

A(t) :=

Z t

0
Σs ds =

� R t
0 (σXs )2 ds

R t
0 ρsσ

X
s σ

Y
s dsR t

0 ρsσ
X
s σ

Y
s ds

R t
0 (σYs )2 ds

�
and H =

�
η2
X ηXY

ηXY η2
Y

�
.

For any f = (fX , fY )
> ∈ L2

�
[0, 1],R2

�
, we have

E
�
〈f , Ẑ〉2

�
= E

h�
〈fX , X̂〉+ 〈fY , Ŷ 〉

�2
i

= E
�
〈fX , X̂〉2

�
+ E

�
〈fY , Ŷ 〉2

�
+ 2E

�
〈fX , X̂〉〈fY , Ŷ 〉

�
=

nX
i,j=1

A11

�
i ∧ j
n

�
〈fX , bi〉〈fX , bj〉+

nX
i=1

η2
X〈fX , bi〉2

+
nX

i,j=1

A22

�
i ∧ j
n

�
〈fY , bi〉〈fY , bj〉+

nX
i=1

η2
Y 〈fY , bi〉2

+ 2
nX

i,j=1

A12

�
i ∧ j
n

�
〈fX , bi〉〈fY , bj〉+ 2

nX
i=1

ηXY 〈fX , bi〉〈fY , bi〉 .

The sum of the three terms induced by the observation noise is bounded from above by n−1(η2
X‖fX‖2 +

η2
Y ‖fY ‖2 + 2 ηXY 〈fX , fY 〉), since

η2
X

nX
i=1

〈fX , bi〉2 + η2
Y

nX
i=1

〈fY , bi〉2 + 2ηXY

nX
i=1

〈fX , bi〉〈fY , bi〉

=

�
1

2
+

ηXY
2ηXηY

� nX
i=1

〈ηXfX + ηY fY , bi〉2 +

�
1

2
− ηXY

2ηXηY

� nX
i=1

〈ηXfX − ηY fY , bi〉2

≤
�

1

2
+

ηXY
2ηXηY

�
n−1‖ηXfX + ηY fY ‖2 +

�
1

2
− ηXY

2ηXηY

�
n−1‖ηXfX − ηY fY ‖2

= n−1
�
η2
X‖fX‖2 + η2

Y ‖fY ‖2 + 2 ηXY 〈fX , fY 〉
�
.

For the upper bound we have used that
R 1

0 nbi(t) dt = 1 implies 〈fX , nbi〉2 ≤ 〈f2
X , nbi〉 by Jensen’s

inequality and
P
i bi ≤ 1 and analogously for the other terms. Now observe that E [〈f,H dW〉] =
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E
�R
f>t H dWt

�
= (η2

X‖fX‖2 + η2
Y ‖fY ‖2 + 2 ηXY 〈fX , fY 〉).

As a consequence, observations from Z̄ defined by

dZ̄ =
nX
i=1

Z i
n
bi(t) dt+

1√
n
H

1/2 dWt (24)

with a two-dimensional standard Brownian motion W can be generated from (E0) by adding additional
N
�
0, C̄ − Ĉ

�
-noise, where Ĉ : L2 → L2 is the covariance operator of Ẑ and the covariance operator

C̄ : L2 → L2 associated with (24) is given by

C̄f(t) =
nX

i,j=1

A

�
i ∧ j
n

�
〈f, bj〉bi(t) + n−1Hf(t) , f ∈ L2

�
[0, 1],R2

�
.

Let C be the covariance operator

Cf(t) =

Z 1

0

�Z t∧u

0
A(s) ds

�
f(u) du+ n−1Hf(t)

from (E1). In the following H denotes the smallest eigenvalue of H as in Section 2. In the extension of
the findings for the one-dimensional case, which has been treated in Section A.2 in Reiß (2011), we make
use of the convenient upper bound for the squared Hellinger distance between two normal measures by the
squared Hilbert-Schmidt norm denoted ‖ · ‖HS. For a concise introduction on Hellinger distances between
Gaussian measures and the Hilbert-Schmidt norm we refer to Section A.1 in Reiß (2011).
The asymptotic equivalence of observing Z̄ and Z̃ in (E1) is ensured by the Hellinger distance bound

H2
�
L
�
Z̄
�
, L
�
Z̃
��
≤ 2 ‖C−1/2 �C̄ − C�C−1/2‖2HS

≤ 2H−2n2

Z 1

0

Z 1

0






A(t ∧ s)−
nX

i,j=1

A

�
i ∧ j
n

�
bi(t)bj(s)






2

dt ds

= O
�
H−2R2n−(2α∧1)

�
= O(1) for α > 0 .

Note that we have estimated the L2-distance between A(t∧ s) and its coordinate-wise linear interpolation
by O(n−1−α) using a standard approximation result based on the fact that the function (t, s) 7→ A(t ∧ s)
lies in the class C1+α away from the diagonal {t = s} due to A′(t) = Σt ∈ Cα and is Lipschitz at
the diagonal (on the n − 1 squares [(i − 1)/n, (i + 1)/n] the pointwise bound O(n−1) only contributes
(n− 1)O(n−2) = O(n−1) to the squared L2-distance).

The proof that (E1) is at least as informative as (E0) is obtained by a similar estimate and a generaliza-
tion of the construction technique from the one-dimensional setting. For this purpose, set

Z′i = n

Z (2i+1)/2n

(2i−1)/2n
dZ̃t = n

Z (2i+1)/2n

(2i−1)/2n
Zt dt+ εi, 1 ≤ i ≤ (n− 1),

Z′n = 2n

Z 1

(2n−1)/2n
dZ̃t = 2n

Z 1

(2n−1)/2n
Zt dt+ εn,

with

εi =
√
n

Z (2i+1)/2n

(2i−1)/2n
H

1/2 dWt ∼ N(0,H) .

The estimate that

H2
�
L (Z′1, . . . ,Z

′
n) , L

�
Z̃1, . . . , Z̃n

��
≤ 2 ‖C̃−1/2

�
C ′ − C̃

�
C̃−

1/2‖2HS

≤ 2H−2‖C ′ − C̃‖2HS = O
�
H−2R2n−2α

�
establishes the result. Altogether, the Le Cam distance between the experiments (E0) and (E1) is of order
O
�
H−1Rn−α

�
. Assuming that A is (1 + α)-Hölder continuous (α-Hölder regularity of the covolatility

and volatilities), the asymptotic equivalence of the statistical experiments with discretely observed noisy
diffusions and the continuous time white noise model is deduced. �
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Proof of Theorem 2
The proof affiliates to the one-dimensional result and its proof in Section A.3 of Reiß (2011). It is shown
that the Hilbert-Schmidt norm of the difference between the experiment (E1) and the one where Σ is
evaluated at times btch := min {k h|k h ≤ t}, 1 ≤ k ≤ h−1 − 1 tends to zero.
In the two-dimensional setting, we have a Hölder bound

‖Σt − Σbtch‖∞ ≤ Rh
α , t ∈ [0, 1] .

Denote CΣ the covariance operator associated with the experiment (E1) with volatility matrix Σ. For
f ∈ L2

�
[0, 1],R2

�
let F : [0, 1] → R2 be the corresponding antiderivative with F (1) = (0, 0)>. The

difference of the two covariance operators of experiments with Σ and Σh where Σht := Σbtch , respectively,
pertains only the signal part:

〈(CΣ − CΣh)f, f〉 =

Z 1

0
F>t

�
Σt − Σht

�
Ft dt ≤ ‖Σ− Σh‖∞〈Cf, f〉

by partial integration, where C denotes the covariance operator of a standard two-dimensional Brownian
motion. We end up with the following upper bound for the Hilbert-Schmidt norm:

‖C−1/2
Σ (CΣh − CΣ)C

−1/2
Σ ‖HS ≤ ‖Σ− Σh‖∞‖C−

1/2
Σ CC

−1/2
Σ ‖HS

≤ ‖Σ− Σh‖∞




�CΣ + Hn−1 id

�−1/2
C
�
CΣ + Hn−1 id

�−1/2






HS

≤ Rhα‖G(C)‖HS .

The function G(z) = z
�
zΣ + Hn−1

�−1 is applied to C employing functional calculus.
The operator C has the same spectral values as the covariance operator of a one-dimensional standard
Brownian motion with double multiplicity. Hence, the result is derived directly from the spectral analysis
for the one-dimensional case in Reiß (2011). �

A.1 Proof of Proposition 2
The proof follows exactly along the lines of proof for Theorem 1. The only difference is the bound on the
L2([0, 1]2)-distance between the functions A(t ∧ s) and

P
i,jA((i ∧ j)/n)bi(t)bj(s). Since Σ is block-

wise constant, A is linear on each interval [(i − 1)/n, i/n]. By the linear interpolation property the two
functions coincide on each square [(i − 1)/n, i/n] × [(j − 1)/n, j/n] for i 6= j. For the n squares where
i = j, the Lipschitz property of (t, s) 7→ A(t∧s) yields a total L2-distance of order n−3/2 (cf. again proof
of Theorem 1) and the bound on the Le Cam distance follows.

B Appendix: Asymptotics of the local spectral (co-)volatility estima-
tor

We start with the following standard formula for a bivariate normal distribution which will be used implic-
itly several times.

Lemma 1. For a Gaussian random vector�
X
Y

�
∼ N

�
0 ,

�
σ2
X ρσXσY

ρσXσY σ2
Y

��
it holds true that

Var(X2Y 2) = (1 + ρ2)σ2
Xσ

2
Y and Var(X2) = 2σ4

X , Var(Y 2) = 2σ4
Y . (25)
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Proof. The nature of the Gaussian distribution allows us to write Y = ρ(σY /σX)X+
p

1− ρ2σY Z where
Z ∼ N(0, 1) is independent of X . Since E

�
X4
�

= 3σ4
X and

E
�
X2Y 2

�
= E

�
X2E

�
Y 2|X2

��
= E

�
X2
�
ρ2(σ2

Y /σ
2
X)X2 + (1− ρ2)σ2

Y E
�
Z2
���

= ρ2(σ2
Y /σ

2
X)E

�
X4
�

+ (1− ρ2)E
�
X2
�
σ2
Y = (1 + 2ρ2)σ2

Xσ
2
Y ,

we directly conclude the statement of the Lemma.

The elementary identities (25) and (7) are central tools in the error analysis for the SPECV-estimator.
The latter is proved in the following.

Proof of Proposition 1
Equation (7) is basically an application of the discrete summation by parts analogue to the integration by
parts formula, also called Abel transformation.
The elementary identity sin (x+ h)− sinx = 2 cos (x+ h/2) sin (h/2) yields:

nX
l=1

∆ỸlΦjk

�
l

n

�
= −

n−1X
l=1

Ỹ l
n

�
Φjk

�
l + 1

n

�
− Φjk

�
l

n

��
+ Ỹ1Φjk (1)− Ỹ0Φjk

�
n−1

�
= −

n−1X
l=0

Ỹ l
n

�
Φjk

�
l + 1

n

�
− Φjk

�
l

n

��
= −

n−1X
l=0

Ỹ l
n
ϕjk

�
l + 1

2

n

�
1

n
.

The boundary terms vanish due to Φjk(0) = Φjk(1) = 0. Further simple relations for trigonometric
functions reveal the orthogonality properties (8a) and (8b). Without loss of generality, consider the first
block k = 0:

[ϕj0, ϕr0]n =
1

n

nh−1X
l=0

2

h
cos
�
jπh−1n−1(l + 1/2)

�
cos
�
rπh−1n−1(l + 1/2)

�
=

1

n

nh−1X
l=0

h−1
�
cos
�
(j + r)πh−1n−1(l + 1/2)

�
+ cos

�
(j − r)πh−1n−1(l + 1/2)

��
= δjr .

The last equality holds since for arbitrary m ∈ N:

nh−1X
l=0

cos

�
mπ

hn

�
l +

1

2

��
=

bnh−1
2 cX
l=0

sin

�
π

�
2l + 1

2

m

hn
+

1

2

��
+

bnh−1
2 cX
l=0

sin

�
π

�
1

2
+m− 2l + 1

2

m

hn

��
=

bnh−1
2 cX
l=0

sin

�
π

�
2l + 1

2

m

hn
+

1

2

��
−
bnh−1

2 cX
l=0

sin

�
π

�
1

2
+

2l + 1

2

m

hn

��
= 0 .

Analogously we deduce that

〈Φj0,Φr0〉n =
1

n

nhX
l=1

sin
�
jπh−1n−1l

�
sin
�
rπh−1n−1l

�
2hn2 sin

�
jπ

2nh

�
sin
�
rπ

2nh

�
=

1

n

nhX
l=1

cos
�
(j − r)πh−1n−1l

�
− cos

�
(j + r)πh−1n−1l

�
4hn2 sin

�
jπ

2nh

�
sin
�
rπ

2nh

�
= δjr

�
4n2 sin2 (jπ/(2nh))

�−1
= δjr‖Φj0‖2n .
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We conclude that the families of functions (ϕjk), (Φjk) are orthogonal systems with respect to [·, ·]n and
〈·, ·〉n, respectively. �

Proof of Theorem 3

Though we have exploited the well-known distribution characteristics for blockwise averages (x̃jk, ỹjk)
directly in our simple Gaussian model in order to motivate the spectral estimator, for a better transparency
and clarity, we give a detailed analysis for the asymptotic expectation and variance here. By Proposition 2
we can equivalently work with model (E3), where the observations are generated by a blockwise constant
spot volatility Σbtc.

Consider at first ÓIC(SPECV )

oracle,n with known spot volatility matrix and correlation. We drop the superscript
and subscripts in the following. The estimator is (asymptotically in (E0)) unbiased since

E
�ÓIC� =

h−1−1X
k=0

h
nhX
j=1

‖Φjk‖−2
n wjk E

h
〈∆X,nΦjk〉n〈∆Y, nΦjk〉n +

�
εX , ϕjk

�
n

�
εY , ϕjk

�
n
− ηXY

n

i
=
h−1−1X
k=0

h
nhX
j=1

‖Φjk‖−2
n wjk

�
E [n〈∆X,∆Y 〉nh;k] ‖Φjk‖2n +

ηXY
n

�
[ϕjk, ϕjk]n − 1

��
=
h−1−1X
k=0

hρkhσ
X
khσ

Y
kh =

Z 1

0
ρtσ

X
t σ

Y
t dt+ O(1) ,

in view of Parseval identity, Itô isometry, the orthogonality relations (8a) and (8b) and
Pnh
j=1 wjk = 1.

The variance calculation is simplified by the independent block structure:

Var
�ÓIC� =

h−1−1X
k=0

h2Var

 
nhX
l=1

‖Φjk‖−2
n wjkx̃jkỹjk

!
.

Consider the variance on the kth block. By the orthogonality relations (8a) and (8b) of the ϕjk’s and Φjk’s
and application of (25) to Σkh and H, the evaluation of the variance on the block yields

Var

 
nhX
l=1

‖Φjk‖−2
n wjkx̃jkỹjk

!
=

nhX
l=1

‖Φjk‖−4
n w2

jkVar
��
εX , ϕjk

�
n

�
εY , ϕjk

�
n

�
+

nhX
j=1

‖Φjk‖−4
n w2

jk

�
E
�
〈∆X,nΦjk〉2n〈∆Y, nΦjk〉2n

�
− (E [〈∆X,nΦjk〉n〈∆Y, nΦjk〉n])

2
�

+
nhX
j=1

‖Φjk‖−4
n w2

jk

�
E
h�
εX , ϕjk

�2
n
〈∆Y, nΦjk〉2n

i
+ E

h�
εY , ϕjk

�2
n
〈∆X,nΦjk〉2n

i�
=

nhX
j=1

‖Φjk‖−4
n w2

jk

�
η2
Xη

2
Y + η2

XY

n2

�
[ϕjk, ϕjk]n

�2
+ E

�
n2(〈∆X,∆Y 〉nh;k)2

�
‖Φjk‖4n

+
η2
X

n
[ϕjk, ϕjk]n E [〈n∆Y,∆Y 〉nh;k] ‖Φjk‖2n +

η2
Y

n
[ϕjk, ϕjk]n E [〈n∆X,∆X〉nh;k] ‖Φjk‖2n

�
=

nhX
j=1

w2
jk

�
‖Φjk‖−4

n

η2
Xη

2
Y + η2

XY

n2
[ϕjk, ϕjk]

2
n + (1 + ρ2

kh)(σXkhσ
Y
kh)2

+n−1
�
η2
X(σYkh)2 + η2

Y (σXkh)2
�
‖Φjk‖−2

n [ϕjk, ϕjk]n

�
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=
nhX
j=1

w2
jk

�
‖Φjk‖−4

n

η2
Xη

2
Y + η2

XY

n2
+ (1 + ρ2

kh)(σXkhσ
Y
kh)2 + ‖Φjk‖−2

n

�
(σYkhηX)2

n
+

(σXkhηY )2

n

��
| {z }

=I−1
jk

We have used Itô isometry, the features of model (E3) and Proposition 1. To increase the readability we
introduce the shortcut Ijk. Selecting appropriate weights with

Pnh
j=1 wjk = 1 on the blocks gives rise to

an optimization problem with side condition. Minimizing the asymptotic variance yields oracle weights

wjk =
IjkPnh
l=1 Ilk

. (26)

Plugging in these weights the asymptotic variance on the kth block becomes
P
j I
−1
jk (I2

jk/(
P
l Ilk)2) =

(
P
l Ilk)−1. Next, consider

1√
nh

nhX
j=1

Ijk =
1√
nh

nhX
j=1

�
a+ bn2 sin4

�
jπ

2nh

�
+ cn sin2

�
jπ

2nh

��−1

,

with the shortcuts a = (1 + ρ2
kh)(σXkhσ

Y
kh)2, b = 16(η2

Xη
2
Y + η2

XY ) and c = 4
�
(ηXσ

Y
kh)2 + (ηY σ

X
kh)2

�
.

For 0 < α < 3/8, we obtain the bound

1√
nh

nhX
j=n5/8+αh

Ijk ≤
1√
nh
nh

�
a+

b

2
n2π

4n20/8+4αh4

16n4h4
+
c

2
n
π2n10/8+2αh2

4n2h2

�−1

=
√
n

�
a+

b

32
n

1/2+4α +
c

8
n

1/4+2α

�−1

= O(1) ,

where we use that sinx ≥ x/2 on (0, 1), and further that by Taylor

1√
nh

n
5/8+αhX
j=1

Ijk =
1√
nh

n
5/8+αhX
j=1

�
a+ bn2

�
π4j4

16n4h4
+ O

�
j6n−6h−6

��
+ cn

�
j2π2

4n2h2
+ O

�
j4n−4h−4

���−1

=
1√
nh

n
5/8+αhX
j=1

�
a+ (b/16)π4(j/

√
nh)4 + (c/4)π2(j/

√
nh)2

�−1
+ O(1) .

This means that uniformly for all k, the high frequencies j ∼> n5/8 do not contribute to the variance due
to their decreasing weights and thus the sine functions may be approximated by the first order Taylor
expansion. The overall variance is with h0 := h

√
n
�
η2
Xη

2
Y + η2

XY

�−1/4

VARn =
h−1−1X
k=0

h
h0√
n

�
η2
Xη

2
Y + η2

XY

�1/4

 X
l

Ilk

!−1

and hence,
√
n
�
η2
Xη

2
Y + η2

XY

�−1/4
VARn and n−1/2h−1

P
l Ilk have the structure of Riemann sums. Be-

cause of h0 →∞ we can replace j/h0 by an integration variable z and we expect

n−1/2h−1
nhX
j=1

Ijk ≈
Z nh/h0

0

1

f1(z)
dz (27)

with

f1(z) = f1(Σ,H; z) = π4z4+π2z2

�
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Xη

2
Y + η2

XY

+
η2
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η2
Xη

2
Y + η2
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�
+(1+ρ2)(σXσY )2. (28)
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From
R∞

0 |(f
−1
1 )′(z)| dz <∞ andZ (j+1)/h0

j/h0

|f1(z)−1−f1(j/h0)−1| dz ≤
Z (j+1)/h0

j/h0

Z z

j/h0

|(f−1
1 )′(u)| dudz ≤ h−1

0

Z (j+1)/h0

j/h0

|(f−1
1 )′(z)| dz

we infer that the approximation error in (27) is indeed of order O(h−1
0 ) and thus tends to zero. Notice that

the upper integration limit tends to infinity by our choice of h.
The computation of the integral over the positive axis is provided in Proposition 3 below. The conver-

gence of the total variance as given in Theorem 3, using h→ 0, follows in the same way.

Concerning the adaptive weights obtained from a preestimation step, we can work conditionally on
them and by independence just assume to dispose of a deterministic sequence Σt,n converging uniformly
to Σt. By definition of the weights summing up to one the bias is (asymptotically) zero as in the oracle
case. The variance on a block is correspondingly given by

V
(n)
k :=

Pnh
j=1(I

(n)
jk )2I−1

jk�Pnh
r=1 I

(n)
rk

�2

with I(n)
jk defined like Ijk, but in terms of the approximate values Σt,n instead of Σt. In view of the order

n−1‖Φjk‖−2
n ∼ j/h, compare (9), the asymptotically dominating term in I−1

jk is n−2‖Φjk‖−4
n (η2

Xη
2
Y +

η2
XY ), which is independent of Σt. Together with the uniform convergence of Σt,n this observation shows
|(I(n)

jk )−1 − I−1
jk | = O(I−1

jk ) uniformly over all j and k. Consequently, we also have |I(n)
jk − Ijk| = O(Ijk)

uniformly and we conclude uniformly in k

V
(n)
k = Vk(1 + O(1)) with Vk :=

� nhX
r=1

Irk

�−1

,

the oracle variance over a block. Pursuing the same calculus as in the oracle case, the rescaled total variance
converges to the same integral.

In the literature on nonparametric estimation methods for related and more general models, much math-
ematical effort is put in the proof of (stable) central limit theorems. For our Gaussian models the conclusion
of asymptotic normality is direct. We can apply a standard i. i. d. triangular central limit theorem like Corol-
lary 3. 1 from Hall & Heyde (1980), verifying a Lyapunov condition with fourth moments.

The following Proposition completes the proof of Theorem 3. For the computation of the Riemann
integrals we use some concepts from complex analysis.

Proposition 3. Consider the functions f1 : C→ C generalizing the function (28) and f2 : C→ C with

f2(z) := f2(ρ, σ; z) = π4z4 + 2σ2π2z2 + (1 + ρ2)σ4 = f1

��
σ ρ
ρ σ

�
,

�
η 0
0 η

�
; z

�
,

which depend on parameters ρ and positive σ · , η · . For the improper integrals along the positive real line
in the case σ · > 0, ρ 6= 0, the following identities hold true:Z ∞

0

1

f2(x)
dx =

1

2σ3ρ(1 + ρ2)1/4
sin

�
1

2

�
Arg (i− ρ)− π

2

��
, (29a)

Z ∞
0

1

f1(x)
dx =

1√
2
√
A2 −B

√
B

�È
A+

p
A2 −B − sgn(A2 −B)

È
A−

p
A2 −B

�
, (29b)

where A and B are short expressions for the terms

A =

�
η2
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η2
Xη

2
Y + η2

XY

(σX)2 +
η2
XÈ

η2
Xη

2
Y + η2

XY

(σY )2

�
, B = 4(σXσY )2(1 + ρ2) ,
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Arg(z), with Arg(z) = arctan(Im(z)/Re(z)) for Re(z) > 0 , denotes the argument of a complex number
and we determine to take the root located in the upper half planeH = {z ∈ C| Im(z) > 0} in (29b) in the
case that A2 −B < 0.
For ρ = 0 and strictly positive σ · (and η · ), the integrals yieldZ ∞

0

1

f2(x)
dx =

1

4σ3
, (30a)

Z ∞
0

1

f1(x)
dx =

1

2ηY (η2
Xη

2
Y + η2

XY )−1/4(σX)2σY + 2ηX(η2
Xη

2
Y + η2

XY )−1/4(σY )2σX
. (30b)

Proof. The meromorphic functions f−1
1 : C → C, f−1

2 : C → C have four simple poles in the complex
plane, since f1, f2 each has four simple non-real zeros. We can apply a specific version of the residue
theorem (cf. Theorem 7.10 in Chapter III of Freitag & Busam (2005)) to evaluate the above improper real
integrals. We restrict ourselves to the case ρ 6= 0 for which the solutions of (29a) and (29b) are not feasible
using algebra programs or standard integral tables.
We first give the proof of (29a) for the simplified function f−1

2 . The zeros of f2 are

z2;1,2,3,4 = ±exp (iπ/4)

π

È
i± ρ σ

and are located symmetrically on a disk around the null in the complex plane. The residue theorem allows
to calculate the integral

R
f−1

2 along the real line by the limit of a curve integral over a half-disk in the
upper half plane. Since f2 is even on the real line and z2;1 and z2;4 are the poles in the upper half plane,
we obtain:Z ∞

0

1

f2(x)
dx = πi

�
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�
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2 ; z2;1

�
+ Res

�
f−1

2 ; z2;4

��
= πi

��
4 exp (iπ/4)π

È
ρ+ iσ3 + 4 exp (i 3π/4)π(ρ+ i)

3/2σ3
�−1

−
�

4 exp (iπ/4)π
È

i− ρ σ3 + 4 exp (i 3π/4)π(i− ρ)
3/2σ3

�−1
�

=
1

4σ3ρ
(−1)

3/4
�
(i− ρ)−

1/2 − (i + ρ)−
1/2
�

=
�
2σ3ρ(ρ2 + 1)

1/4
�−1

sin

�
1

2

�
Arg(i− ρ)− π

2

��
.

In this proof we always use the unique square root in the upper half plane of complex numbers (and the
usual definition for real numbers).
The analysis for the general case f1 is a bit more involved, since depending on the parameters ρ, σ · and
the ratios η2

X/
È
η2
Xη

2
Y + η2

XY , η2
Y /
È
η2
Xη

2
Y + η2

XY for the zeros of f1:

z1;1,2,3,4 = ± 1√
2π

È
−A±

p
A2 −B ,

it holds true that either z1;1(“++”) and z1;4(“- -”) or z1;1(“++”) and z1;2(“+ -”) are located in the upper
half plane. This role change dependent on whether A2−B is positive or negative is illustrated in Figure 5,
in which the interesting factor appearing in the solution of the integral is depicted for a possible range of
values for A and B in a certain codomain of ρ, σX , σY , ηX/ηY for ηXY = 0. Using the above convention
for square roots, the left-hand side of (29b) yieldsZ ∞

0
f−1

1 (x) dx =
i√
2

1√
A2 −B

�
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p
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Figure 5: Real and imaginary part of
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−A− i

√
B −A2 +

È
−A+ i

√
B −A2.

In the first line “±” indicates that depending on the parameters there are two different solutions. As
visualized in Figure 5, the right factor in the second line is purely real ifB−A2 > 0 and purely imaginary if
B−A2 < 0. The expressions in the second and third line hence give the positive real solution in each case.
In the case B − A2 > 0, we can write the solution

√
2(B − A2)−1/2B−1/4 cos

�
1
2 Arg(A+ i

√
B −A2)

�
similiarly to (29a) above.
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