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Abstract

We give an overview over smooth backfitting type estimators in additive models. Moreover we il-

lustrate their wide applicability in models closely related to additive models such as nonparametric

regression with dependent error variables where the errors can be transformed to white noise by

a linear transformation, nonparametric regression with repeatedly measured data, nonparametric

panels with fixed effects, simultaneous nonparametric equation models, and non- and semiparamet-

ric autoregression and GARCH-models. We also discuss extensions to varying coefficient models,

additive models with missing observations, and the case of nonstationary covariates.

Keywords: smooth backfitting, additive models

JEL classification: C14, C30

1 Introduction

In this chapter we continue the discussion of the last chapter on additive models. We come back to the

smooth backfitting approach that was already mentioned there. The basic idea of the smooth backfitting

is to replace the least squares criterion by a smoothed version. We now explain its definition in an

additive model

E(Y |X) = µ+ f1(X1) + · · ·+ fd(X
d). (1.1)

We assume that n i.i.d. copies (X1
i , . . . , X

d
i , Yi) of (X1, . . . , Xd, Y ) are observed, or more generally, n

stationary copies. Below, in Section 4, we will also weaken the stationarity assumption.

∗Department of Economics, Mannheim University, Germany. E-mail: emammen@rumms.uni-mannheim.de. Enno

Mammen gratefully acknowledges research support of the German Science Foundation through the Collaborative Research

Center 884 ”Political Economy of Reforms”.
†Department of Statistics, Seoul National University, Korea. E-mail: bupark@stats.snu.ac.kr. Byeong U. Park’s research

was supported by the NRF Grant funded by the Korea government (MEST)(No. 2010-0017437).
‡School of Business and Economics, Humboldt University Berlin, Germany. E-mail: melanie.schienle@wiwi.hu-berlin.de.

Melanie Schienle gratefully acknowledges research support of the German Science Foundation through the Collaborative

Research Center 649.

1



In an additive model (1.1) the smooth backfitting estimators µ̂, f̂1, . . . , f̂d are defined as the minimizers

of the smoothed least squares criterion∫ n∑
i=1

[
Yi − µ− f1(x1)− · · · − fd(xd)

]2
K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
dx1 · · · dxd (1.2)

under the constraint ∫
f1(x1)p̂X1(x1)dx1 = · · · =

∫
fd(x

d)p̂Xd(xd)dxd = 0. (1.3)

Here K is a kernel function, i.e. a positive probability density function and h1, . . . , hd are bandwidths.

Furthermore, p̂Xj is the kernel density estimator of the density pXj of Xj defined by

p̂Xj (xj) =
1

nhj

n∑
i=1

K

(
Xj
i − xj

hj

)
.

Below, we will outline that the smooth backfitting estimator can be calculated by an iterative backfitting

algorithm. While the estimator got its name from the corresponding algorithm, it could, however, better

be described as smooth least squares estimator highlighting its statistical motivation.

If there is only one additive component, i.e. if we have d = 1, we get a kernel estimator f̃1(x1) =

µ̂+ f̂1(x1) as the minimizer of

f1  
∫ n∑

i=1

[
Yi − f1(x1)

]2
K

(
X1
i − x1

h1

)
dx1. (1.4)

The minimizer of this criterion is given as

f̃1(x1) =

[
n∑
i=1

K

(
X1
i − x1

h1

)]−1 n∑
i=1

YiK

(
X1
i − x1

h1

)
.

Thus, f̃1(x1) is just the classical Nadaraya-Watson estimator. We get the smooth backfitting estimator

as a natural generalization of Nadaraya-Watson smoothing to additive models.

In this chapter we present a broad discussion of estimators based on minimizing a smoothed least

squares criterion. We do this for two reasons. First, we argue that, even for additive models, this method

is a powerful alternative to the two-step procedures that were extensively discussed in the last chapter

and in the Chapter ”Oracly efficient two-step estimation for additive regression”. Furthermore, smooth

least squares estimators also work in models that are closely related to the additive model but are not of

the form that is directly suitable for two-step estimation. We illustrate this with an example. Suppose

that one observes (Xi, Yi) with Yi = f(Xi) + εi where εi is a random walk, i.e. ηi = εi+1 − εi are zero

mean i.i.d. variables that are independent of X1, . . . , Xn. In this model the Nadaraya-Watson estimator

(1.4) is not consistent. Consistent estimators can be based on considering Zi = Yi+1 − Yi. For this

variables we get the regression model

Zi = f(Xi+1)− f(Xi) + ηi.

The smooth least squares estimator in this model is based on the minimization of

f  
∫ n∑

i=1

[
Zi − f(x1) + f(x2)

]2
K

(
Xi+1 − x1

h1

)
K

(
Xi − x2

h2

)
dx1dx2.
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Clearly, an alternative approach would be to calculate estimators f̂1 and f̂2 in the model Zi = f1(Xi+1)+

f2(Xi) + ηi and to use f̂1(x)− f̂2(x) as an estimator of f . We will come back to related models below.

The additive model is important for two reasons:

(i) It is the simplest nonparametric regression model with several nonparametric components. The

theoretical analysis is quite simple because the nonparametric components enter linearly into the

model. Furthermore, the mathematical analysis can build on localization arguments from classical

smoothing theory. The simple structure allows for completely understanding of how the presence

of additional terms influences estimation of each one of the nonparametric curves. This question

is related to semiparametric efficiency in models with a parametric component and nonparametric

nuissance components. We will come back to a short discussion of nonparametric efficiency below.

(ii) The additive model is also important for practical reasons. It efficiently avoids the curse of di-

mensionality of a full-dimensional nonparametric estimator. Nevertheless, it is a powerful and

flexible model for high-dimensional data. Higher-dimensional structures can be well approximated

by additive functions. As lower-dimensional curves they are also easier to visualize and hence to

interpret than a higher-dimensional function.

Early references that highlight the advantages of additive modelling are [54], [55], [2] and [21]. In this

chapter we concentrate on the discussion of smooth backfitting estimators for such additive structures.

For a discussion of two-step estimators we refer to the last chapter and the chapter on two-step estimation.

For sieve estimators in additive models, see [6] and the references therein. For the discussion of penalized

splines we refer to [11].

In this chapter we only discuss estimation of nonparametric components. Estimation of parametric

components such as θ = θ(f1) =
∫
f1(x1)w(x1) dx1 for some given function w requires another type

of analysis. In the latter estimation problem natural questions are e.g. whether the plug-in estimator

θ̂ = θ(f̂1) =
∫
f̂1(x1)w(x1) dx1 for a nonparametric estimator f̂1 of f1 converges to θ at a parametric

√
n-rate, and whether this estimator achieves the semiparametric efficiency bound. Similar questions

arise in related semiparametric models. An example is the partially linear additive model: Yi = θ>Zi +

µ+ f1(Xi
1) + · · ·+ fd(X

i
d) + εi. Here, Z is an additional covariate vector. A semiparametric estimation

problem arises when µ, f1, . . . , fd are nuisance components and θ is the only parameter of interest.

Then naturally the same questions as above arise when estimating θ. As said, such semiparametric

considerations will not be in the focus of this chapter. For a detailed discussion of the specific example

we refer to [52] and [58].

In this chapter, we concentrate on the description of estimation procedures. Smooth backfitting has

been also used in testing problems by [19], [20] and [36]. For related tests based on kernel smoothing,

see also the overview article [15]. In [36] additive models are used to approximate the distribution of

spatial Markov random fields. The conditional expectation of the outcome of the random field at a point,

given the outcomes in the neighborhood of the point, are modeled as sum of functions of the neighbored
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outcomes. They propose tests for testing this additive structure. They also discuss the behavior of

smooth backfitting if the additive model is not correct. Their findings are also interesting for other

applications where the additive model is not valid but can be used as a powerful approximation.

Another approach that will not be pursued here is parametrically guided nonparametrics. The idea

is to fit a parametric model in a first step and then apply nonparametric smoothing in a second step, see

[16] for a description of the general idea. The original idea was suggested by [22] in density estimation.

See also [50] for a similar idea.

The next section discusses the smooth backfitting estimator in additive models. In Section 3 we

discuss some models that are related to additive models. The examples include nonparametric regression

with dependent error variables where the errors can be transformed to white noise by a linear trans-

formation, nonparametric regression with repeatedly measured data, nonparametric panels with fixed

effects, simultaneous nonparametric equation models, and non- and semiparametric autoregression and

GARCH-models. Other extensions that we will shortly mention are varying coefficient models and ad-

ditive models with missing observations. In Section 4 we discuss the case of nonstationary covariates.

Throughout the chapter we will see that many of the discussed models can be put in a form of noisy

Fredholm integral equation of second kind. We come back to this representation in the last section. We

show that this representation can be used as an alternative starting point for the calculation and also

for an asymptotic understanding of smooth least squares estimators.

2 Smooth least squares estimator in additive models

2.1 The backfitting algorithm.

In the additive model (1.1) the smooth backfitting estimator can be calculated by an iterative algorithm.

To see this, fix a value of x1 and define µ̂1 = µ̂+ f̂1(x1). One can easily see that µ̂1 minimizes

µ1  
∫ n∑

i=1

K

(
X1
i − x1

h1

)[
Yi − µ1 − f2(x2) + · · ·+ fd(x

d)
]2

(2.1)

×K
(
X2
i − x2

h2

)
× · · · ×K

(
Xd
i − xd

hd

)
dx2 · · · dxd.

This holds because we have no constraint on the function x1  µ̂ + f̂1(x1). Thus we can minimize the

criterion pointwise in this function and we do not integrate over the argument x1 in (2.1). Thus, we get

µ̂1 =

∫ n∑
i=1

d∏
j=1

K

(
Xj
i − xj

hj

)
dx2 · · · dxd

−1

×
∫ n∑

i=1

[
Yi − f2(x2)− · · · − fd(xd)

] d∏
j=1

K

(
Xj
i − xj

hj

)
dx2 · · · dxd.
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The expression on the right hand side of this equation can be simplified by noting that
∫

1
hj
K
(
Xj

i−x
j

hj

)
dxj =

1 for i = 1, . . . , n; j = 1, . . . , d. We get

µ̂1 = µ̂+ f̂1(x1) = f̂∗1 (x1)−
d∑
k=2

∫
p̂X1,Xk(x1, xk)

p̂X1(x1)
f̂k(xk) dxk. (2.2)

Here, for 1 ≤ j ≤ d

f̂∗j (xj) =

[
n∑
i=1

K

(
Xj
i − xj

hj

)]−1 n∑
i=1

K

(
Xj
i − xj

hj

)
Yi = p̂Xj (xj)−1

1

nhj

n∑
i=1

K

(
Xj
i − xj

hj

)
Yi.

This is the marginal Nadaraya-Watson estimator, based on smoothing the response Yi versus one covariate

Xj
i . Furthermore, p̂Xj ,Xk is the two-dimensional kernel density estimator of the joint density pXj ,Xk of

two covariates Xj and Xk: for 1 ≤ j 6= k ≤ d

p̂Xj ,Xk(xj , xk) =
1

nhjhk

n∑
i=1

K

(
Xj
i − xj

hj

)
K

(
Xk
i − xk

hk

)
.

Similarly to Eq. (2.2) we get for all j = 1, ..., d that

f̂j(x
j) = f̂∗j (xj)− µ̂−

∑
k 6=j

∫
p̂Xj ,Xk(xj , xk)

p̂Xj (xj)
f̂k(xk) dxk. (2.3)

One can show that

µ̂ =
1

n

n∑
i=1

Yi. (2.4)

A proof of this equation is postponed to the end of this subsection.

We are now in the position to define the smooth backfitting algorithm. Our main ingredients are Eq.

(2.3) and the formula for µ̂. After an initialization step the backfitting algorithm proceeds in cycles of d

steps:

• Initialization step: Put µ̂ = 1
n

∑n
i=1 Yi and f̂

[0]
j (xj) ≡ 0 for j = 1, ..., d.

• lth iteration cycle:

– jth step of the lth iteration cycle: in step j of the lth iteration cycle one updates the

estimator f̂j of the jth additive component fj

f̂
[l]
j (xj) = f̂∗j (xj)− µ̂−

j−1∑
k=1

∫
p̂Xj ,Xk(xj , xk)

p̂Xj (xj)
f̂
[l]
k (xk) dxk (2.5)

−
d∑

k=j+1

∫
p̂Xj ,Xk(xj , xk)

p̂Xj (xj)
f̂
[l−1]
k (xk) dxk.

We now discuss some computational aspects of the smooth backfitting algorithm. One can show that

there exist constants C > 0 and 0 < γ < 1 that do not depend on n such that with probability tending

to one ∫
[f̂

[l]
j (xj)− f̂j(xj)]2pXj (xj) dxj ≤ Cγ2l. (2.6)
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For a detailed statement, see Theorem 1 in [37] where a proof of (2.6) can be also found. The essential

argument of the proof is that the approximation error
∑d
j=1[f̂

[l]
j (xj) − f̂j(xj)] behaves like a function

that is cyclically and iteratively projected onto d linear subspaces of a function space. Each cycle of

projections reduces the norm of this function by a factor γ, for some fixed γ < 1, with probability tending

to one.

The bound (2.6) allows for two important conclusions.

(i) For a fixed accuracy, the number of iterations of the algorithm can be chosen as constant in n: in

particular, it does not need to increase with n.

(ii) Furthermore, for an accuracy of order n−α it suffices that the number of iterations increases with

a logarithmic order. This implies, in particular, that the complexity of the algorithm does not

explode but increases only slowly in n. For example, assume that an accuracy of order n−α with

α > 2/5 is required. We will see in the next subsection that for an optimal choice of bandwidth

the rate of f̂j(x
j)− fj(xj) is of order Op(n

−2/5). Then a choice of α with α > 2/5 guarantees that

the numerical error is of smaller order than the statistical error.

When numerically implementing smooth backfitting, estimators f̂
[l]
j (xj) are only calculated on a finite

grid of points and integrals in (2.6) are replaced by discrete approximations. Suppose that the number

of grid points is of order nβ for some β > 0. Then in the initialization step we have to calculate n2β

two-dimensional kernel density estimators. This results in O(n1+2β) calculations. Let us briefly discuss

this for the case where all functions fj(x
j) have bounded support and all bandwidths are chosen so that

f̂j(x
j) − fj(xj) is of order Op(n

−2/5). It can be shown that one has to choose β > 4/19 to obtain a

numerical error of smaller order than the statistical error. Then the computational complexity of the

algorithm is of order O(n log(n) + n1+2β) = O(n1+2β) = O(n(27/19)+2δ) with δ = β − 4
19 . This amount

of calculations can still be carried out even for large values of n in reasonable time.

Proof of (2.4): To get Eq. (2.4) we multiply both sides of equation (2.3) with p̂Xj (xj) and integrate

both sides of the resulting equation over xj . Because of the norming (1.3) this yields:

0 =

∫
f̂j(x

j)p̂Xj (xj) dxj

=

∫
f̂∗j (xj)p̂Xj (xj) dxj − µ̂

∫
p̂Xj (xj) dxj −

∑
k 6=j

∫
p̂Xj ,Xk(xj , xk)f̂k(xk) dxk dxj

=

∫
1

nhj

n∑
i=1

K

(
Xj
i − xj

hj

)
Yi dx

j − µ̂−
∑
k 6=j

∫
p̂Xk(xk)f̂k(xk) dxk

=
1

n

n∑
i=1

Yi − µ̂,

where we use the facts that
∫

1
hj
K
(
Xj

i−x
j

hj

)
dxj = 1 and that

∫
p̂Xj ,Xk(xj , xk) dxj = p̂Xk(xk). This

completes the proof.
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2.2 Asymptotics of the smooth backfitting estimator

Under appropriate conditions, the following result holds for the asymptotic distribution of each compo-

nent function f̂j(x
j), j = 1, . . . , d:

√
nhj

(
f̂j(x

j)− fj(xj)− βj(xj)
)

d−→ N

(
0,

∫
K2(u) du

σ2
j (xj)

pXj (xj)

)
. (2.7)

Here the asymptotic bias terms βj(x
j) are defined as minimizers of

(β1, . . . , βd) 
∫

[β(x)− β1(x1)− · · · − βd(xd)]2pX(x) dx

under the constraint that∫
βj(x

j)pXj (xj)dxj =
1

2
h2j

∫
[2f ′j(x

j)p′Xj (xj) + f ′′j (xj)pXj (xj)] dxj
∫
u2K(u) du, (2.8)

where pX is the joint density of X = (X1, . . . , Xd) and

β(x) =
1

2

d∑
j=1

h2j

[
2f ′j(x

j)
∂ log pX
∂xj

(x) + f ′′j (xj)

] ∫
u2K(u) du.

In [37] and [40] this asymptotic statement has been proved for the case that fj is estimated on a compact

interval Ij . The conditions include a boundary modification of the kernel. Specifically, the convolution

kernel h−1j K(h−1j (Xj
i − xj)) is replaced by Khj (Xj

i , x
j) = h−1j K(h−1j (Xj

i − xj))/
∫
Ij
h−1j K(h−1j (Xj

i −

uj)) duj . Then it holds that
∫
Ij
Khj (Xj

i , x
j) dxj = 1. In particular, this implies

∫
Ij
p̂Xj ,Xk(xj , xk)dxj =

p̂Xk(xk) and
∫
Ij
p̂Xj

(xj)dxj = 1 if one replaces h−1j K(h−1j (Xj
i −xj)) by Khj

(Xj
i , x

j) in the definitions of

the kernel density estimators. In fact, we have already made excessively use of these properties of kernel

density estimators in the previous subsection.

Before illustrating how the asymptotic result (2.7) is obtained, we discuss its interpretations. In

particular, it is illustrative to compare f̂j with the Nadaraya-Watson estimator f̃j in the classical non-

parametric regression model Yi = fj(X
j
i ) + εi. Under standard smoothness assumptions it holds that

√
nhj

(
f̃j(x

j)− fj(xj)− β∗j (xj)
)

d−→ N

(
0,

∫
K2(u) du

σ2
j (xj)

pXj (xj)

)
(2.9)

with the asymptotic bias β∗j (xj) = 1
2h

2
j

[
2f ′j(x

j)
∂ log pXj

(xj)

∂xj + f ′′j (xj)

] ∫
u2K(u) du. We see that f̃j(x

j)

has the same asymptotic variance as f̂j(x
j) but that the two estimators differ in their asymptotic bias.

Thus, as long as one only considers the asymptotic variance, one has not to pay any price for not knowing

the other additive components fk (k 6= j). One gets the same asymptotic variance in the additive model

as in the simplified model Yi = fj(X
j
i ) + εi where all other additive components fk (k 6= j) are set

equal to 0. As said, the bias terms differ. The asymptotic bias of f̂j(x
j) may be larger or smaller than

that of f̃j(x
j). This depends on the local characteristics of the function fj at the point xj and also

on the global shape of the other functions fk (k 6= j). It is a disadvantage of the Nadaraya-Watson

smooth backfitting estimator. There may be structures in f̂j(x
j) that are caused by other functions.
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We will argue below that this is not the case for the local linear smooth backfitting estimator. For

the local linear smooth backfitting estimator one gets the same asymptotic bias and variance as for the

local linear estimator in the classical model Yi = fj(X
j
i ) + εi. In particular, both estimators have the

same asymptotic normal distribution. In the last chapter this was called oracle efficiency. This notion

of efficiency is appropriate for nonparametric models. Typically in nonparametric models there exists

no asymptotically optimal estimator, in contrast to parametric models and to the case of estimating the

parametric parts of semiparametric models.

We now come to a heuristic explanation of the asymptotic result (2.7). For a detailed proof we refer

to [37] and [40]. The main argument is based on a decomposition of the estimator into a mean part and

a variance part. For this purpose one applies smooth backfitting to the “data” (X1, . . . , Xd, f1(X1) +

· · ·+ f(Xd)) and to (X1, . . . , Xd, ε). We will argue below that f̂j(x
j) is the sum of these two estimators.

Justification of (2.7): We start with a heuristic derivation of the asymptotic bias and variance of the

smooth backfitting estimator f̂j(x
j). For this purpose note first that the smooth backfitting estimators

µ̂, f̂1, . . . , f̂d are the minimizers of

(µ, f1, . . . , fd) 
∫

[f̂(x)− µ− f1(x1)− · · · − fd(xd)]2p̂X(x) dx (2.10)

under the constraint (1.3), where p̂X is the kernel density estimator of pX and f̂ is the Nadaraya-Watson

estimator of the regression function f(x) = E(Y |X = x):

p̂X(x) =
1

nh1 · · ·hd

n∑
i=1

K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
,

f̂(x) = p̂X(x)−1
1

nh1 · · ·hd

n∑
i=1

K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
Yi.

One may show that this minimization problem leads to (2.3) and (2.4). We omit the details. For a

geometric argument see also [38].

For heuristics on the asymptotics of f̂j , 1 ≤ j ≤ d, we now decompose f̂ into its bias and variance

component f̂(x) = f̂A(x) + f̂B(x), where

f̂A(x) = p̂X(x)−1
1

nh1 · · ·hd

n∑
i=1

K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
εi,

f̂B(x) = p̂X(x)−1
1

nh1 · · ·hd

n∑
i=1

K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
[µ+ f1(x1) + · · ·+ fd(x

d)].

Denote by (µ̂A, f̂A1 , . . . , f̂
A
d ) the minimizer of

(µ, f1, . . . , fd) 
∫

[f̂A(x)− µ− f1(x1)− · · · − fd(xd)]2p̂X(x) dx

under the constraint (1.3), and by (µ̂B , f̂B1 , . . . , f̂
B
d ) the minimizer of

(µ, f1, . . . , fd) 
∫

[f̂B(x)− µ− f1(x1)− · · · − fd(xd)]2p̂X(x) dx

under the constraint (1.3). Then, we obtain µ̂ = µ̂A + µ̂B , f̂1 = f̂A1 + f̂B1 , . . . , f̂d = f̂Ad + f̂Bd . By

standard smoothing theory, f̂B(x) ≈ µ + f1(x1) + · · · + fd(x
d) + β(x). This immediately implies that
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f̂Bj (xj) ≈ cj + fj(x
j) + βj(x

j) with a random constant cj . Our constraint (2.8) implies that cj can be

chosen equal to zero. This follows by some more lengthy arguments that we omit.

For an understanding of the asymptotic result (2.7) it remains to show that

√
nhj

(
f̂Aj (xj)− fj(xj)

)
d−→ N

(
0,

∫
K2(u) du

σ2
j (xj)

pXj (xj)

)
. (2.11)

To see this claim we proceed similarly as in the derivation of (2.3). Using essentially the same arguments

as there one can show that

f̂Aj (xj) = f̂A,∗j (xj)− µ̂A −
∑
k 6=j

∫
p̂Xj ,Xk(xj , xk)

p̂Xj (xj)
f̂Ak (xk) dxk, (2.12)

where

f̂A,∗j (xj) =

[
n∑
i=1

K

(
Xj
i − xj

hj

)]−1 n∑
i=1

K

(
Xj
i − xj

hj

)
εi

is the stochastic part of the marginal Nadaraya-Watson estimator f̂∗j (xj). We now argue that∫
p̂Xj ,Xk(xj , xk)

p̂Xj (xj)
f̂Ak (xk) dxk ≈

∫
pXj ,Xk(xj , xk)

pXj (xj)
f̂Ak (xk) dxk ≈ 0.

The basic argument for the second approximation is that a global average of a local average behaves like

a global average, or more explicitly, consider e.g. the local average r̂j(x
j) = (nhj)

−1∑n
i=1K

(
Xj

i−x
j

hj

)
εi.

This local average is of order Op(n
−1/2h

−1/2
j ). For a smooth weight function w we now consider the

global average ρ̂j =
∫
Ij
w(xj)r̂j(x

j) dxj of the local average r̂j(x
j). This average is of order Op(n

−1/2) =

op(n
−1/2h

−1/2
j ) because of

ρ̂j =

∫
Ij

w(xj)r̂j(x
j) dxj

=

∫
Ij

w(xj)(nhj)
−1

n∑
i=1

K

(
Xj
i − xj

hj

)
εi dx

j

= n−1
n∑
i=1

whj
(Xj

i )εi

with whj (Xj
i ) =

∫
Ij
w(xj)h−1j K

(
Xj

i−x
j

hj

)
dxj .

2.3 Smooth backfitting local linear estimator

In the additive model (1.1) the smooth backfitting local linear estimators µ̂, f̂1, f̂
†
1 , ..., f̂d, f̂

†
d are defined

as the minimizers of the smoothed least squares criterion∫ n∑
i=1

[
Yi − µ− f1(x1)− f†1 (x1)(X1

i − x1)− · · · − fd(xd)− f†d(xd)(Xd
i − xd)

]2
(2.13)

×K
(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
dx1 · · · dxd

under the constraint (1.3). This is a natural generalization of the local linear estimator. For the case

d = 1 the minimization gives the classical local linear estimator as the minimization of (1.4) leads to the
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classical Nadaraya-Watson estimator. The estimators, f̂†j , 1 ≤ j ≤ d, are estimators of the derivatives of

the additive components fj .

The smooth backfitting local linear estimator is given as the solution of a random integral equation.

Similarly to Eq. (2.3), the tuples (f̂j , f̂
†
j ) fulfill now a two-dimensional integral equation. This integral

equation can be used for the iterative calculation of the estimators. For details we refer to [37]. We only

mention the following asymptotic result from [37] for the smooth backfitting local linear estimator that

holds under appropriate conditions: for 1 ≤ j ≤ d

√
nhj

(
f̂j(x

j)− fj(xj)− βj(xj)
)

d−→ N

(
0,

∫
K2(u) du

σ2
j (xj)

pXj (xj)

)
, (2.14)

where now the asymptotic bias terms βj(x
j) are defined as

βj(x
j) =

1

2
h2j

[
f ′′j (xj)−

∫
f ′′j (uj)pXj (uj) duj

] ∫
u2K(u) du.

Up to an additive norming term, the asymptotic bias of f̂j(x
j) coincides with the asymptotic bias of local

linear estimator f̃j in the classical nonparametric regression model Yi = fj(X
j
i ) + εi. Moreover, we get

the same asymptotic distribution for both estimators (up to an additive norming term). Asymptotically

one does not lose any efficiency by not knowing the additive components fk : k 6= j compared to the

oracle model where these components are known. This is an asymptotic optimality result for the local

linear smooth backfitting. It achieves the same asymptotic bias and variance as in the oracle model.

As discussed above, the Nadaraya-Watson smooth backfitting estimator achieves only the asymptotic

variance of the oracle model. For an alternative implementation of local linear smooth backfitting, see

[41].

2.4 Smooth backfitting as solution of a noisy integral equation

We write the smooth backfitting estimators as solutions of an integral equation. We discuss this

briefly for Nadaraya-Watson smoothing. Put f̂(x1, . . . , xd) = (f̂1(x1), . . . , f̂d(xd))
> and f̂∗(x1, . . . , xd) =

(f̂∗1 (x1), . . . , f̂∗d (xd))
>. With this notation we can rewrite (2.3) as

f̂(x) = f̂∗(x)−
∫
Ĥ(x, z)f̂(z) dz, (2.15)

where for each value of x, z ∈ R the integral kernel Ĥ(x, z) is a matrix with element (j, k) equal to

p̂Xj ,Xk(xj , xk)/p̂Xj (xj). This representation motivates an alternative algorithm. One can use a discrete

approximation of the integral equation and approximate the integral equation (2.15) by a finite linear

equation. This can be solved by standard methods of linear algebra. Eq. (2.15) can also be used as an

alternative starting point for an asymptotic analysis of the estimator f̂ . We will come back to this in

Section 5 after having discussed further on those models in Section 3 whose estimation can be formulated

as solving an integral equation.

10



2.5 Relations to classical backfitting and two-stage estimation

Smooth backfitting (2.5) is related to classical backfitting and to two-stage estimation. In the classical

backfitting, the jth step of the lth iteration cycle (2.5) of the smooth backfitting is replaced by

f̂
[l]
j (Xj

i ) = p̂Xj (xj)−1
1

nhj

n∑
i=1

K

(
Xj
i − xj

hj

)Yi − µ̂− j−1∑
k=1

f̂
[l]
k (Xk

i )−
d∑

k=j+1

f̂
[l−1]
k (Xk

i )

 (2.16)

for 1 ≤ j ≤ d and 1 ≤ i ≤ n. This iteration equation can be interpreted as a limiting case of (2.5)

where one lets the second bandwidth hk in the definition of the kernel density estimator p̂Xj ,Xk(xj , xk)

converge to zero.

If the backfitting algorithm runs through O(log n) cycles, the algorithm needs O(n log n) calculation

steps. This is slightly faster than the smooth backfitting. In contrast to the smooth backfitting, the

backfitting estimator is only defined as the limit of the iterative algorithm (2.16). Note that the smooth

backfitting is explicitly defined as minimizer of the smoothed least squares criterion (1.2). The fact

that backfiitng estimators are only implicitly defined as limit of an iterative algorithm complicates the

asymptotic mathematical analysis. Note also that the algorithm runs in Rn, i.e. in spaces with increasing

dimension. An asymptotic treatment of the classical backfitting can be found in [48] and [49]. [47]

illustrated by simulation that smooth backfitting, in comparison with the classical backfitting, is more

robust against degenerated designs and a large number of additive components. The reason behind

this is that the iteration equation (2.5) is a smoothed version of (2.16). The smoothing stabilizes the

“degenerated integral equation” (2.16). In [48] and [49] stronger assumptions are made on the joint

density of the covariates than are needed for the study of the smooth backfitting. This may be caused by

the same reasons, but there has been made no direct theoretical argument that supports the empirical

finding that the classical backfitting is more sensitive to degenerate designs than smooth backfitting. For

another modification of the classical backfitting that takes care of correlated covariates, see [24].

Two-stage estimation differs from smooth backfitting in several respects. First of all, only two steps

are used instead of an iterative algorithm that runs until a convergence criterion is fulfilled. Further-

more, different bandwidths are used in different steps: undersmoothing is done in the first-step, but

an optimal bandwidth is chosen in the second-step. The algorithm of two-step estimation is as simple

as that of backfitting. On the other hand, choice of the bandwidth in the first-step is rather complex.

Asymptotically, optimal choices will not affect the first order properties of the outcomes of the second-

step. But for finite samples the influence of the first-step bandwidth is not clear. The calculation of

theoretically optimal values would require a second-order optimal theory that is not available and, as

other higher-order theory, may not be accurate for small to moderate sample sizes. In particular, in

models with many nonparametric components, backfitting may be preferable because it does not require

an undersmoothing step.
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2.6 Generalized Additive Models

We now discuss nonlinear extensions of the additive models. In a generalized additive model a link

function g is introduced and it is assumed that the following equation holds for the regression function

E(Y |X1, . . . , Xd)

E(Y |X1, . . . , Xd) = g−1{µ+ f1(X1) + · · ·+ fd(X
d)}.

It has been considered that the link function is known or that it is unknown and has to be estimated.

An important example where generalized additive models make sense are models for binary responses Y .

If Y is {0, 1}-valued, the function g−1 maps the additive function onto the interval [0, 1]. In the gener-

alized additive model, the additive functions f1, . . . , fd can be estimated by smoothed least squares. An

alternative approach for heterogenous errors is a smoothed quasi-likelihood criterion. Quasi-likelihood

is motivated for regression models where the conditional variance of the errors is equal to V (µ) with µ

equal to the conditional expectation of Y . Here, V is a specified variance function. Quasi-likelihood co-

incides with classical likelihood if the conditional error distribution is an exponential family. It also leads

to consistent estimators if the conditional variances have another form. The quasi-likelihood criterion

Q(µ, y) is defined as:
∂

∂µ
Q(µ, y) =

y − µ
V (µ)

.

An early reference to quasi-likelihood approaches in additive models is [21]. For the discussion of local

linear smoothing in generalized partially linear models see also [14]. For a discussion of the asymptotics

of classical backfitting in generalized additive model, see [26]. The Smoothed Quasi-Likelihood criterion

is defined as follows: Minimize for f = (µ, f1, . . . , fd)
>

SQ(f) =

∫ n∑
i=1

Q(g−1(f+(x)), Yi)K

(
X1
i − x1

h1

)
× · · · ×K

(
Xd
i − xd

hd

)
dx1 · · · dxd.

where f+(x) = µ + f1(x1) + · · · + fd(x
d). Minimization of the smoothed quasi-likelihood criterion

over f results in the smoothed maximum quasi-liklihood estimator. Algorithms for the calculation of

this estimator were discussed in [57]. In that paper an asymptotic theory for this estimator was also

developed. In other applications the quasi-likelihood criterion may be replaced by other M-functionals.

We do not discuss this here. An example is quantile regression. For a discussion of backfitting and

smooth backfitting in additive quantile models, see [28].

3 Some models that are related to additive models.

In linear regression, the standard least squares method produces consistent estimators when the errors are

uncorrelated. When the errors are correlated, the method may not give consistent or efficient estimators

of the regression parameters. In the latter case it is often appropriate to take a linear transformation

of the response variable in such a way that it corrects for the correlations between the errors. Linear

transformations may be also used to remove some unobserved effects in a regression model that are
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correlated with the regressors or errors. Taking a linear transformation in parametric linear models does

not alter the linear structure of the model, so that conventional methods still work with the transformed

data. In nonparametric regression models, however, it often yields an additive model where classical

smoothing methods can not be applied, as we illustrate on several cases in this section. Some of the

models of this section were also discussed in the overview papers [31] and [44]. A general discussion of

smooth least squares in a general class of nonparametric models can also be found in [39].

3.1 Nonparametric regression with time series errors

Suppose we observe (Xt, Yt) for 1 ≤ t ≤ T such that Yt = f(Xt) +ut, where the errors ut have an AR(1)

time series structure so that εt = ut−ρut−1 is a sequence of uncorrelated errors. The transformed model

Zt(ρ) ≡ Yt − ρYt−1 = f(Xt) − ρf(Xt−1) + εt has uncorrelated errors, but has an additive structure in

the mean function. For simplicity, assume that the errors ut are independent of the covariates Xt. Then,

the target function f minimizes

QT (m) =
1

T

T∑
t=1

E [Zt(ρ)−m(Xt) + ρm(Xt−1)]
2

over m, so that it satisfies∫
[E(Zt(ρ)|Xt = x,Xt−1 = y)− f(x) + ρf(y)] [g(x)− ρg(y)] f0,1(x, y) dx dy = 0 (3.1)

for all square integrable functions g. Here f0,1 denotes the joint density of (Xt, Xt−1) and f0 is the

density of Xt. The equation (3.1) holds for all square integrable functions g if and only if

f(x) = f∗ρ (x)−
∫
Hρ(x, y)f(y) dy (3.2)

where

f∗ρ (x) =
1

1 + ρ2
[E(Zt(ρ)|Xt = x)− ρE(Zt(ρ)|Xt−1 = x)] ,

Hρ(x, y) = − ρ

1 + ρ2

[
f0,1(x, y)

f0(x)
+
f0,1(y, x)

f0(x)

]
.

An empirical version of the integral equation (3.2) may be obtained by estimating f0, f0,1, E(Zt(ρ)|Xt =

·) and E(Zt(ρ)|Xt−1 = ·). Let f̂(·, ρ) denotes the solution of the latter integral equation. In case ρ is

known, f̂(·, ρ) can be used as an estimator of f . Otherwise, the parameter ρ can be estimated by ρ̂ that

minimizes

1

T

T∑
t=1

[
Zt(ρ)− f̂(Xt, ρ) + ρf̂(Xt−1, ρ)

]2
,

and then f by f̂ = f̂(·, ρ̂). We note that the estimator f̂(·, ρ) is consistent even if the autoregressive coef-

ficient ρ = 1. In contrast, smoothing of the original untransformed data (Yt, Xt) leads to an inconsistent

estimator. We mentioned this example already in the introduction.

The above discussion may be extended to a general setting where the errors ut admit a time series

structure such that εt =
∑∞
j=0 ajut−j is a sequence of uncorrelated errors. In this general case, if we
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take the transformation Zt(a0, a1, . . .) =
∑∞
j=0 ajYt−j , then the transformed model Zt(a0, a1, . . .) =∑∞

j=0 ajf(Xt−j) + εt has an additive structure with uncorrelated errors. For a discussion of this general

case, see [33]. There weaker assumptions are made on the errors ut. In particular, it is not assumed that

the errors ut are independent of the covariates Xt.

3.2 Nonparametric regression with repeated measurements.

Suppose that one has J repeated measurements on each of n subjects. Let (Xij , Yij) be the jth ob-

servation on the ith subject. Write Xi = (Xi1, . . . , XiJ)> and Yi = (Yi1, . . . , YiJ)>. Assume that

(Xi,Yi), i = 1 . . . , n, are i.i.d. copies of (X,Y). Consider the simple nonparametric regression model

Yij = f(Xij) + εij , (3.3)

where the errors εij have zero conditional mean, but are allowed to be correlated within each subject.

Let εi = (εi1, . . . , εiJ)> and Σ = cov(εi). The kernel regression estimator based on the ordinary least

squares criterion is consistent even in this case where Σ is not the identity matrix. However, we may find

a better estimator which is based on a weighted least squares criterion. This is in line with parametric

linear regression with repeated measurements, where a weighted least squares estimator outperforms the

ordinary least squares estimator. A weighted least squares estimation is equivalent to taking a linear

transformation of the response and then applying the ordinary least squares criterion to the transformed

model. In contrast to the parametric case, introducing weights in the nonparametric model (3.3) leads

to a more complicated estimation problem, as is demonstrated below.

Let f(x1, . . . , xJ) = (f(x1), . . . , f(xJ))>. The regression function f at (3.3) minimizes

E[{Y −m(X1, . . . , XJ)}>Σ−1{Y −m(X1, . . . , XJ)}] (3.4)

over all square integrable functions m, where m(x1, . . . , xJ) = (m(x1), . . . ,m(xJ))>. Note that the

transformed response vector Σ−1/2Y admits an additive model and the variance of the transformed

error vector Σ−1/2ε equals the identity matrix. The minimizer f satisfies

J∑
j=1

J∑
k=1

σjkE[Yj − f(Xj)]g(Xk) = 0

for all square integrable functions g, where σjk denotes the (j, k)th entry of the matrix Σ−1. This gives

the following integral equation for f ;

f(x) = f∗(x)−
∫
H(x, z)f(z) dz, (3.5)

where

f∗(x) =

 J∑
j=1

σjjpj(x)

−1 J∑
j=1

J∑
k=1

σjkE(Yk|Xj = x)pj(x),

H(x, z) =

 J∑
j=1

σjjpj(x)

−1 J∑
j=1

J∑
k 6=j

σjkpjk(x, z).
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Here, pj and pjk denote the densities of Xj and (Xj , Xk), respectively. The quantities f∗, pj and pjk can

be estimated by the standard kernel smoothing techniques. Plugging these into (3.5) gives an integral

equation for estimating f .

One may apply other weighting schemes replacing Σ−1 at (3.4) by a weight matrix W. It can be

shown the choice W = Σ−1 leads to an estimator with the minimal variance, see [4] for details. The

foregoing weighted least squares regression may be extended to the additive regression model Yij =∑D
d=1 fd(X

d
ij) + εij with covariates Xij = (X1

ij , . . . , X
D
ij )>. Details are also given in [4].

3.3 Panels with individual effects

Suppose we have panel data (Xij , Yij) for i = 1, . . . , n and j = 1, . . . , J . We assume that

Yij = f(Xij) + αi + εij , (3.6)

where αi are the unobserved random or nonrandom individual effects that are invariant over time j, and

εij are errors such that E(εij |Xi1, . . . , XiJ) = 0. The individual effect αi can be uncorrelated or correlated

with the regressors Xi1, . . . , XiJ and the error variables εij . If E(αi|Xi1, . . . , XiJ) = 0, then the model

reduces to the model considered in Subsection 3.2. An interesting case is when the individual effect is

correlated with the regressors so that E(αi|Xi1, . . . , XiJ) 6= 0. In this case, the ordinary nonparametric

kernel regression fails to obtain a consistent estimator. Recall that the latter is also the case with

parametric linear regression.

Here again, we may use a simple linear transformation to remove the unobserved individual effect

from the regression model. Let Zi =
∑J
j=1 ajYij for some constants aj such that

∑J
j=1 aj = 0. Examples

include

(i) a1 = · · · = ak−2 = 0, ak−1 = −1, ak = 1, ak+1 = · · · = aJ = 0 for some 1 ≤ k ≤ J ;

(ii) a1 = · · · = ak−1 = −J−1, ak = 1− J−1, ak+1 = · · · = aJ = −J−1 for some 1 ≤ k ≤ J .

For the transformed response variables Zi, we obtain

Zi =

J∑
j=1

ajf(Xij) + ui, (3.7)

where ui =
∑J
j=1 ajεij has zero conditional mean given Xi1, . . . , XiJ . Let Z and Xj denote the generics

of Zi and Xij , respectively. Since f minimizes the squared error risk E[Z −
∑J
j=1 ajm(Xj)]

2 over m, it

satisfies

E

Z − J∑
j=1

ajf(Xj)

 J∑
j=1

ajg(Xj) = 0 (3.8)

for all square integrable functions g. The equation (3.8) is equivalent to

∫  J∑
j=1

ajE(Z|Xj = x)pj(x)−
J∑
j=1

J∑
k 6=j

ajakE[f(Xk)|Xj = x]pj(x)− f(x)

J∑
j=1

a2jpj(x)

 g(x) dx = 0,
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where pj and pjk denote the density of Xj and (Xj , Xk), respectively. This gives the following integral

equation

f(x) = f∗(x)−
∫
H(x, z)f(z) dz, (3.9)

where

f∗(x) =

 J∑
j=1

a2jpj(x)

−1 J∑
j=1

ajE(Z|Xj = x)pj(x),

H(x, z) =

 J∑
j=1

a2jpj(x)

−1 J∑
j=1

J∑
k 6=j

ajakpjk(x, z).

As in the additive regression model we need a norming condition for identification of f in the

transformed model (3.7). The reason is that in the transformed model we have
∑J
j=1 ajf(Xij) =∑J

j=1 aj [c+f(Xij)] for any constant c since
∑J
j=1 aj = 0. We may also see this from the integral equation

(3.9) since
∫
H(x, z) dz = −1. For a norming condition, we may define αi such that E(Yij) = Ef(Xij).

This motivates the normalizing constraint

J−1
J∑
j=1

∫
f̂(x)p̂j(x) dx = n−1J−1

n∑
i=1

J∑
j=1

Yij

for an estimator f̂ of f .

The differencing technique we have discussed above may also be applied to a more general setting that

allows for discrete response variables. For example, consider a binary response model where each of the n

subjects has matched observations (Xij , Yij) such that the responses Yij , conditionally on the regressors

Xi1, . . . , XiJ and the individual effect αi, are independent across j and have Bernoulli distributions with

success probabilities p(Xij , αi), respectively. Assume that

log

[
p(Xij , αi)

1− p(Xij , αi)

]
= f(Xij) + αi

and consider the case where J = 2 for simplicity. Let Zi = I(Yi1 = 1) and Ni = Yi1 + Yi2, where I

denotes the indicator function. Then, it can be shown that

log

[
E(Zi|Xi1, Xi2, Ni = 1)

1− E(Zi|Xi1, Xi2, Ni = 1)

]
= f(Xi1)− f(Xi2). (3.10)

This follows from the equation

E(Zi|Xi1, Xi2, Ni = 1) =
E
[
p(Xi1, αi)(1− p(Xi2, αi))

∣∣Xi1, Xi2

]
E
[
p(Xi1, αi)(1− p(Xi2, αi)) + p(Xi2, αi)(1− p(Xi1, αi))

∣∣Xi1, Xi2

]
and the fact that

p(Xi1, αi)[1− p(Xi2, αi)]

p(Xi1, αi)[1− p(Xi2, αi)] + p(Xi2, αi)[1− p(Xi1, αi)]
=

exp[f(Xi1)− f(Xi2)]

1 + exp[f(Xi1)− f(Xi2)]

does not involve αi.

Let Z, Xj , Yj denote the generics for Zi, Xij , Yij , respectively. The function f in the transformed

model (3.10) maximizes the expected log-likelihood, so that it satisfies

E I(N = 1) [Z − η(X1, X2; f)] [g(X1)− g(X2)] = 0
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for all square integrable function g, where

η(x, y;m) =
exp[m(x)−m(y)]

1 + exp[m(x)−m(y)]
.

It can be shown that f satisfies F (f) = 0, where F is a nonlinear operator defined by

F (m)(x) = E
[
I(N = 1)(Z − η(X1, X2;m))

∣∣X1 = x
]
p1(x)−E

[
I(N = 1)(Z − η(X1, X2;m))

∣∣X2 = x
]
p2(x)

and pj denotes the density of Xj , j = 1, 2. Here, we also need a norming condition for identifiability of f .

The integral equation F (m) = 0 is nonlinear, but it can be linearized in the same way as the nonlinear

equation in Section 2. The linear approximation basically puts the problem back to the framework for

the model (3.6). To detail this, define η1(x, y;m) = [1 + exp(m(x)−m(y))]−2, let f [0] be an a function

f [0] close to f . Note that F (m) ' F (f [0]) + F1(f [0])(m − f [0]) where F1(f [0]) is a linear operator and

F1(f [0])(g) denotes the Fréchet differential of F at f [0] with increment g. Put δ = f − f [0] and

H0(x, y) = E [I(N = 1)|X1 = x,X2 = y] η1(x, y; f [0])p12(x, y)

+ E [I(N = 1)|X1 = y,X2 = x] η1(y, x; f [0])p12(y, x),

where p12 denotes the density of (X1, X2). Then, the approximating linear integral equation F (f [0]) +

F1(f [0])(δ) = 0 is equivalent to

δ(x) = δ∗(x)−
∫
H(x, y)δ(y) dy, (3.11)

where

δ∗(x) =

[∫
H0(x, y) dy

]−1
F (f [0])(x),

H(x, y) = −
[∫
H0(x, z) dz

]−1
H0(x, y).

We may estimate F and H0 by kernel methods. Plugging the estimators F̂ and Ĥ0 into (3.11) gives

an integral equation for the update f̂ [1] of the starting estimator f̂ [0]. The statistical properties of the

resulting backfitting algorithm and the limit of the algorithm f̂ which satisfies F̂ (f̂) = 0 have been

studied by [23].

3.4 Additive models for panels of time series and factor models

Similar to (3.6), one can consider models with an unobserved time effect ηt instead of an individual effect.

We now denote time by t. Suppose that we have panel data (X1
it, . . . , X

d
it, Yit) for individuals 1 ≤ i ≤ n

and time points 1 ≤ T . We assume that

Yit =

d∑
j=1

mj(X
j
it) + ηt + εit. (3.12)

This model naturally generalizes linear panel data models. It has been studied in [43] for two asymptotic

frameworks: n → ∞, T fixed and n, T → ∞. Their asymptotic analysis includes the case where {Xj
it},
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j = 1, . . . , p, are time lagged values of Yit. No assumptions are made on the unobserved temporary

effects ηt. They may be deterministic or random, and they may be correlated with covariates or error

terms. The basic idea of [43] is to use difference schemes that cancel out the time effects ηt, simliar to

the approaches in the last subsection that cancel out individual effects. Here, the values ηt are nuissance

parameters.

In [35] also the model (3.12) is considered, but the statistical aim there is inference on the structure of

ηt. It is assumed that ηt is a random process following a parametric specification. A two-step procedure is

proposed where the process ηt is fitted in the first-step. In their mathematics they compare parametric

inference based on the fitted values of ηt with an infeasible statistical inference that is based on the

unobserved ηt. The main result is that these two approaches are asymptotically equivalent. This can be

interpreted as an oracle property and it can be used to construct efficient estimators of the parameters.

Another modification of model (3.12) is the factor model

Ytl = m0(X0
tl) +

d∑
j=1

Zjtmj(X
j
tl) + εtl (3.13)

for l = 1, . . . , L. Here, the dynamics of the L-dimensional process Yt is approximated by the unobserved

d-dimensional time series Zt. The basic idea is that elements Ytl of Yt with similar characteristics

(Xj
tl : 1 ≤ j ≤ d) show similar dynamics and that the dynamics of Yt can be accurately modeled by

choices of d that are much smaller than L. This model has been applied in [8] to the analysis of stock

returns Ytl with characteristics (Xj
tl : 1 ≤ j ≤ d). Again, a two-step procedure is proposed where in

the first-step the unobserved process Zt is fitted. Also, an oracle property applies: inference based on

estimates Ẑt of Zt is asymptotically equivalent to infeasible inference based on the unobserved Zt.

In [18] and [51] the following model has been considered

Ytl = m0(Xtl) +

d∑
j=1

Zjtmj(Xtl) + εtl.

This model differs from (3.13) because now the nonparametric components mj are functions of a single

characteristic Xtl. As a result, the multivariate time series Zt is only identified up to linear transfor-

mations. Again, an oracle property for parametric inference based on fitted values has been shown in

[51]. The model has been used in functional principal component analysis. One application in [18] and

[51] is for implied volatility surfaces that develop over time. The surfaces are approximated by a finite-

dimensional process and the random movement of the surfaces is then analyzed by a VAR representation

of the finite-dimensional process.

3.5 Semiparametric GARCH models

Another example that leads to an additive model is a semiparametric GARCH model. In this model we

observe a process Yt such that E(Yt|Ft−1) = 0, where Ft−1 denotes the sigma field generated by the

entire past history of the Y process, and σ2
t ≡ E(Y 2

t |Ft−1) assumes a semiparametric model

σ2
t = θσ2

t−1 + f(Yt−1). (3.14)
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This model is a natural generalization of the GARCH(1,1) model of [1] where a parametric assumption is

made on f such that f(x) = α+βx. The generalization was introduced by [13] to allow for more flexibility

in the ‘news impact curve’, i.e., the function f , which measures the effect of news onto volatilities in

financial markets.

The parameters θ and the function f in the semiparametric model (3.14) are unknown. Since

E(Y 2
t |Ft−1) =

∑∞
j=1 θ

j−1f(Yt−j), the parameter θ and the function f(·, θ) together minimize E[Y 2
0 −∑∞

j=1 θ
j−1f(X−j)]

2. For each θ, let fθ denote the minimizer of the criterion. Then, it satisfies

∞∑
j=1

∞∑
k=1

θj+k−2fθ(Y−j)g(Y−j) =

∞∑
j=1

E[Y 2
0 g(Y−j)]

for all square integrable functions g. This gives the following integral equation.

fθ(x) = f∗θ (x)−
∫
Hθ(x, y)fθ(y) dy, (3.15)

where

f∗θ (x) = (1− θ2)

∞∑
j=1

θj−1E(Y 2
0 |Y−j = x),

Hθ(x, y) =

∞∑
j=1

θj
[
p0,−j(x, y) + p0,j(x, y)

p0(x)

]
,

p0 and p0,j are the densities of Y0 and (Y0, Yj), respectively. For an asymptotic and empirical analysis

of the estimators based on the integral equation (3.15), we refer to [32]. For a recent extension of the

model, see also [5].

3.6 Varying coefficient models

Suppose we are given a group of covariates X1, . . . , Xd and a response Y . The most general form of

varying coefficient model was introduced and studied by [30]. It is given by

E(Y |X1, . . . , Xd) = g−1

∑
k∈I1

Xkfk1(X1) + · · ·+
∑
k∈Ip

Xkfkp(X
p)

 , (3.16)

where g is a link function and p ≤ d. The index sets Ij may intersect with each other, but each Ij does not

include j. It is also allowed that the two groups of covariates, {Xj : 1 ≤ j ≤ p} and {Xk : k ∈ ∪pj=1Ij}

may have common variables. The coefficient functions are identifiable if we put the following constraints:

for nonnegative weight functions wj , (i)
∫
fkj(x

j)wj(x
j) dxj = 0 for all k ∈ ∪pj=1Ij and 1 ≤ j ≤ p; (ii)∫

xjfkj(x
j)wj(x

j) dxj = 0 for all j, k ∈ {1, . . . , p} ∩ (∪pj=1Ij). In this model, the effect of the covariate

Xk for k ∈ ∪pj=1Ij is set in a nonparametric way as
∑
j:Ij3k fkj(X

j). The model is flexible enough

to include various types of varying coefficient models as special cases. For example, it is specialized to

the generalized additive model discussed in Section 2.6 if one takes I1 = · · · = Ip = {p + 1} and set

Xp+1 ≡ 1. The model also reduces to the varying coefficient model studied by [29] and [56] if the two
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groups, {Xj : 1 ≤ j ≤ p} and {Xk : k ∈ ∪pj=1Ij}, are disjoint and the sets Ij contain only one element

(1 ≤ j ≤ p). In this case one can rewrite model (3.16) as

Yi = g−1

 p∑
j=1

Zji fj(X
j
i )

+ εi.

With an identity link g and with the additional constraint fj ≡ f , this model has been used in [34] for

nonparametric estimation of yield curves by smoothed least-squares. There, Yi was the trading price of a

coupon bond, Zji denotes the payment returned to the owner of bond i at date Xj
i and f is the discount

function. In case p = 1 and I1 = {2, . . . , d}, the approach with disjoint sets of covariates results in the

model studied, for example, by [17].

For simplicity, suppose that the link g is the identity function. In this case, the coefficient functions

fkj minimize E
[
Y −

∑
k∈I1 X

kfk1(X1)− · · · −
∑
k∈Ip X

kfkp(X
p)
]2

. This gives the following system of

integral equations for fkj : for 1 ≤ j ≤ p,

fj(x
j) = E(XjX

>
j |Xj = xj)−1E(XjY |Xj = xj)− E(XjX

>
j |Xj = xj)−1

×
p∑

l=1,6=j

∫
E
[
XjX

>
l

∣∣Xj = xj , X l = xl
]
fl(x

l)
pjl(x

j , xl)

pj(xj)
dxl,

where Xj = (Xk : k ∈ Ij) and fj = (fkj : k ∈ Ij). Note that Xj does not contain Xj as its entry. To

get an empirical version of the above integral equations, one may replace the conditional expectations,

the joint density pjl of (Xj , X l) and the marginal density pj of Xj , by kernel estimators. [30] presented

complete theory for the estimation of the general model (3.16). Their theory includes sieve and penalized

quasi-likelihood estimation as well as the smooth backfitting method described above.

3.7 Missing observations

Additive models can also be consistently estimated if the tuples (Yi, X
1
i , ..., X

d
i ) are only partially ob-

served. We will discuss this for the following simple scheme of missing observations.

Denote

- by Njk the set of indices i where Xj
i and Xk

i are observed,

- by Nj the set of indices i where Xj
i is observed,

- by N0j the set of indices i where Xj
i and Yi are observed, and

- by N0 the set of indices i where Yi is observed.

These sets may be random or nonrandom. We denote the number of elements of these sets by Njk,

Nj , N0j or N0, respectively. We assume that the observations {(Xj
i , X

k
i ) : i ∈ Njk}, {Xj

i : i ∈ Nj},

{(Xj
i , Yi) : i ∈ N0j} and {Yi : i ∈ N0} are i.i.d. This assumption holds under simple random missingness

schemes and also in the case of pooling samples where different subsets of covariates were observed.

Then, under the assumption that Njk → ∞, Nj → ∞, N0j → ∞ and N0 → ∞, the estimators of

pXj ,Xk , pXj , f∗j and µ that are based on the subsamples Njk, Nj , N0j or N0, respectively, are consistent.
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More precisely, for 1 ≤ j 6= k ≤ d, put

p̃Xj ,Xk(xj , xk) =
1

Njkhjhk

∑
i∈Njk

K

(
Xj
i − xj

hj

)
K

(
Xk
i − xk

hk

)
,

p̃Xj (xj) =
1

Njhj

∑
i∈Nj

K

(
Xj
i − xj

hj

)
,

f̃∗j (xj) = p̃Xj (xj)−1
1

N0jhj

∑
i∈N0j

K

(
Xj
i − xj

hj

)
Yi,

µ̃ =
1

N0

n∑
i∈N0

Yi.

Under appropriate conditions on the bandwidths hj these estimators converge to pXj ,Xk(xj , xk), pXj (xj),

f∗j (xj) and µ, respectively, in probability. Similarly as in Eq. (2.2), we consider the solutions f̃1, . . . , f̃d

of the equations

f̃j(x
j) = f̃∗j (xj)− µ̃−

∑
k 6=j

∫
p̃Xj ,Xk(xj , xk)

p̃Xj (xj)
f̃k(xk) dxk.

Using the stochastic convergence of p̃Xj ,Xk(xj , xk), p̃Xj (xj), f̃∗j (xj) and µ̃, one can show that f̃j(x
j)

converges in probability to fj(x
j) for 1 ≤ j ≤ d. These consistency proofs can be generalized to

more complex missingness schemes. Furthermore, under appropriate conditions one can study normal

distribution limits of these estimators. We remark that these identification, consistency and asymptotic

normality results are not available for the full-dimensional model specification: Y = f(X1, . . . , Xd) + ε.

3.8 Additive diffusion models

Some multivariate diffusion models are based on additive parametric specifications of the mean. Nonpara-

metric generalizations of such models were considered in [19]. There also nonparametric specifications

of the volatility term were considered.

3.9 Simultaneous nonparametric equation models

Additive models also naturally occur in economic models, where some covariates are correlated with the

disturbance. Despite these so-called endogenous regressors, such models can be identified via a control

function approach. In particular, [46] proposed the following model with additive error terms

Y = f(X1, Z1) + e ,

where X1 and Z1 are observed covariates and Y is a one-dimensional response. While Z1 is independent

of the error variable e, no assumptions are made on the dependence between X1 and e at this stage. For

identification, however, assume that the following control equation holds for the endogenous variable X1

X1 = h(Z1, Z2) + V,
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where Z2 is an observed covariate not contained in the original equation and (Z1, Z2) is independent of

the joint vector of errors (e, V ).

Under the stated independence conditions, it follows that

E(Y |X1, Z1, Z2) = f(X1, Z1) + λ(V ) = E[Y |X1, Z1, V ] (3.17)

with λ(V ) = E(e|V ). Thus, we get an additive model where the regressor in the second additive

component is not observed but can be estimated as residual of the control equation. This additive model

can be also obtained under slightly weaker conditions than the above independence conditions, namely

under the assumption that E(e|Z1, Z2, V ) = E(e|V ) and E(V |Z1, Z2) = 0. The corresponding system

of integral equations to be solved for (3.17) is

f(x1, z2) = f∗(x1, z2)−
∫
pX1,Z2,V (x1, z2, v)

pX1,Z2
(x1, z2)

λ(v)dv

λ(v) = λ∗(v)−
∫
pX1,Z2,V (x1, z2, v)

pV (v)
f(x1, z2)d(x1, z2)

where f∗(z1, z2) = E[Y |(X1, Z1) = (x1, z2)] and λ∗(v) = E(Y |V = v). Note that some ingredients of the

smooth backfitting iteration algorithm thus require nonparametric pre-estimates of marginal objects with

the nonparametrically generated regressor V̂ = X1 − ĥ(Z1, Z2). The paper [42] studies how asymptotic

theory in nonparametric models has to be adjusted to take care of nonparametrically generated regressors.

4 Nonstationary observations

Additive models are a powerful tool in case of stochastically nonstationary covariates. For this data

generality, consistent estimation of a fully nonparametric model requires that the whole compound vector

fulfills a specific recurrence condition, i.e. it has to be guaranteed that the full dimensional process X

returns infinitely often to local neighborhoods. For an additive model, however, recurrence conditions

are only needed for two-dimensional subvectors of X. An illustrative example is a multivariate random

walk. A fully nonparametric model cannot be consistently estimated for dimensions greater two, since

beyond dimension two random walks become transient and do not fulfill the above recurrence property.

For an additive model, however, there is no dimension restriction, as any pair of bivariate random

walks is recurrent. Here we briefly outline the main ideas. The detailed theory of additive models for

nonstationary covariates is developed in [53].

The setting is as follows: Suppose we want to estimate a standard additive model (1.1) where co-

variates and response are potentially nonstationary Markov chains but satisfy a pairwise recurrence

condition, and the residual is stationary mixing. Instead of a stationary data generating process den-

sity function, a nonstationary pairwise recurrent Markov chain can be characterized by the densities

of pairwise bivariate invariant measures πjk with j, k ∈ {1, . . . , d}. For the specific kind of recurrence

imposed, it is guaranteed that such a bivariate invariant measure exists for each pair and is unique up to

a multiplicative constant; but it is generally only finite on so-called small sets and only σ-finite on the

full support. Note that e.g., for random walks any compact set is small.
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Furthermore, under the type of pairwise recurrence imposed, bivariate component Markov chains

(Xj , Xk) = (Xjk) can be decomposed into i.i.d. parts of random length depending on the recurrence

times of the chain. In particular, the stochastic number of recurrence times T jk(n) characterizes the

amount of i.i.d. block observations and thus corresponds to the effective sample size available for inference

with the particular pair of components. Thus for different components and pairs of components available

effective sample sizes are path dependent and generally vary depending on the recurrence frequency being

smaller for more nonstationary processes and closer to the stationary deterministic full sample size n for

more stationary processes. Correspondingly, consistent kernel type estimators are weighted averages of

T jk(n) i.i.d. block elements

π̂jk(xjk) =
1

T jk(n)

∑
i∈Ijk

K

(
Xjk
i − xjk

hjk

)
,

f̂j(x
j) =

∑
i∈Ij

K

(
Xj
i − xj

hj

)−1∑
i∈Ij

K

(
Xj
i − xj

hj

)
Yi,

(4.1)

π̂
(k)
j (xj) =

1

T jk(n)

∑
i∈Ijk

K

(
Xj
i − xj

hj

)
,

f̂
(k)
j (xj) =

∑
i∈Ijk

K

(
Xj
i − xj

hj

)−1 ∑
i∈Ijk

K

(
Xj
i − xj

hj

)
Yi.

(4.2)

The estimators in (4.1) provide pointwise consistent estimates of the corresponding bivariate invari-

ant measure density πjk and a general nonparametric link function fj , respectively (see [27]). Their

rates of convergence are driven by respective recurrence frequencies and occupation times L̂jk(xjk) =∑
i∈Ijk Kxjk,hjk(Xjk

i ) and L̂j , respectively, which are generally of different order on average over all

sample paths. Asymptotically in both cases, they are on average of size (nβ
jk

h)−1/2 and (nβ
j

h)−1/2,

respectively, where the global βjk-parameter ∈ [0, 1] characterizes the underlying type of nonstationarity

of the corresponding recurrent chain as the tail index on the distribution of recurrence times. For a

bivariate random walk we have βjk = 0, for a stationary process βjk = 1 recovering standard rates,

and generally βjk ≤ βj . The kernel estimators in (4.2) artificially “downgrade” their univariate speed of

convergence to the respective bivariate one. Note that the index sets Ijk ensure that only T jk(n) i.i.d.

sub-blocks are considered of the T j(n) original ones.

For balancing terms in the empirical version of the smooth backfitting integral equations, such po-

tentially slower than standard estimators π̂
(k)
j , π̂

(k)
jl and f̂

(k)
j of bivariate nonstationary type βjk are

necessary. Also in the backfitting operator for component j, the impact of other directions on any pair

of components containing Xj might now differ depending on respective occupation times of component

pairs. Both aspects are reflected by a respectively generalized procedure ensuring consistent estimates.

The generalized smooth backfitting estimates (f̂j)
d
j=1 are defined as

f̂j(x
j) =

1

d− 1

∑
k 6=j

(
f̂
(k)∗
j (xj)− f̂ (k)∗0,j

)
−
∑
k 6=j

1

λ̂jk

∑
l 6=j

∫
Gl
f̂l(x

l)
π̂
(k)
jl (xjl)

π̂
(k)
j (xj)

dxl

 , (4.3)
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where f̂
(k)∗
j (xj) are the marginal local constant estimates with bivariate speed of convergence as defined

above and constants

f̂
(k)∗
0,j =

∫
Gj f̂

(k)∗
j (xj)π̂

(k)
j (xj) dxj∫

Gj π̂
(k)
j (xj) dxj

=
1

T jk(n)

∑
i∈Ijk

Yi, (4.4)

which follow from appropriate analogues of the standard norming constraints∑
k 6=j

∫
Gj
fj(x

j)π
(k)
j (xj) dxj = 0. (4.5)

Note that asymptotically in the projection part of (4.3) only those elements π̂jl prevail, where βjl = βjk

while all others vanish. The projection property of standard backfitting only prevails in a generalized

sense, since in general an invariant measure for the full-dimensional compound process does not exist

for pairwise recurrent X. For each j and k, λ̂jk counts the number of such elements in the sample. In

a nonstationary setting also the regions of integration Gj must be chosen with some care to ensure that

integrals exist. Related to small sets, e.g., in a random walk case compact areas are appropriate. If all

pairs of components of X have the same type of nonstationarity, the backfitting equations reduce to

f̂j(x
j) =

1

d− 1

∑
k 6=j

(
f̂
(k)∗
j (xj)− f̂ (k)∗0,j

)
−
∑
k 6=j

∫
Gk
f̂k(xk)

π̂jk(xjk)

π̂
(k)
j (xj)

dxk ,

since λjk = d − 1 and π̂
(k)
jl = π̂jl in this case. In particular, for the special case of identical one- and

two-dimensional scales, generalized smooth backfitting reduces to the standard case. This usually occurs

for sufficiently stationary data.

Asymptotic results for the generalized backfitting are univariate in form, i.e, the standard curse

of dimensionality can be circumvented. However, they are driven by the worst case bivariate type of

nonstationarity in the data. In particular, the difference between the true component function fj and

the backfitting estimate f̂j is asymptotically normal when inflated with the stochastic occupation time

factor
√

mink 6=j L̂
(k)
j (xj)h. As L̂

(k)
j is asymptotically of the same order as T jk(n), the rate of convergence

is on average of size
√
nβj++εh, where βj+ is the highest degree of nonstationarity and thus the smallest

number among the βjk, and ε > 0 is very small. That means, if all components are random walks, i.e.

βjk = 0, estimation of each component is possible, but with logarithmic rate. This should be compared

to the fact that a fully nonparametric model cannot be estimated in this case where the compound vector

is transient. If one component Xj0 follows a random walk and all others are stationary, all components

are estimated at rate
√
nβj0h =

√
n1/2h.

5 Noisy fredholm integral equations of second kind

As outlined in Subsection 2.4, we can define the smooth backfitting estimators in the additive models as

solutions of an integral equation f̂(x) = f̂∗(x)−
∫
Ĥ(x, z)f̂(z) dz, where f̂(x1, . . . , xd) = (f̂1(x1), . . . , f̂d(xd))

>,

f̂∗(x1, . . . , xd) = (f̂∗1 (x1), . . . , f̂∗d (xd))
> and the integral kernel Ĥ(x, z) equals to a matrix with elements
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p̂Xj ,Xk(xj , xk)/p̂Xj (xj). We also rewrite this noisy integral equation as

f̂ = f̂∗ − Ĥf̂ .

In Section 3 we have also seen that smooth least squares for various models leads to estimators that are

given as solutions of such noisy integral equations. There are several approaches to the numerical solution

of the integral equation. As already mentioned in Subsection 2.4, one can use a discrete approximation

of the integral equation for the numerical solution. This results in a finite system of linear equations

that can be solved by standard methods. One approach would be based on a iterative scheme that uses

a discrete approximation of the iteration steps:

f̂NEW = f̂∗ − Ĥf̂OLD.

If f̂ is a d-dimensional vector of functions with d ≥ 2, one can also use an iteration scheme that runs

cyclically through component-wise updates

f̂NEWj = f̂∗j − Ĥj f̂OLD, 1 ≤ j ≤ d

with an obvious definition of Ĥj . This was the algorithm we discussed in Subsection 2.1. Compare also

the Gauss-Seidel method and the Jacobi method in numerical linear algebra.

We now use the definition of the estimators by a noisy integral equation for an asymptotic under-

standing of the distributional properties of the estimators. We consider the case of one-dimensional f̂

and f̂∗ and we rewrite the equation as f̂ = f̂∗ − Ĥf̂ . We now suppose that f̂∗ is a smoothing estimator

with

f̂∗ ≈ f̂∗A + f∗ + f∗B ,

where f̂∗A is the stochastic part of f̂∗ that is of order (nh)−1/2. The function f∗ is the stochastic limit

of f̂∗ and f∗B is a bias term that we suppose to be of the standard order h2. Here, h is a bandwidth

that is chosen of order n−1/5 so that the stochastic term and the bias term are of order n−2/5. A similar

discussion applies to Ĥf . This variable has stochastic limit Hf where H is the stochastic limit of Ĥ. We

now get

Ĥf ≈ (Ĥf)A +Hf + (Hf)B ,

where (Ĥf)A is the stochastic part of Ĥf . Again this term is of order (nh)−1/2. Although Ĥ is a higher

dimensional smoother, all variables up to one are integrated out in Ĥf . Furthermore, (Hf)B is a bias

term that is of order h2. By subtracting f = f∗ −Hf from f̂ = f̂∗ − Ĥf̂ we get

f̂ − f = f̂∗ − f∗ − Ĥf̂ +Hf

= f̂∗ − f∗ −H(f̂ − f)− (Ĥ − H)f − (Ĥ − H)(f̂ − f)

≈ f̂∗ − f∗ −H(f̂ − f)− (Ĥ − H)f.

Now, simple algebra gives

f̂ − f ≈ (I +H)−1(f̂∗ − f∗ − (Ĥ − H)f)

≈ (I +H)−1(f̂∗A + f∗B − (Ĥf)A − (Hf)B).
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We now argue that (I+H)−1f̂∗A ≈ f̂∗A and (I+H)−1(Ĥf)A ≈ (Ĥf)A. These claims follow immediately

from (I + H)−1 = I − (I + H)−1H, Hf̂∗A ≈ 0 and H(Ĥf)A ≈ 0. Here, the first equality can be

easily seen by multiplying both sides of the equation with (I + H). For the two approximations one

notes that the integral over an interval of the stochastic part of a kernel smoother is typically of order

n−1/2. For example, one has
∫
w(x)n−1

∑n
i=1Kh(x − Xi)εi dx = n−1

∑n
i=1 wh(Xi)εi with wh(u) =∫

w(x)Kh(x− u) dx, which is of order n−1/2. Using the above approximations we get that

f̂ − f ≈ (I +H)−1(f̂∗A + f∗B − (Ĥf)A − (Hf)B)

= f̂∗A − (Ĥf)A − (I +H)−1H(f̂∗A − (Ĥf)A) + (I +H)−1(f∗B − (Hf)B)

≈ f̂∗A − (Ĥf)A + (I +H)−1(f∗B − (Hf)B)

The expressions on the right hand side of this expansion can be easily interpreted. The first term

f̂∗A − (Ĥf)A is of order (nh)−1/2 and asymptotically normal with mean zero. This can be shown as in

classical kernel smoothing theory. The second term (I +H)−1(f∗B − (Hf)B) is purely deterministic and

it is of order h2 because already f∗B − (Hf)B is of this order. For a more detailed discussion of the above

arguments we refer to [43] and [44].

We conclude this section by noting that the above noisy integral equations are quite different from

the case that estimators are given by integral equations of the form

0 = f̂∗ − Ĥf̂ .

This is called an ill-posed inverse problem because, typically, the eigenvalues of the operator Ĥ accumulate

at 0. For this reason the inverse of the operator Ĥ is not continuous. The integral equation studied in

this chapter leads to the inversion of the operator (I + Ĥ). The eigenvalues of this operator accumulate

around 1 and allow for a continuous inverse of (I + Ĥ). Thus our set-up is quite different from ill-posed

problems. For a discussion of ill-posed problems we refer to [3], [7], [9], [10], [12], [25] and [45].
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