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Abstract

Recently the topic of global warming has become very popular. The literature

has concentrated its attention on the evidence of such e�ect, either by detecting

regime shifts or change points in time series. The majority of these methods are

designed to �nd shifts in mean, but only few can do this for the variance. In this

paper we attempt to investigate the statistical evidence of global warming by identi-

fying shifts in seasonal mean of daily average temperatures over time and in seasonal

variance of temperature residuals. We present a time series approach for modelling

temperature dynamics. A seasonal mean Lasso-type technique based with a multi-

plicative structure of Fourier and GARCH terms in volatility is proposed. The model

describes well the stylised facts of temperature: seasonality, intertemporal correla-

tions and the heteroscedastic behaviour of residuals. The application to European

temperature data indicates that the multiplicative model for the seasonal variance

performs better in terms of out of sample forecast than other models proposed in

the literature for modelling temperature dynamics. We study the dynamics of the

seasonal variance by implementing quantile and expectile functions with con�dence

corridor to detrended and deseasonalized residuals. We show that shifts in seasonal

mean and variance vary from location to location, indicating that all sources of

trends other than mean and variance would rise trends over spatial scales. The local

e�ects of temperature risk support the existence of global warming.

Keywords: Weather, temperature, seasonality, variance, global warming, expectile, quan-
tile
JEL classi�cation: G19, G29, G22, N23, N53, Q59

1 Introduction

Recently the topic of global warming has become very popular. The importance of this
statement relies on the fact that as temperatures rise, the variability of climate will in-
crease, leading to an increase in temperature extremes, which will translate into signi�cant
economic losses.

∗The �nancial support from the Deutsche Forschungsgemeinschaft via SFB 649 �Ökonomisches Risiko�,
Humboldt-Universität zu Berlin is gratefully acknowledged.
†Institute for Statistics, Humboldt-Universität zu Berlin, Spandauer Straÿe 1, 10178 Berlin, Germany.
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Part of the literature has concentrated its attention on the economic impact of global
warming. Evidence concerning this issue has been emphasized in the works of Mendelsohn
et al. (2000), Nordhaus and J. G. Boyer (2000), Horowitz (2001) and Nordhaus (2006)
examining the output losses by sector once temperature increases by at least 2.5 or 3.0
degree Celsius. Other part of the literature, where we situate this paper, has concentrated
its attention on the evidence of such e�ect, either by detecting regime shifts or change
points in weather time series. See for example Alexander et al. (2006), who present trend
analyses for the temperature indices followed by precipitation indices. The majority of
these methods are designed to �nd shifts in mean, but only few can do this for the
variance. See for instance the works of Smith and Sardeshmukh (2000), Beniston and
Goyette (2007) or Michaels et al. (1998). Another drawback of these methods is that the
estimation results rely on the time range of data.

The causes of trends in temperatures are believed to include natural causes or human
impact (urbanisation and an increase in the concentration of greenhouse gases in the
atmosphere), as well as other factors such as long term variability, the frequency of hazards
or extreme events and the solar cycle. Moreover, IPCC (2007) points out that global
warming can increase the intensity and frequency of extrem events.

Motivated with the recent �ndings of IPCC and considering that changes in variance
might have greater impact than mean e�ects, we focus on gradual temperature changes
and attempt to �nd evidence of shifts in seasonal variance of temperature residuals over
time. Our reason for studying temperature shifts is simply to better understand the
characteristics of observed trends and con�rm whether global warming is changing pre-
dictability of weather. The majority of weather forecasting literature has based its results
of evidence of global warming on structural atmospheric models, IPCC (2007). For such
complex systems, an alternative modeling path is given by data-driven (statistical) tech-
niques where the evolution of the system is studied by recording time series. Statistical
models like in Campbell and Diebold (2005) have succeeded in the development of non-
structural modelling and forecasting of times series trend. Besides density forecast does
not necessary require a structural model, but it does require accurate approximations to
stochastic dynamics.

Due to the local nature of weather, we follow a time series approach for modelling and
forecasting temperature. Our contribution is twofold. First, we present a seasonal mean
Lasso-type technique based with a multiplicative structure of Fourier and GARCH terms
in volatility. This stochastic model for daily average temperatures identi�es well the
stylised facts of temperature (seasonality, intertemporal correlations and a variance de-
scribing the heteroscedastic residuals) and it captures weather extremes caused by long
term climate variability, leading to normal residuals. Second, with help of novel statisti-
cal tools, we attempt to �nd statistical evidence of global warming by detecting upward
trends in the seasonal mean of daily average temperatures and in the seasonal variance
of temperature residuals over time. We implement quantiles and con�dence corridor for
expectile functions to the heteroscedastic residuals to show shifts in seasonal variation.
The advantage of using such approaches is that are pasimounious and simple, �exible,
inexpensive and it is purely data-driven. The quanti�cation of temperature risk is of
particular importance for hedgers and traders of weather risk because of the impact of
tail events on market prices.

The application to temperature data of the industrial Blue Banana European area in-
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dicates that the proposed model provides a better out of sample �t over other models
proposed in the literature of modelling temperature dynamics which is of important rele-
vance for the pricing of weather derivatives. The obtained results reveal shifts in seasonal
mean and seasonal variation of daily average temperatures, which vary from location to
location, indicating that all sources of trends other than mean and variance would rise
trends over spatial scales. We conclude that the local e�ects of temperature risk (local
global warming) support the existence of global warming.

This paper is structured as follows. Section 2 shows the tstochastic model for daily
average temperature dynamics. Section 3 presents the methodology of quantile regression
and expectile functions. The empirical analysis to real data and the performance of the
multiplicative model over other models are done in Section 4. The quantile and expectile
curves of the seasonal variation over the years are displayed in this section as well. Section
5 concludes the paper. All the computations were carried out in R and Matlab. The
temperature data was obtained from Bloomberg.

2 Temperature Model

There exist many ways to measure climate change. Since our interest is on the statistical
analysis of global warming, the most representative variable for the climate variable will be
some measurement of long temperature. For our purpose, we equate global warming with
a change in average temperature. Inspired by the work on nonstructural modelling and
forecasting of times series and due to the local nature of weather, we follow a stochastic
model for daily average temperature.

In order to estimate the evolution of temperature in time, the following discrete model
for temperature dynamics as in Benth et al. (2007) and Härdle and López-Cabrera (2011)
is constructed:

Tt = Xt + Λt (1)

• where Tt is the average temperature in day t, t = 1, ..., T . Tt is computed as Tt =
Tt,max+Tt,min

2
.

• Λt is the seasonal function which is nonparametric approximated with a series of
basis functions and a Lasso penalty estimator (see Tibshirani (1996)):

arg min
β

T∑
i=1

‖Tt − βΨ(t)‖2 + λ‖β‖1 (2)

where Tt is a vector of daily averages temperatures, Ψ(t) = (ϕ1(t), . . . , ϕK(t))>, ϕk :
1 ≤ k ≤ K) is a vector of known basis functions and λ is a penalty term which
shrinks the unknown Fourier coe�cients β = (β1, . . . , βK) to zero.

• Xt is a p-order autoregressive process AR(p)

Xt+p =

p∑
i=1

αiXt+p−i + εt, εt = σtηt (3)
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where ηt is white noise and σt is the smooth seasonal volatility. σt is assumed to
follow a seasonal pattern as well.

The proposed Lasso estimator in (2) captures the global trend in time with orthogonal
Legendre polynomial basis:

ϕ1(t) = 1, ϕ2(t) = t, ϕ3(t) = 3t2 − 1 (4)

and periodic variations with Fourier series:

ϕ4(t) = sin(2πt/p), ϕ5(t) = cos(2πt/p), ...

ϕ6(t) = sin(2πt/(p/2)), ϕ7(t) = cos(2πt/(p/2)), ... (5)

where p = 365 (seasonal e�ects) or p = 365 · 11 (large period e�ects). The period of 11
years indicates the 11-year solar activity cycle, according to meteorologists, see Racskoa
et al. (1991) or Parton and Logan (1981). The number of basis functions K is usually
region/climate speci�c. Other approaches to estimate (2) are given in Benth et al. (2007)
model, who uses Fourier series, or in Benth et al. (2011), who considers Local Linear
Regression (LLR) for the seasonal mean:

arg min
e,f

365∑
i=1

{T̄t − es − fs(t− s)}2K
(
t− s
h

)
(6)

where T̄t is the mean over years of daily averages temperatures, h is the bandwidth, K(·)
is a Kernel. The advantage of LLR estimator is that no global function is required for the
model �tting.

Before checking inter-temporal correlations with an autoregressive process AR(p), de�ned
in (3), the process Xt has to be tested for stationarity. For that reason two tests are ap-
plied, Augmented Dickey-Fuller (ADF) test for a unit root and KPSS test for stationarity.
If H0 of ADF test is rejected and the H0 of KPSS test cannot be rejected then Xt is a
stationary process and can be modeled with an AR(p). The order p is suggested by plot-
ting the Partial Autocorrelation Function (PACF) of Xt and con�rmed by the Bayesian
Information (BIC) Criterion see Hurvich and Tsai (1989).

Empirical work has shown that the process in (3) is a heteroscedastic process with periodic
pattern. Therefore the empirical variance σ2

t is estimated as follows: divide the residuals
into 365 groups, so that each group corresponds to each day over all year, then for each
group estimate the average of squared residuals and �nally smooth the curve. A one step
smoothing model for σ2

t has been proposed in Benth et al. (2007) as:

σ̂2
t,FTS = c1 +

L∑
i=1

{
c2i cos

(
2iπt

365

)
+ c2i+1 sin

(
2iπt

365

)}
(7)

Since the optimal choice of L in (7) depends on the region/climate to be considered, Benth
et al. (2011) proposed to smooth the data with a Local Linear Regression (LLR), σ̂2

t,LLR

estimator, thus reducing the number of parameters to be estimated:

σ̂2
t,LLR = arg min

a,b

365∑
i=1

{
ε̂2t − a(t)− b(t)(t− t0)

}2
K

(
t− t0
h

)
(8)
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where ε̂2t is the average of squared residuals on each day over all years, h is a bandwidth
and K(·) is a Kernel.

Alternatively, Campbell and Diebold (2005) consider an additive model of a truncated
Fourier function and a GARCH process of the form:

σ̂2
t,FTSG = c1 +

L∑
i=1

{
c2i cos

(
2iπt

365

)
+ c2i+1 sin

(
2iπt

365

)}
+ α1ε

2
t−1 + β1σ

2
t−1 (9)

Another approach is given in Härdle et al. (2011), who show that the GARCH e�ects
in (9) are small and therefore propose a local adaptive modelling approach to �nd at
each point, an optimal smoothing parameter to locally estimate the volatility. In a recent
paper, Benth and Saltyte Benth (2010) suggest a multiplicative model of Fourier and
GARCH terms in volatility:

σ̂2
t,MFTSG =

[
c1 +

L∑
i=1

{
c2i cos

(
2iπt

365

)
+ c2i+1 sin

(
2iπt

365

)}]
∗
(
α1ε

2
t−1 + β1σ

2
t−1
)

(10)

This multiplicative approach is motivated by the fact that variance is positive and GARCH
e�ects are still found as an exponentially decaying autocorrelation function of squared
standardized residuals ( ε̂t

σ̂t,FTS
)2, where ε̂t are the residuals estimated by the AR(p) process.

3 Methodology

3.1 Local Quantile Regression

Shifts of seasonal variance of temperature residuals can be detected with the application
of local quantile regression. We follow Härdle et al. (2011) proposal, of an adaptive local
quantile regression algorithm. It was shown, that quantile curves are good indicators for
�nding shifts in variance of local temperature residuals.

The τth quantile curve is given by the following formula:

Yi = l(Xi) + εt (11)

with P (εt > 0) = τ and l(x), the conditional quantile function F−1Y |x(τ) which can be
approximated by a polynomial. Yi and Xi, with i = 1, . . . , n, are independent random
variables and τ ∈ (0, 1). The adaptive part comes from the bandwidth selection.

3.2 Expectile Function

The seasonal variation from the �tted temperature model of equation 3 can also be ana-
lyzed by expectile curves (EC). The τ -conditional expectile vτ (x), 0 < τ < 1, given x, is
de�ned as

v(x) = arg min
θ

E {ρτ (y − θ)|X = x} , (12)

where ρτ (u) = |1(u ≤ 0) − τ |u2 is the loss function. Note that ρ∗τ (u) = |1(u ≤ 0) − τ |u
leads to quantile regression framework. Guo and Härdle (2012) introduced the localized

5



nonlinear smoother vn(x) of the expectile regression curve and constructed con�dence
corridor around the estimated expectile function of the conditional distribution of Y
given x. The advantage of expectiles over quantiles is that they capture the extreme
events reported in the data - the special behavior of non-average observations.

4 Empirical Analysis

In this section we present the results of the empirical analysis to real data, the model
validation and the shifts of the seasonal variance of temperature residuals via con�dence
corridor of expectile curves and quantiles.

4.1 Data

IPCC (2007) points out that global warming has been detecting in two periods: the pre-
1946 and the post-1976 period. We limit our study to the second period. The modeling
of temperature dynamics is implemented on four cities of the so called "Blue Banana"
European area: Amsterdam, London, Paris and Rome. We are interested on these cities
since the "Blue Banana" area covers one of the highest concentrations of people, money
and industry in the world and the aim of our analysis is to detect evidence of global
warming, as shifts in mean and variance, in this speci�c indusrial territory of Europe.

The temperature data for each city contain daily average temperatures Tt, measured in
◦C and are de�ned as Tt =

Tt,max+Tt,min

2
. The observations are from January 1, 1973 to

October 10, 2009. There were 0.03% missing values in the data which were handled by
computing the mean of the time neighbouring observations. The leap years were removed
in order the estimation procedure to be more consistent. Figure 1 summarises the monthly
average temperatures and monthly temperature means of the available datasets. The data
for each city is splitted in two datasets. The �rst data set consists of 13140 observations
from January 1, 1973 to December 31, 2008 (in-sample data) which is used for model
estimation. The second data set consists of 283 observations from January 1, 2009 to
October 10, 2009 (out-of-sample data) and is used for model validation.

4.2 Temperature Dynamics modelling

We now proceed with the proposed methodolgy. We �rst correct the seasonality in mean.
Figure 2 shows the LLR estimator in (6), which is �tted to the data using the Epanech-
nikov Kernel and a bandwidth proposed by Bowman and Azzalini (1997). We note, that
a clear evidence of an upward trend of the temperature time series is not visible with this
estimator. We next �t the seasonal Lasso type in (2), with basis functions given in (4)
and (5). We observe in Figure 3 how the penalty term λ shrinks the coe�cients β's of
the basis functions Ψ(t) for the four European cities.

Therefore the resulted seasonal models for London (Λt,L), Rome (Λt,R), Paris (Λt,P ) and
Amsterdam (Λt,A) consist of linear and quadratic terms (trend) and a seasonal part (mix-
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Figure 1: Monthly average temperatures and monthly temperature means (circles) for London, Rome,
Paris, Amsterdam from 01.01.1973 - 31.12.2008.

ture of cos, sin):

Λt,L = β1 + β2t+ β5cos{2π(t− ζ1)/365}+ β7cos{4π(t− ζ2)/365}
+ β9cos{10π(t− ζ5)/365}

Λt,R = β1 + β3(3t
2 − 1) + β5cos{2π(t− ζ1)/365}+ β7cos{4π(t− ζ2)/365}

+ β9cos{10π(t− ζ5)/365}
Λt,P = β1 + β2t+ β5cos{2π(t− ζ1)/365}+ β7cos{4π(t− ζ2)/365}

+ β9cos{10π(t− ζ5)/365}
Λt,A = β1 + β3(3t

2 − 1) + β5cos{2π(t− ζ1)/365}+ β7cos{4π(t− ζ2)/365}
+ β11cos{10π(t− ζ7)/(365 · 11)}

The Lasso algorithm in (2) takes automatically, for every location, the basis functions that
minimize the sum of squared errors. The parameters {βk}Kk=1 of the proposed models are
estimated with the non-linear least squares algorithm and are displayed in Table 1. The
interpretation to each parameter is de�ned as follows. The estimated parameter β1 stands
for the average of the temperature, which is higher for Rome as one would expect. The
coe�cients β2 and β3 of linear and quadratic terms represent the global warming e�ect.
Parameters β5, β7, β9 and β11 are the maximum displacements of the periodic terms
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Figure 2: Daily average temperatures (gray line) and seasonality e�ect (black line), estimated with
LLR, for the four european cities.

(cosine functions) while ζ1, ζ2, ζ5 and ζ7 are their shifts. Since most of the coe�cients are
positive, one can claim that there is an evidence for global warming. Figure 4 also shows
an upward trend of the temperature for all cities, particularly for Amsterdam.

Before we �t the AR process to the deseasonalized residuals (Xt = Tt − Λt), we check
whether the residuals are stationary with the ADF test and KPSS test. According to Table
1, both tests indicate that Xt is stationary. Since signi�cant inter-temporal correlations
and partial autocorrelations were identi�ed in residuals, AR(p) models with order p were
�tted according to the BIC, see Figure 5. The estimated coe�cients are also reported in
Table 1 and are consistent with other studies in temperature data.

The ACF of squared residuals of the AR(p) process (Figure 7) present a clear seasonal
pattern which motivates us to calibrate σ2

t from the models in (7), (8), (9) and (10).
Figure 6 displays that the seasonal variation is higher in winter and autumn and lower
during the summer for all cities. The resulted ACF of the squared residuals after removing
volatility (Figure 8) reveal that the multiplicative model removes seasonal pattern as good
as the other estimators. Table 2 reports the normality tests (Anderson-Darling (AD) and
the Jarque-Bera (JB)) for the standardized residuals. We �nd that, the multiplicative
model with GARCH e�ects isolates gaussian factors, in particular for cities like London
and Rome.
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Parameters London (p=4) Rome (p=3) Paris (p=3) Amsterdam (p=3)
β1 10.752 15.019 11.797 9.389
β2 8 · 10−5 - 5 · 10−5 -
β3 - 3 · 10−9 - 4 · 10−9

β5 6.806 8.725 7.826 7.444
β7 -8.208 -0.933 -7.222 -0.460
β9 243.601 0.244 0.296 -
β11 - - - -0.366
ζ1 204.307 207.161 201.241 203.146
ζ2 126.571 131.614 136.806 136.171
ζ5 1.498 146.65 -1095.272 -
ζ7 - - - 305.919
α1 0.759 0.818 0.909 0.888
α2 -0.070 -0.085 -0.194 -0.187
α3 0.016 0.033 0.065 0.084
α4 0.036 - - -

ADF: τ̂(p-value) -20.29(< 0.010) -18.67(< 0.010) -20.66(< 0.010) -20.05(< 0.010)

KPSS: k̂(p-value) 0.167(< 0.100) 0.094(< 0.100) 0.221(< 0.100) 0.070(< 0.100)

Table 1: Estimated parameters with nonlinear least squared of the seasonality models w.r.t. the basis
functions selected by Lasso. ADF and KPSS stationarity tests. α′s coe�cients of the AR(p) process (the
order p is displayed at the top of the table).

City ε̂t
σ̂t,FTS

ε̂t
σ̂t,LLR

ε̂t
σ̂t,FTSG

ε̂t
σ̂t,MFTSG

London AD 13.724 13.268 11.527 10.649
JB 593.779 360.609 61.531 78.338
Kurtosis 4.034 3.797 3.216 3.272
Skewness 0.062 0.076 0.128 0.131

Rome AD 18.382 16.482 14.449 10.770
JB 615.057 509.693 405.052 197.498
Kurtosis 4.036 3.943 3.853 3.571
Skewness -0.113 -0.102 -0.054 -0.094

Paris AD 0.952 1.010 1.975 1.703
JB 13.121 12.237 26.768 22.339
Kurtosis 2.960 2.933 2.797 2.832
Skewness -0.074 -0.067 -0.044 -0.056

Amsterdam AD 9.354 9.015 7.270 7.032
JB 57.701 50.169 25.782 23.804
Kurtosis 3.253 3.221 3.051 3.088
Skewness 0.102 0.103 0.105 0.095

Table 2: Anderson-Darling (AD) and Jarque Bera (JB) normality tests as well as skewness and kurtosis
for the standardized residuals under di�erent models.
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Figure 3: Shrinkage of coe�cients via the Lasso penalty for the four European cities.

4.3 Model Validation

We generate one step ahead predictions from the 283 out of sample observations (January
1, 2009 to October 10, 2009) for the multiplicative model of Fourier and GARCH terms.
The observed and predicted values are shown in Figure 10. The deviations between the
circles and the discs correspond to the prediction errors (PE). The lines correspond to the
95% pointwise con�dence intervals. Table 3 shows clearly that the normality of PEs can
not be rejected at 5% signi�cance level for all analyzed cities. The kurtosis and skewness
of PEs are reported in Table 3. Since the PEs' skewness of London and Amsterdam
is greater than 0 we conclude that the prediction values, derived by the �tted model,
are more often below the observed temperature. PEs' of Rome is negative therefore
the forecasted temperatures are more often above the real observations. For Paris the
skewness is close to 0. The kurtosis of the PEs' distributions is leptokurtic for all cities.
Moreover, QQ-plots of Figure 11 suggest that the PEs are close to the normal distribution
with Paris to satisfy the best approximation.

To test the out-of-sample forecast, we apply the the root mean squared prediction error
(RMSE) given by:

RMSE =

√√√√ 1

n

n∑
i=1

e2i

and the mean absolute error (MAE) de�ned by Hyndman and Koehler (2006) as:

MAE =
1

n

n∑
i=1

|ei|
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Figure 4: Daily average temperatures (gray line) and seasonality e�ect (blackline), estimated with
Lasso, for the four European cities.

We describe the accuracy of the one-day-ahead forecasts in Table 3. The results for
Rome outperform the ones of London, Paris and Amsterdam. The prediction power of
the �tted model for the other cities is relatively similar. Additionally from Table 3 it
is clear the RMSE and MAE have very small values. Therefore, we conclude that the
multiplicative model gives us quite precise one day ahead predictions and it is a good
model for forecasting.

Moreover, 95% and 80% predictions intervals (PI) were calculated from the model. Con-
cerning the calculation of PI 283 random innovations were generated. Secondly, a series of
values was built from the model. This iteration was repeated 1000 times, 1000 realisations
of the model were simulated. The PI were then computed as a corresponding pointwise
(for all 283 data points) empirical quantile. In the next step we once more simulated 1000
trajectories and investigated the robustness of constructed PI. Table 3 shows additionally
the percentages of the simulated observations which lie outside the constructed PI.
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Figure 5: Bayesian Information Criterion (BIC) for the four european cities after the seasonal correction.

4.4 Testing shifts of variance over time

In this section we attempt to �nd the trends of the variances of residuals of daily average
temperature over time. This is achieved with the help of ecpectile and quantile curves.

Since the empirical seasonal variance relies on the nature of the grouping resulted residuals
of equation (3), we follow the methodology of Guo and Härdle (2012) and apply the
expectiles (ECs) to the residuals for each 12 year period. In this case, we have X =
1, . . . , 365 denotes the day of the year and Y are the model residuals within each 12-year
subsample.

City JB (p-value) Kurtosis Skewness RMSE MAE 95% 80%
London 44.733 (< 0.001) 4.889 3.235 1.999 1.489 5.069 20.076
Rome 27.326 (< 0.001) 4.075 -0.539 1.486 1.178 5.063 20.008
Paris 7.176 (0.028) 3.769 -0.067 2.025 1.555 5.052 20.055
Amsterdam 12.576 (0.002) 3.945 0.208 1.934 1.475 5.095 20.053

Table 3: Jarque-Bera Tests, kurtosis and skewness of prediction errors, forecast accuracy measures and
prediction intervals (PI).
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Figure 6: Estimated empirical seasonal variance (gray line), σ̂t,LLR (solid line), σ̂t,FTS (dotted line),
σ̂t,FTSG (dashed line) and σ̂t,MFTSG (dashed with points line) for each city.

The upper panels of Figures 12, 13, 14 and 15 depict the estimated 0.9-EC for the seasonal
variance in London, Rome, Paris and Amsterdam for di�erent periods: 1973−1984 (solid
lines), 1985 − 1996 (dashed-dotted lines), 1997 − 2008 (dashed lines). For the sake of
brevity the �tted 5%− 95% con�dence corridor is displayed only for one expectile curve.
We attribute 0.9-EC to extreme temperatures, squared model residuals, observed within
the sample. Analogously, the lower panels of 12, 13, 14 and 15 display the 0.1-EC and
denote the smallest squared residuals, the observations well explained by the model of
equation 3. It is worth to notice here, that expectiles by de�nition (12) are robust for
very high and very low τ .

For each of the cities the ECs have similar spatial structure to seasonal variance curves
in Figure 6: the variance is signi�cantly higher for the winter-fall period. The maximum
variance occurs mostly in January, and the lowest variation is reported in July. The
structure of �tted expectiles show di�erences across the cities.

The most interesting �ndings coming from the �tted expectiles are the di�erences within
each 12-year period. The extreme temperatures revealed by the 0.9-EC di�er signi�cantly
over each subsample. We report that for any of the ECs �tted for the di�erent periods,
does not lay within the 5%− 95% con�dence corridor of the other EC. In general, except
for London, the values of the ECs grow over time: the ECs for the period 1973−1985 (solid

13
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Figure 7: ACF of squared residuals after removing the seasonality and trend.

line) lay below the curves of periods 1985 − 1996 (dashed-dotted lines) and 1997 − 2008
(dotted lines). The ECs of the period 1997 − 2008 are signi�cantly higher than others.
These seasonal results are consistent with the �ndings reported by the IPCC about global
warming e�ect. The �ndings hold for most of the studied cities, indicating that all sources
of trends other than mean and variance would rise trends over spatial scales. This means
that high temperature is increasing far more often. The exception of London might be
explained by the extensive human activities and industries localized in London area within
1973− 1985.

The study of the low, 0.01-ECs do not reveal signi�cant di�erences within di�erent pe-
riods. All of the �tted ECs di�er signi�cantly over each subsample. We report that the
expectile lines �tted for di�erent periods are not located within the 5%− 95% con�dence
corridors. Moreover there is no seasonal pattern and curves do not �uctuate much within
a year. The only exception is Rome, what might be attributed to the higher temperatures
reported there, in comparison to Amsterdam, Paris and London.

The quantile regression, similarly to the expectiles, is applied to the daily squared residuals
over each 12 year period after taking out seasonal and AR e�ects. Xi, with i = 1, . . . , n
are the days of each year and Yi are the daily squared residuals within each 12-year period.

Figures 16, 17, 18 and 19 display the estimate quantile curves (lines) and daily average
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σ̂t,FTSG

(lower right).
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Figure 9: Observed (circles) and predicted (crosses) values with 95% prediction intervals
(lines) for London and Rome.

squared residuals (discs) for each 12 year subsample as well as for all 36 years for the cities
of London, Rome, Paris and Amsterdam. The lower line corresponds to the 0.05 quantile
curve, the middle one to the 0.5 quantile curve and the upper one to the 0.95 quantile
curve. The 0.05 and 0.5 quantile curves are not varying signi�cantly in comparison to
0.95 quantile curves for all cities. Therefore, we focus our analysis on understanding the
0.95 quantiles which correspond to the greatest values of daily average squared residuals.

For London, Figure 16, we observe the very interesting phenomenon that although for the
�rst 24 years the variances in summer months are not volatile, for latest 12 years there is
an upward tendency which reaches its highest peak at the end of august. For the second
12 years we observe increase of the variances for the winter months. For Rome, Figure
17, we have the same yearly scheme of the quantile curves for each 12 year subperiod.
The variance is higher in the beginning of the fall until the end of winter and lower from
march until the end of summer. The same conclusion is remarked for the latest 12 year
period of Paris, Figure 18, while for the previous years the variances are more volatile.
For Amsterdam, Figure 19 depicts lower quantile levels during the spring and summer
period and higher for fall and winter.

Expectiles have the advantage of capturing weather extremes, as we see in the shape of the
seasonal variance (V shape). Figures 16, 17, 18 and 19 depict as well how the quantiles
change over the whole period from 1973 to 2008. It is shown that extreme events are
punished in the 95% quantile.

5 Discussion and Conclusion

The present study shows a purely data-driven approach to the important problem of
detecting global warming, thus avoiding principles of structural atmospheric models. Since
changes in variance might have greater impact than mean e�ects we attempt to �nd
evidence of shifts in variance of residuals of daily average temperatures over the time.
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Figure 10: Observed (circles) and predicted (crosses) values with 95% prediction intervals
(lines) for Paris and Amsterdam.

We present a time series approach for modelling temperature dynamics. The application is
on temperature data of the industrial Blue Banana European area. We study the e�ect of
seasonal variance change by implementing quantile and expectile curves to detrended and
deseasonalized temperature residuals. We found, for most of the cities, that 0.9 expectile
curves grow over time. This means a tendency for an increasing hot weather. These results
are consistent with the �ndings reported by the IPCC about global warming e�ect. For
the 0.01 expectile curve, the e�ects are not signi�cant di�erences within di�erent periods.
The �ndings hold for most of the studied cities, indicating that all sources of trends other
than mean and variance would rise trends over spatial scales. shifts in variance vary from
location to location. Finally, it is important to remark the importance of statistical tools
for assessing changes in weather extrem events over time.

The results provide evidence that global warming exists in the local scale.
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Figure 11: QQ-plots for prediction errors.
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Figure 12: 0.9 (upper panel) & 0.01 (lower panel) expectile curves for London of seasonal temperature
variation from 1973 to 2008, for di�erent periods: 1973− 1984 (solid lines), 1985− 1996 (dashed-dotted
lines), 1997− 2008 (dashed lines), with the 5% - 95% con�dence corridors for the �rst 12 years expectile
(left panel), the second 12 years expectile (middle panel) and the last 12 years expectile (right panel).
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Figure 13: 0.9 (upper panel) & 0.01 (lower panel) expectile curves for Rome of seasonal temperature
variation from 1973 to 2008, for di�erent periods: 1973− 1984 (solid lines), 1985− 1996 (dashed-dotted
lines), 1997− 2008 (dashed lines), with the 5% - 95% con�dence corridors for the �rst 12 years expectile
(left panel), the second 12 years expectile (middle panel) and the last 12 years expectile (right panel).
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Figure 14: 0.9 (upper panel) & 0.01 (lower panel) expectile curves for Paris of seasonal temperature
variation from 1973 to 2008, for di�erent periods: 1973− 1984 (solid lines), 1985− 1996 (dashed-dotted
lines), 1997− 2008 (dashed lines), with the 5% - 95% con�dence corridors for the �rst 12 years expectile
(left panel), the second 12 years expectile (middle panel) and the last 12 years expectile (right panel).
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Figure 15: 0.9 (upper panel) & 0.01 (lower panel) expectile curves for Amsterdam of seasonal tempera-
ture variation from 1973 to 2008, for di�erent periods: 1973−1984 (solid lines), 1985−1996 (dashed-dotted
lines), 1997− 2008 (dashed lines), with the 5% - 95% con�dence corridors for the �rst 12 years expectile
(left panel), the second 12 years expectile (middle panel) and the last 12 years expectile (right panel).
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Figure 17: 0.05 (lower line), 0.5 (middle line) and 0.95 (upper line) - quantile curves for Rome.
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Figure 18: 0.05 (lower line), 0.5 (middle line) and 0.95 (upper line) - quantile curves for Paris.

Nordhaus, W. D. and J. G. Boyer, J. (2000). Geography and Macroeconomics: New Data
and New Findings. MIT Press, Cambridge, Massachusetts.

Parton, W. and Logan, J. (1981). A model for diurnal variation in soil and air temperature.
Agricultural Meteorology, 23:205�216.

Racskoa, P., Szeidla, L., and Semenovb, M. (1991). A serial approach to local stochastic
weather models. Ecological Modelling, 57(1):27�41.

Smith, C. A. and Sardeshmukh, P. D. (2000). The e�ect of enso on the intraseasonal
variance of surface temperatures in winter. International Journal of Climatology,
20(1):1543�1557.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B., 58(1):267�288.

23



●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0 100 200 300

0
2

4
6

8
12

1973 − 1984

Time

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 100 200 300

2
4

6
8

12

1985 − 1996

Time

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

0 100 200 300

2
4

6
8

1997 − 2008

Time

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

0 100 200 300

2
3

4
5

6
7

1973 − 2008

Time

Figure 19: 0.05 (lower line), 0.5 (middle line) and 0.95 (upper line) - quantile curves for Amsterdam.
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