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Generated Covariates in Nonparametric
Estimation: A Short Review.

Enno Mammen, Christoph Rothe, and Melanie Schienle

Abstract In many applications, covariates are not observed but have to be estimated
from data. We outline some regression-type models where such a situation occurs
and discuss estimation of the regression function in this context. We review theoret-
ical results on how asymptotic properties of nonparametric estimators differ in the
presence of generated covariates from the standard case where all covariates are ob-
served. These results also extend to settings where the focus of interest is on average
functionals of the regression function.
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1 Introduction

Consider a nonparametric regression model of the form

Y = m0(R)+ ε,

E[ε|R] = 0
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2 Enno Mammen, Christoph Rothe, and Melanie Schienle

where Y is a one-dimensional response variable and R is a q-dimensional covariate
vector. The statistical goal is to nonparametrically estimate the regression function
m0 : Rq → R or a functional of the regression function, e.g. a weighted average
T (m0) =

∫
m0(x)w(x)dx. We consider the case where the covariate R is unobserved

but an estimator R̂ of R is available. In this note, we provide some examples where
such a situation occurs. Furthermore, appropriate forms of nonparametric estimators
of m0 are discussed and results on their asymptotic distribution are reviewed. In
particular, we analyse how the real feasible estimator of m0 obtained via regression
on R̂ differs from the infeasible one obtained by regressing on R. With stochastic
expansions for the difference of these two estimators, the asymptotic distribution of
the real estimator of m0 can be accurately described.

The note is organized as follows. In the next section, some examples illustrate
how and where generated covariates typically appear in practice. Section 3 provides
an overview of the asymptotic theory when m0 is estimated by local linear estima-
tion. In particular, the theory can also be applied to cases where the main interest is
in averages of the regression function m0, which is also important for some of the
stated examples.

2 Examples

2.1 Simultaneous Nonparametric Equation Models without
Additivity (Imbens and Newey, 2009)

In economic models, there are often unobserved covariates which affect both re-
sponse and observed covariates. Generally, such covariates which are correlated
with the disturbance are called endogenous. Imbens and Newey (2009) propose
a regression model with endogenous covariates where the error variable does not
enter additively into the model. This allows for general forms of unobserved het-
erogeneity which has led to recent popularity of such nonseparable models among
economists.

They consider a general regression relation of the form

Y = µ(X1,Z1,e)

where X1 and Z1 are observed covariates and Y is a one-dimensional response. While
Z1 is independent of the error variable e, no assumptions are made on the depen-
dence between X1 and e at this stage. For identification, however, assume that the
endogenous variable X1 is generated as

X1 = h(Z1,Z2,V ),

where Z2 is an observed so-called instrumental variable not contained in the original
equation, and (Z1,Z2) is independent of the joint vector of errors (e,V ).
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If the function h is strictly monotone in V , one can set without loss of generality
that the conditional distribution of V given (Z1,Z2) is the uniform law on [0,1]. This
can be achieved by putting

V = FX1|Z1,Z2(X1,Z1,Z2)

and choosing h as the inverse of FX1|Z1,Z2 . Then by definition, the conditional dis-
tribution of V given (Z1,Z2) does not depend on (Z1,Z2). Thus, V is independent
of (Z1,Z2). Note that the above independence assumption is slightly more restric-
tive, because it does not only require that (Z1,Z2) is independent of each e and V
separately, but also of (e,V ) jointly.

For fixed values of z1, z2 and v and for x1 = h(z1,z2,v) it is straightforward to
show

E[µ(x1,z1,e)|V = v]

= E[µ(X1,Z1,e)|Z1 = z1,Z2 = z2,V = v]

= E[µ(X1,Z1,e)|X1 = x1,Z1 = z1,V = v]

= E[Y |Z1 = z1,Z2 = z2,V = v].

Thus we can write
Y = m0(R)+ ε

where

S = (X1,Z1,Z2),

R = r0(S) = (X1,Z1,FX1|Z1,Z2(X1,Z1,Z2)) = (X1,Z1,V ),

m0(x1,z1,v) = E[µ(x1,z1,e)|V = v],

ε = Y −E[Y |S].

In this model, the covariate V is unobserved, but an estimate

V̂ = F̂X1|Z1,Z2(X1,Z1,Z2)

of V is available. Thus, instead of R also use the feasible R̂ = (X1,Z1,V̂ ). Then the
function m0 can be estimated by regressing Y onto R̂. Let us denote this estimator
as real, feasible estimator m̂. One may compare this estimator to the theoretical,
infeasible estimator m̃ obtained from regressing Y onto R. If the asymptotics of the
theoretical estimator m̃ are well-understood, an asymptotic understanding of m̂ can
be based on a stochastic expansion of the difference of m̂− m̃.

The function m0 is not of direct interest because it contains the nuisance covariate
V . In general, the focus is on the so-called average structural function E[µ(x1,z1,e)],
the expected response if one exogenously fixes X1 at x1 and Z1 at z1. This function
can be estimated by ∫ 1

0
m̂(x1,z1,v)dv.
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Other functionals of interest are averages of the derivative ∂ µ(x1,z1,e)/∂ (x1,z1).

2.2 Simultaneous Nonparametric Equation Models with Additivity
(Newey, Powell, Vella 1999)

In Newey, Powell, Vella (1999) a submodel of the regression model of the last sub-
section is considered. The setup differs from the last subsection by assuming that
the error enters additively into the regression function, i.e.

Y = µ(X1,Z1)+ e.

For the control equation also an additive specification is used:

X1 = h(Z1,Z2)+V,

but one could also proceed with the control equation of the last section.
With (Z1,Z2) independent of (e,V ) as before, it is

E[Y |X1,Z1,Z2] = µ(X1,Z1)+λ (V ) = E[Y |X1,Z1,V ]

with λ (V ) = E[e|V ]. Thus we get an additive model where the regressor in the
second additive component is not observed. This additive model can also be ob-
tained under slightly weaker conditions, namely that E[e|Z1,Z2,V ] = E[e|V ] and
E[V |Z1,Z2] = 0.

There are two major approaches to fit an additive nonparametric model: marginal
integration and backfitting. In Marginal Integration (Newey (1994), Tjøstheim and
Auestad (1994), Linton and Nielsen (1995)), first a full dimensional regression func-
tion E[Y |X1 = x1,Z1 = z1,V = v] is estimated. And then in a second step, v is in-
tegrated out to obtain an estimate of µ(x1,z1). The first step of this procedure can
be rewritten as a regression problem Y = m0(R)+ ε with unobserved regressor R
where

S = (X1,Z1,Z2),

R = r0(S) = (X1,Z1,X1−h(Z1,Z2)) = (X1,Z1,V ),

m0(r) = E[Y |R = r],

ε = Y −E[Y |R].

A fit of the unobserved R is given by R̂ = (X1,Z1,V̂ ) with V̂ = X1− ĥ(Z1,Z2) where
ĥ is a (nonparametric) estimator of the control function h.

In the Smooth Backfitting approach (Mammen, Linton, Nielsen, 1999) for an
additive model, estimates are obtained by iteration. As ingredients for the iteration
algorithm, one needs estimators of the marginal expectations E[Y |X1,Z1], E[Y |V ],
and of the joint density of (X1,Z1,V ). Here estimation of E[Y |V ] can be rewritten as
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a regression problem Y = m0(R)+ ε with unobserved regressor R where now

S = (X1,Z1,Z2),

R = r0(S) = X1−h(Z1,Z2) =V,

m0(v) = E[Y |V = v],

ε = Y −E[Y |V ].

2.3 Marginal Treatment Effects (Heckman, Vytlacil, 2005, 2009)

In Heckman, Vytlacil (2005, 2009) the following model for treatment effects is
discussed: we observe D,YD,X ,Z in

Yd = ρ(X ,Ud ,θd) for d = 0,1
D = 1, if V ≤ µ(Z), and D = 0, otherwise.

Here θ0 and θ1 are unknown parameters that are finite or infinite-dimensional.
Furthermore, ρ is a known function. An example for a specification would be
ρ(X ,Ud ,θd) = md(X)+Ud with a ”nonparametric parameter” θd = md . The vari-
able D is a dummy variable that indicates if a person is treated or not. The model
contains counterfactual outcomes. If a person is treated (D = 1) the outcome Y1 is
observed, assuming that there also exists an unobserved outcome Y0 that would have
been observed if the person had not been treated. The participation of the person in
the treatment is driven by an unobserved variable V . Without loss of generality, set
V as uniform distribution on [0,1]. For identification of the model the following
condition is required:

(U0,V ) and (U1,V ) are conditionally independent of Z given X .

Note that the norming of V implies that P(D = 1|Z) = µ(Z).
Here, a function of interest is the Marginal Treatment Effect MT E(x,v) =

E[Y1−Y0|X = x,V = v], the expected treatment effect for an individual with co-
variate X = x that lies on the v-quantile of the unobserved propensity to participate
in the treatment. It holds that

MT E(x,v) = E[Y1−Y0|X = x,V = v]

= − ∂

∂v
E[YD|X = x,µ(Z) = v].

This follows because for δ > 0 small:

MT E(x,v) = E[Y1−Y0|X = x,V = v]

≈ δ
−1 (−E[Y1I[V ≥ v+δ ]|X = x]−E[Y0I[V < v+δ ]|X = x]

+ E[Y1I[V ≥ v]|X = x]+E[Y0I[V < v]|X = x])

= δ
−1 (−E[Y1I[V ≥ v+δ ]|X = x,µ(Z) = v+δ ]



6 Enno Mammen, Christoph Rothe, and Melanie Schienle

−E[Y0I[V < v+δ ]|X = x,µ(Z) = v+δ ]+E[Y1I[V ≥ v]|X = x,µ(Z) = v]

+E[Y0I[V < v]|X = x,µ(Z) = v])

= δ
−1 (−E[YDI[V ≥ v+δ ]|X = x,µ(Z) = v+δ ]

−E[YDI[V < v+δ ]|X = x,µ(Z) = v+δ ]+E[YDI[V ≥ v]|X = x,µ(Z) = v]

+E[YDI[V < v]|X = x,µ(Z) = v])

= δ
−1 (−E[YD|X = x,µ(Z) = v+δ ]+E[YD|X = x,µ(Z) = v])

≈− ∂

∂v
E[YD|X = x,µ(Z) = v].

Here estimation of (the partial derivative of) E[YD|X = x,µ(Z) = v] can be rewrit-
ten as a regression problem Y = m0(R)+ε with unobserved regressor R where now

Y = YD,

S = (X ,Z),

R = r0(S) = (X ,µ(Z)),

m0(r) = E[Y |(X ,µ(Z)) = r],

ε = YD−E[YD|(X ,µ(Z))].

Many treatment effects parameters and other parameters can be written as weighted
averages of MT E(x,v). Estimation of the MT E function is again based on a re-
gression problem with an unobserved covariate µ(Z). Here interest is in a partial
derivative of the regression function.

2.4 Further Examples.

Further examples of regression problems with unobserved covariates are sample
selection models, censored regression models, generalized Roy models, stochastic
volatility models and semiparametric GARCH-in-Mean models. For a discussion
and/or references of these models we refer to Mammen, Rothe and Schienle (2011).

3 Nonparametric Regression with Nonparametrically Generated
Covariates.

In all examples of the last section, the fit R̂ of the unobserved covariate is of the
form R̂ = r̂(S), where r̂ is an estimator of a function r0 that fulfills R = r0(S) for an
observed covariate S. Thus we have the following nonparametric regression model

Y = m0(r0(S))+ ε,

E[ε|S] = 0.



Generated Covariates in Nonparametric Estimation: A Short Review. 7

In this section, we give a brief description of the asymptotics of a nonparametric
estimator m̂ that is based on regressing Y onto the fitted covariate R̂ = r̂(S). For
illustration, we restrict the discussion to the special case where m̂ = m̂LL is a local
linear estimator for an i.i.d. sample (Si,Yi), i.e. m̂LL(x) = α̂ , where (α̂, β̂ ) minimizes

n

∑
i=1

[Yi−α−β
T (R̂i− x)]2Kh(R̂i− x).

Here is Kh(u) a product kernel:

Kh(u) = (h1 · ... ·hq)
−1K1(u1) · ... ·Kq(uq)

for kernel functions K1, ...,Kq and a bandwidth vector h = (h1, ...,hq). We call this
estimator also the real estimator, in contrast to the theoretical estimator m̃LL which
is defined as m̃LL(x) = α̃ where (α̃, β̃ ) minimizes

n

∑
i=1

[Yi−α−β
T (Ri− x)]2Kh(Ri− x).

Since the Ri’s are unobserved, this theoretical estimator is infeasible. It is, however,
introduced here because its asymptotic behaviour is well understood. Thus, for the
asymptotic properties of the real estimator we only need a stochastic expansion of
m̂LL(x)− m̃LL(x). Such an expansion was derived in Mammen, Rothe and Schienle
[6] (MRS in the following). Tailored results for parameters obtained as functionals
of m are derived in Mammen, Rothe and Schienle [7].

For the comparison of m̂LL and m̃LL, MRS use three types of assumptions: be-
sides standard smoothing assumptions, these are conditions on accuracy (A) and
complexity (C) of the estimator r̂ of r0. The assumption (A) requires that r̂ con-
verges to r0 with a rate that is fast enough. The assumption (C) states that there exist
sequences of sets Mn with two properties: (i) r̂ ∈Mn with probability tending to
one. (ii) The sets Mn are not too large, where size is measured by entropy. The main
result in MRS is the following expansion

m̂LL(x)− m̃LL(x)≈−m′(x)
1
n ∑

n
i=1 Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n ∑

n
i=1 Kh(r0(Si)− x)

.

This result can be interpreted as follows: The real estimator m̂LL(x) and the oracle
estimator m̃LL(x) differ by a local weighted average of the estimator of r0:

−m′(x)
1
n ∑

n
i=1 Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n ∑

n
i=1 Kh(r0(Si)− x)

.

This local average is of the order of the bias of r̂ but it may have a faster rate as
the variance part of r̂. Thus we can conclude that for achieving a certain rate of
convergence for estimating m0, it is not necessary that an estimator of r0 has the
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same or a faster rate. A similar result can be obtained for derivatives of the regression
function.

We now shortly outline the main ideas of how the expansion of m̂LL(x)− m̃LL(x)
was obtained in MRS. We want to compare:

real estimator m̂LL = SMOOTH of r̂(S) versus m0(r0(S))+ ε ,
oracle estimator m̃LL = SMOOTH of r0(S) versus m0(r0(S))+ ε .

Now, because of additivity of the operator SMOOTH, it is

m̂LL = SMOOTH of r̂(S) versus m0(r̂(S))+ ε

+ SMOOTH of r̂(S) versus m0(r0(S))−m0(r̂(S)).

If r̂ was non-random we get, because |r̂(S)− r0(S)| is small by assumption (A),

m̂LL ≈ SMOOTH of r0(S) versus m0(r0(S))+ ε

+ SMOOTH of r̂(S) versus m0(r0(S))−m0(r̂(S))

≈ m̃LL

+ SMOOTH of r0(S) versus m′0(r0(S))(r0(S)− r̂(S)).

This is (nearly) the formula of the desired expansion.
It remains to take care of the fact that r̂ is random and not purely deterministic. In

order to do so, the argument must be uniform over the set of possible realizations of
r̂. This can be achieved by an empirical process worst case analysis. We must show
that

|m̂LL,r(x)− m̃LL(x)

+m′(x)
1
n ∑

n
i=1 Kh(r0(Si)− x)(r(Si)− r0(Si))

1
n ∑

n
i=1 Kh(r0(Si)− x)

|

is small uniformly for r in Mn. Here m̂LL,r is the local linear estimator based on
regressing Y onto r(S). At this stage of the proof one makes use of Assumption (C).
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