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Abstract

The publication of a projected path of future policy decisions by cen-
tral banks is a controversially debated method to improve monetary
policy guidance. This paper suggests a new approach to evaluate the
impact of the guidance strategy on the predictability of monetary pol-
icy. Using the example of Norway, the empirical investigation is based
on jump probabilities of interest rates on central bank announcement
days before and after the introduction of quantitative guidance. Within
the standard semimartingale framework, we propose a new methodology
to detect jumps. We derive a representation of the quadratic variation
in terms of a wavelet spectrum. An adaptive threshold procedure on
wavelet spectrum estimates aims at localizing jumps. Our main empiri-
cal result indicates that quantitative guidance significantly improves the
predictability of monetary policy.
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1 Introduction

Guiding expectations about future policy decisions has become a standard practice
of central banks around the world. Beside setting a very short term interest rate,
i.e. the key rate, the expectations management about future key rate settings is an
important instrument of monetary policy. However, specific techniques to manage
expectations are remarkably different, see Blinder et al. (2008). Most central banks,
including the Bank of England and the European Central Bank, give only qualitative
signals about the likely direction of the next few policy decisions. In contrast, a
small but increasing number of central banks implement a quantitative strategy by

publishing numerical projections of key rates up to three years into the future.!

From both a theoretical and empirical perspective, there is a controversy about
quantitative guidance. Mishkin (2004) addresses the concern that markets misinter-
pret the projections as a commitment to future policy decisions. Morris and Shin
(2002) and Rudebusch and Williams (2008) show that central banks’ projections
may crowd out private forecasts which results in even worse outcomes relative to
the case of no central bank guidance. While empirical papers such as Detmers and
Nautz (2012), Ferrero and Secchi (2009) and Moessner and Nelson (2008) find sig-
nificant responses of market interest rates to a published policy path, advantages
of quantitative guidance compared to qualitative guidance are not established yet.
A cross-country, event-study by Kool and Thornton (2012) suggests that adjust-
ments of interest rates on monetary policy announcement days do not depend on
the guidance regime. In the same vein, the GARCH approach of Andersson and Hof-
mann (2009) indicates equally likely policy surprises irrespective of whether forward

guidance involves the publication of an own interest rate path or not.

The current paper proposes a jump detection approach to investigate whether a
change in the guidance strategy from qualitative to quantitative guidance increases
the predictability of monetary policy. We follow the analogy of Das (2002) and
Piazzesi (2005), and identify monetary policy surprises through jumps in interest
rates on policy announcement days. Due to relatively short sample periods of quan-

titative guidance, combined with occasional, extraordinary market responses to cen-

LCentral banks that guide quantitatively are the Reserve Bank of New Zealand (since 1997), the
Norges Bank (since 2005), the Swedish Riksbank (since 2007), the Czech National Bank (since
2008), the Sedlabanki Islands (since 2007) and, in a slightly different way, the Federal Reserve
(since 2012).



tral bank announcements, it appears beneficial to avoid inference on magnitudes of
policy surprises. Parameter estimates of conventional event-study approaches are
usually dominated by a small fraction of extreme values. Applying standard distri-
butional assumptions renders it difficult to find any statistically significant difference
between sample estimates. Therefore, we focus on a binary jump variable. The rel-
ative number of jumps within a qualitative and quantitative guidance period serves
as a statistic to test the main hypothesis of less policy surprises during the period

of key rate projections.

Estimation and testing for jumps in financial data usually refers to semimartingales
which constitute a wide class of continuous time, stochastic processes. In the litera-
ture on non-parametric inference on semimartingales, several approaches have been
proposed to separate a diffusion and jump part given discrete observations. KEsti-
mates of both components refer to the quadratic variation made up as the sum of the
integrated volatility and the jump variation, see e.g. Ait Sahalia and Jacod (2012)
and Dumitru and Urga (2012). However, most methods like the bi-power variation
of Barndorff-Nielsen and Shephard (2004) are not meant to localize the exact timing
of jumps. To localize jumps, Lee and Mykland (2008) and Andersen et al. (2007)
propose a t-test-type approach performed on each return standardized by the bi-
power variation. Similarly, Mancini (2009) and the extension of Podolskij and Ziggel
(2010) rely on the realized volatility and bi-power variation and utilize a threshold-
ing technique on squared return series to locate jump points. Instead of thresholding
returns directly, Fan and Wang (2007) propose a more comprehensive approach and
use coefficients of a discrete, decimated wavelet transform. With the wavelet trans-
form the information on jump locations and variation is stored at high-resolution
levels (fine scales) while useful information for integrated volatility is captured by
low-resolution levels (coarse scales). The variance of the integrated volatility esti-
mator benefits from the orthogonality of the decimated transform. However, the
orthogonality came at the price of localizing jumps at dyadic locations only. Fur-
thermore, no straightforward expression for increments in the quadratic variation

can be derived.

The methodology proposed here extends the wavelet approach of Fan and Wang
(2007) to the discrete, non-decimated wavelet transform. We establish a pointwise
decomposition of the quadratic variation, which we finally use to detect jump points.

The decomposition is considered in the context of Locally Stationary Wavelet (LSW)



process of Nason et al. (2000) and van Bellegem and von Sachs (2008). Given the
link between a discretely sampled semimartingale and the class of LSW processes, we
derive a representation of the quadratic variation in terms of a wavelet spectrum.
Since the local regularity of a semimartingale translates to its wavelet spectrum,
jump points of an observed process can be detected via wavelet spectrum estimates.
A smooth version of the adaptive threshold estimator of von Sachs and MacGibbon

(2000) applied to the spectrum localizes jumps of the underlying semimartingale.

Empirical evidence refers to the Norwegian example. The case of Norway provides
a sufficiently long history of six years of key rate projections. Furthermore, it allows
observations of a 2001 to 2011 sample to be partitioned into a qualitative and quanti-
tative guidance period. The main results on daily short and long term interest rates
indicate: First, quantitative guidance does not further improve the predictability of
current policy decisions. Second, switching from qualitative to quantitative guid-
ance significantly decreases revisions of markets’ expectations about future policy
decisions. Since a qualitative guidance strategy already implies a high level of short
term guidance, we conclude that quantitative guidance significantly enhances the
transparency about the decision making process of monetary policy and improves

the longer-term predictability of central banks.

The remainder of the paper proceeds as follows. Section 2 highlights the rational
of central banks’ forward guidance and provides examples of qualitative and quan-
titative guidance. The Norwegian interest rate data is introduced in the context of
target and path surprises in Section 3. The economic hypotheses are formulated
in Section 4. Section 5 introduces the jump detection approach and the estimator
of jump probabilities. Section 6 contains the empirical part. We show estimates
of wavelet spectra and jump probabilities as well as results of the hypothesis tests.

Section 7 concludes.

2 Monetary policy guidance:

the Norwegian example

Central Banks’ main instrument to reach the goal of price stability is a very short

term interest rate, i.e. the key rate.? It is, however, not the short end of the term

2In Norway, the key rate is the overnight deposit rate. Decisions on the key rate are made on
monetary policy announcement days every sixth week, see Norges Bank (2009).



Figure 1: The Norges Bank’s key rate projections.
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Notes: Quarterly average of the actual key rate (black, solid line) and projections
in the baseline scenario (gray, dashed lines) from Nov. 2005 to Dec. 2011. Circles
highlight projection days. The key rate is given in percentage points.

structure but a longer rate that affects economic conditions. Therefore, the trans-
mission of monetary policy to longer-term rates is of crucial importance. Relations
between short and longer-term interest rates are usually discussed in the context of

the expectations hypothesis. Its simplest, linearized form is given by:

B =2 (4 S ) )

i=1

where RE") denotes the interest rate at time ¢ and maturity n > 1, r; is the short
term rate with n = 1 and [E; is the expectations operator with respect to information
available at t. The expectations hypothesis highlights that steering the very short
end of the term structure, r;, has only minor effects on longer-term yields, R,g").
What matters is the path of expected future short rates, 37—} E(rs;). Therefore,
central banks have implemented communication strategies to manage expectations

about a future policy path.

Most central banks adopt a qualitative guidance strategy. The technique provides
hints on the most likely direction of the next few key rate changes. An example
of qualitative guidance is given in a talk of the Norges Bank’s governor, Gjedrem
(2003): "We have experienced a period of monetary policy easing. This period is
not over." While this statement is precise about the sign of the next policy move, its
magnitude and implications for subsequent key rate changes remains vague. From
2001 to 2005 such qualitative hints within speeches, interviews and press conferences

constitute the Norges Bank’s guidance strategy.



A relatively new strategy, that has gained in importance in recent years, is quan-
titative guidance. Central banks that guide quantitatively are much more explicit
about their future policy assessments. They provide a path of numerical values of
future key rates on pre-announced publication days. In November 2005 the Norges
Bank has replaced its qualitative guidance strategy by quantitative guidance. Since
then numerical values of a projected path of future key rates are published at every
third monetary policy announcement day. Figure 1 illustrates the Norges Banks’s
history of quantitative guidance. Each dashed line belongs to a projected path that

reflects quarterly averages of the key rate up to three years into the future.?

The main goal of quantitative guidance is to enhance the efficiency of monetary
policy. As highlighted by Svensson (2006), given a path of expected future key rates
along with forecasts of major macroeconomic variables, a central bank’s reaction
function becomes more explicit. Consequently, under stable central banks’ prefer-
ences, quantitative guidance should reduce the need of market adjustments on policy

announcement days, thus, enhance the predictability of monetary policy.

3 Target and path surprises

We distinguish between the short term and long term predictability of monetary pol-
icy by referring to the target and path surprise framework introduced by Giirkaynak
et al. (2005). With respect to the expectations hypothesis (1), target and path sur-
prises are based on the driving forces behind short and longer-term interest rates.
A target surprise is defined as an unexpected key rate change. According to (1),
the key rate is a major component of shorter-term interest rates. Since decisions on
the Norges Bank’s key rate are made every sixth week, we define jumps in 1 month
Norwegian money market rates on monetary policy announcement days as an indi-
cator of unexpected policy decisions. In contrast to shorter-term rates, longer-term
rates are mainly driven by expectations about future key rates. Therefore, the path
surprise measures the degree to which market participants revise their expected
monetary policy path following the actual decision or aspects of policy guidance.
We interpret jumps in a 1 year money market rate and a 3 and 5 year Norwegian

government bond rate on monetary policy announcement days as evidence about

3Projections are published in Monetary Policy Reports. Further information about the underlying
model and additional criteria are provided in Brubakk et al. (2006) and Qvigstad (2006).



Figure 2: 1 month and 3 year interest rates and return density functions.
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Notes: Daily changes in 1 month (upper part) and 3 year (lower part) interest rates
in percentage points. The right hand plots show the estimated probability density
function (black) and a corresponding normal density (grey).

revisions in market’s expectations about future policy decisions.

We assess target and path surprises for a sample period from March 2001 to Decem-
ber 2011. The starting date of our sample is marked by the introduction of inflation
targeting in Norway. The sample includes a total of 2721 daily observations, in-
cluding 94 policy announcement days.* Figure 2 gives an example of the data. The
figure depicts day to day changes of the 1 month and 3 year Norwegian interest rates
in conjunction with estimates of the respective return probability density function.
Norwegian interest rates reflect the well known and often cited stylized facts of fi-
nancial return series: the sample mean is close to zero, the marginal distribution is
slightly skewed and heavily tailed, volatility is clustered while the autocorrelation
of adjacent returns appears to be small. In particular, the leptokurtic shape of the
density functions indicates the presence of jumps. We aim at detecting these jumps

to assess the predictability of monetary policy.

iThe data is available on the Norges Bank’s web page: http://www.norges-bank.no/en/price-
stability /interest-rates/.



4 Economic Hypotheses

To assess the impact of the guidance strategy on the predictability of monetary
policy, we define three economic hypotheses. Each hypothesis refers to a specific
classification of monetary policy announcement and non-announcement (all other
days) days. In particular, we distinguish between a qualitative and a quantitative

guidance period. The criterion to assess the predictability are jump probabilities.

News-hypothesis: Monetary policy announcements contain relevant news. The

announcements induce significant target and path surprises.

We call target and path surprises significant if jump probabilities on announcement
days are significantly larger than on non-announcement days. The verification of the
News-hypothesis across the qualitative and quantitative guidance samples already
provides a first indication about an impact of the guidance strategy. However, shifts
in target and path surprises can be driven by a change of jump probabilities on
non-announcement days. Therefore, our main focus is on the predictability across

the qualitative and quantitative guidance periods.

Guidance-hypothesis: Quantitative guidance enhances the predictability of mone-
tary policy. Quantitative guidance induces significantly less target and path surprises

than qualitative guidance.

Less target surprises imply a decrease in jump probabilities of the 1 month rate.
A significant decrease determines improvements in the short term predictability of
monetary policy. In contrast, less path surprises are identified by a decrease in jump
probabilities of the 1, 3 and 5 year interest rates. A significant decrease enhances the
longer-term predictability of monetary policy. As a control for an overall decrease

of jump probabilities, we state the Jump-level-hypothesis.

Jump-level-hypothesis: The overall level of jump probabilities of interest rates is

constant across the qualitative and quantitative guidance sample.

We evaluate the Jump-level-hypothesis via jump probabilities on non-announcement
days. The three hypotheses are further formalized in Table 2. If both, the Guidance-
and Jump-level-hypothesis hold true, we deduce that quantitative guidance signifi-

cantly increases the short and longer-term predictability of monetary policy.

Important for a valid analysis of our hypothesis: Since 2003 the Norges Bank pro-

vides hints about future policy decisions on policy announcement days only, see



Holmsen et al. (2008). Thus, monetary policy surprises are not artificially reduced

by information given between announcement days.

In the next section we propose a jump detection approach for the daily interest
rate data. The jump detection provides a first step in the estimation of jump

probabilities.

5 Methodology

5.1 Semimartingales and Locally Stationary Wavelet pro-

cesses

Following the standard literature on asset price modeling (see e.g. Ait Sahalia and
Jacod 2012), we assume the yield X = (X)) of a specific maturity to be a

semimartingale.
dXt = ,utdt + O'tdBt + th, t - [O, ].] (2)

For the present empirical investigation, the ¢t € [0, 1] interval refers to the whole
sample period from 2001-2011. The terms on the right hand side of (2) correspond
to the drift, diffusion and jump part of X. B, is a standard Brownian motion
and the diffusion variance o? is called the spot volatility. To detect jumps in X
which reflect surprise elements, it is informative to consider a compound Poisson
jump part. Hence, we assume J; to consist of a Poisson process N, that counts the
number of jumps up to time ¢. The jump size at time ¢ is AJ; = J; — J;_. Estimates

of the quantities in (2) are usually build on the quadratic variation,

t Ny
QVi = [ otds+ 3 (A ten,1], (3)

0 =1
including the integrated volatility and the jump variation. The focus of our investi-
gation is on the process V;. In particular, we are interested in daily time intervals

on [0, 1] where N; increases by one.
With daily data at hand, we approximate the semimartingale at T" equally spaced,

discrete time points t; = i/T,i = 1,...,T. The sampling of the increments of the

semimartingale gives a (mean zero) sequence AX = (AXy,)se(0,1), With daily dif-



ferences AXy, = X3, — Xy, ,, @ = 1,...,T. Following the definition of Locally Sta-
tionary Wavelet (LSW) processes of Nason et al. (2000) and the generalization of
van Bellegem and von Sachs (2008), we can write the sampled increments of the
semimartingale in terms of a LSW process. The mean-square representation of the

sampled increments from (2) is given by:

-1

AX, = Y 2P i Wj@kW(

j=—o00 k=—00

te — &
9

) s ti=i)T.i=1,..T, (4

with a scale j and location ¢; dependent transfer function W; : (0,1] — R, a non-
decimated wavelet system (Zj/ 210(-))],’% generated via dilation (j) and translation
(t)) of a mother wavelet 1) and a zero mean orthonormal identically distributed
random process ;. For ease of presentation, LSW processes are usually build on
the simplest discrete non-decimated system, called the Haar system. However, in
general any function that satisfies time-frequency localization properties can be used
as a mother wavelet, compare Fryzlewicz and Nason (2006) and the admissibility
conditions in Daubechies (1992, Sec. 1.3).> Out of (4), the quantity of interest is

the wavelet spectrum

Paralleling classical Fourier spectral analysis, the wavelet spectrum provides a de-
composition of the process’ variance. The larger the wavelet spectrum at scale j and
time point t;, the more dominant is the contribution of scale j in the variance at
time ¢;. In the present context of semimartingales, the spectrum S;(¢;) is considered
a decomposition of the quadratic variation. Given (4), from Proposition 1 of van
Bellegem and von Sachs (2008) and the wavelet integrated volatility of Hog and
Lunde (2003) and Fan and Wang (2007), a representation of the quadratic variation

in terms of the LSW spectrum carries over:

i -1
QVgiLSW) =Y > Sity), ti=i/T,i=1,..,T. (6)

s=1j=—o0

5Small scales j correspond to low frequencies, while scales approaching -1 correspond to high
frequencies. For an introduction to wavelets see Daubechies (1992) and Vidakovic (1999). In
our application, AX outside the (0, 1] interval are captured by the reflection boundary condition.
However, to ease notation, in the following boundaries are treated in the sense of zero padding.



The LSW representation transmits the local regularity of X to the wavelet spectrum
S;(t;) at scale j = —1,—2,... and time point ¢;. Since the jump part .J; consti-
tute a high frequent characteristic of the underlying process, it materializes at the
fine scales of the wavelet spectrum. Lower-resolution levels capture the integrated
volatility. The different decay orders of wavelet coefficients of the Brownian and
jump part formulated by Fan and Wang (2007) translate to the wavelet spectrum

and allow the jump detection via thresholding.

5.2 Jump localization on wavelet spectrum estimates

As introduced by Nason et al. (2000), the expansion of an observed process AX, on
a non-decimated wavelet system (2j/ 2¢(-)) y defines an estimator of the wavelet
Itk

spectrum. The wavelet periodogram at time point ¢; and resolution level j is given
by:

(r te—ti\ )
Li(t) =2 (ZAth¢(k2j )) L o j=—d =1t =0T, i=1,...T, (7)
k=1

with —J = |—log, T'| the coarsest scale. As in the Fourier case, the periodogram
is not a consistent estimator of the spectrum (5). For fixed scales j, its expected
value is E (I;(t;)) = 3,2 ; AjuSe(t;), where A, are elements of the invertible, inner
product matrix of the autocorrelation wavelets, see van Bellegem and von Sachs
(2008).° Compared to the decimated wavelet transform, the bias is the price to
pay for the better time resolution of the non-decimated transform.” However, as
the expected value of the periodogram suggests, (asymptotic) unbiasedness can be
achieved by pre-multiplying (7) with the elements of the inverted, inner product

matrix:
AUB) =
Sy (t) = Y AL L) (8)
—J

is the unbiased spectrum estimator. The consistent estimator of the spectrum is

an appropriately smoothed version of (8) across time, denoted by S'j(tl-), see e.g.

SNote, that A is not simply the identity matrix since the non-decimated system is not orthogonal.

"The use of the decimated wavelet transform gives values of I ; at dyadic time points ;27,4 =
1,.7T,j = —J,....,—1 , only. The decimated transform does not allow the local variance to be
written as a wavelet spectrum, see van Bellegem and von Sachs (2008).

10



Fryzlewicz and Nason (2006).

We simply deduce, since gj(ti) is a consistent estimator of the local variation for
each scale j and time point #;, 3°; S’j (t;) is a consistent estimator of the increment in
the quadratic variation of X at ¢;. Additional summation across time, >, >, gj (1),
provides the LSW estimator of the quadratic variation (6). The estimator parallels
the expression of the wavelet realized volatility in Fan and Wang (2007). However,
in contrast to Fan and Wang (2007), the summation object S;(t;) has the crucial
advantage of a more detailed time resolution and a direct statistical meaning as a
consistent decomposition of the quadratic variation. In particular, the detailed time

resolution of Sj (t;) allows for a pointwise localization of jumps.

To detect the jumps, we define an upper bound of a spectrum S’j(ti) at time point t;
and scale j that contains the drift and diffusion part of (2) only, i.e. Sj(ti) belongs
to a process without jumps. Focusing on high resolution levels j — —1, we localize

jumps in X by
Niw =2 1(S(ts) > S(t)), ti=i/T, i=1,..,T. (9)
s=1

At fine resolution levels j, the indicator function 1(-) equals one whenever the es-
timated spectrum S;(t;) exceeds the upper bound of the spectrum S;(t;) without
jumps. S’j (t;) can be considered a smooth version of the time varying threshold of
von Sachs and MacGibbon (2000).

~ wr
Si(ti) = (n+1)7" > Sjtik)d*(n), (10)
k=—n/2

with n << T a positive, even number and §(n) a reasonable threshold criterion.
One choice of criterion is that of the universal threshold, i.e. §(n) = /2logn, see
e.g. Wang (1995). Since the threshold S;(t;) is time varying and depends on the
spectrum, the number of detected jumps is not artificially increasing on local time
intervals where the integrated volatility is high. The adaptiveness appears as an
advantage compared to usually employed global tuning parameters. In the empirical
application we do not consider a comparison of different scales j, see the discussion
of Raimondo (1998), but follow Wang (1995) and Fan and Wang (2007) and refer
to the finest scale 7 = —1. Thus, we detect a jump at ¢; if ]\7_17,51. ~N_y, , =1

11



Based on the spectrum estimates, we are now in the position to localize the jump
points of the observed interest rate data. In order to test the economic hypotheses

formulated in Section 4, we next define an estimator of jump probabilities.

5.3 Jump probabilities

The main statistic to test for an impact of increased forward guidance are jump
probabilities ppq on different subsets of the date vector, M C [ty,...,t7]. The sets
belong to either policy announcement days or days without policy announcements.
Furthermore, we distinguish between a qualitative and a quantitative guidance pe-
riod. Table 1 gives a precise formulation of the different sets M. To estimate the
jump probabilities for each set, we localize the jumps from the daily interest rate
data via wavelet spectrum estimates. The number of jumps for the whole obser-
vation period is given by N i——1t7—1 from (9). Restricting the detected number of

jumps to sets M, provides the jump probability estimator
pam=hINA (11)

with i the number of days that belong to M. Since the counting process (N_14,)tc(0,1]
is defined as a Poisson process, we approximate the occurrence of jumps at a par-
ticular day by the Bernoulli distribution. The variance of the estimator (11) is,
therefore, given by Var(pay) = pm(l — pam)/h. As a natural choice, we build the

hypothesis tests on the principles of a simple t-test.

6 Empirical results

6.1 Wavelet spectra of Norwegian interest rates

In order to get deeper insights into the variation and jump characteristics of the
observed processes, we estimate wavelet spectra of the interest rates as described
in Section 5.2. Computational steps closely follow Nason et al. (2000). Results
are based on Daubechies’ least asymmetric wavelets, i.e. Symmlets, and a minimax
threshold criterion, see Vidakovic (1999, Sec 3.4.5 and 6.4) for further details. In
contrast to the differencing operations of Haar wavelets, Symmlets are closer related

to averaging filter functions, thus, can be considered to provide local averages of the

12



Figure 3: Wavelet spectrum estimates for 1 month and 3 year interest rates.

A) Wavelet Spectrum estimates
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Notes: Spectrum estimates of 1 month (left) and 3 year (right) interest rates based
on Symmlets with six vanishing moments and a wavelet shrinkage method (hard
thresholding). Part A depicts estimates of wavelet spectra from the finest scale
j = —1 up to the coarse scale j = —12 (color code: the darker the shading the
stronger the impact of the particular scale and time point). Part B highlights the
finest scale j = —1 (gray line) and the minimax threshold with a window width of
six month (black line). Part C shows values at j = —1 above the threshold.
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return series. We chose a bandwidth of 12 days at the finest scale, i.e. six vanishing
moments, to achieve some degree of smoothness. We apply the minimax threshold
criterion since it is less conservative than the universal threshold. As a robustness
check, Appendix B reports results on Haar wavelets and the universial threshold.

We also consider results for different numbers of vanishing moments.

Figure 3 depicts estimated spectra of the 1 month (left column) and the 3 year (right
column) interest rates. Part A shows wavelet spectrum estimates on a time-scale
plane. Non-surprisingly, the color code of the plots indicates that most of the return
variation can be attributed to fine scale components (dark shading). On average,
the finest scale ;7 = —1 accounts for more than 50 percent of the total variation
(6). Coarser resolution levels gain in importance around 2008. The darker shading
displays the volatility increasing effects of the global financial crisis. However, due
to the local adaptiveness of the threshold, we do not distinguish between crisis and
non-crisis periods. As Part B of Figure 3 shows, the threshold (black line) adjusts
to the local increase of the variation (gray line). Since spectrum estimates at scale
7 = —1 above the threshold localize jumps, the number of detected jumps is not
artificially increasing during times of financial stress. Truncated estimates of the
finest scale above the threshold are shown in Part C of Figure 3. The truncated
estimates indicate the heterogeneity of squared jump sizes across time. Our focus

on jump probabilities avoids handling this heterogeneity.®

To analyze changes in target and path surprises we now focus on jump probabilities

and the hypotheses formulated in Section 4.

6.2 Quantitative guidance and monetary policy surprises

In the previous subsection we estimate spectra of the different interest rate series
and detect jump points according to the thresholding rule presented in Section 5.2.
We now take advantage of the localized jump points to verify the economic hy-
potheses discussed in Section 4. We simply compare different jump probabilities by
a standard approximation of the t-test. Tests are titled according to their respec-
tive hypothesis. The estimated jump probabilities are presented in Table 1, Table 2

reports the test results.

8See further assessments of the jump points in Appendix A.
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During the period of qualitative guidance Norwegian interest rates show a pro-
nounced response to monetary policy announcements. On average, jumps on policy
announcement days are three times more likely than on all other days. For exam-
ple, Table 1 shows that the three year rate jumps on announcement days with an
estimated probability of 12.5%, i.e. five jumps out of 40 policy days. In contrast,
on non-announcement days the probability is 3.45%, corresponding to 39 jumps out
of 1129 non-policy days. As the p-values of the News-tests in Table 2 indicate, at
a confidence level of 10%, all maturities have significantly larger jump probabilities
on monetary policy announcement days. This suggests significant target and path

surprises during the period of qualitative guidance.

In the quantitative guidance period jump probabilities of the 1 and 5 year maturities
are no longer larger on policy announcement days than on non-announcement days.
In general, the difference between jump probabilities is much smaller than during
the period without key rate projections. For the example of the three year rate,
the probability of a jump on policy announcement days has decreased to 3.70%.
With a total number of 54 policy days this implies halving the absolute number of
jumps and a decline by 8.8 percentage points. At the same time, jumps on non-
announcement days decline by 0.5 percentage points only. p-values of the News-tests
show that jump probabilities are no longer significantly larger on monetary policy
days. Consequently, no significant target and path surprises can be observed during

the period of quantitative guidance.

Since we find significant policy surprises during the qualitative guidance period but
non-significant policy surprises since key rate projections are published, evidence
so far suggests that quantitative guidance increases the predictability of monetary
policy. Utilizing the Guidance- and Jump-level-test, we now test across the qualita-
tive and quantitative guidance sample to verify whether target and path surprises

decrease significantly.

Regarding the short term predictability of monetary policy, the Guidance-test ap-
plied to the 1 month rate indicates no significant reduction in target surprises. The
jump probabilities on policy announcement days decline from 15% to 9.26%. How-
ever, with a p-value of 0.2, the guidance-test suggests no further improvements in
the predictability of current policy decisions. In contrast, the Guidance-tests for
longer-term maturities of 1, 3 and 5 years reflect significantly less jumps on mone-

tary policy announcement days. Jumps of the 1 and 3 year rates decline from 12.5%
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to 3.70%. With the introduction of quantitative guidance, path surprises became
significantly less likely, implying that market participants revise their expected path
of future key rates less frequent. Quantitative guidance consequently enhances the

longer-term predictability of monetary policy.

Finally, results of the Jump-level-test strengthen the outcomes of our empirical
study. The Jump-level-test indicates no significant changes in jump probabilities on
non-announcement days between the two guidance samples. Thus, the outcome of
the Guidance-test is not driven by an overall decline in jump probabilities. We rule
out an overall structural break of jump intensities between the two guidance periods
and interpret changes on policy announcement days as driven by changes in policy

guidance.

7 Conclusion

This paper’s contributions are twofold: First, we introduce a new methodology to de-
tect jumps in time series data. We propose to formulate Locally Stationary Wavelet
processes in the context of semimartingales. The connection allows a decomposition
of the quadratic variation of semimartingales by means of a wavelet spectrum. We
detect jumps on wavelet spectra via an adaptive thresholding rule. The pointwise
time resolution and a direct statistical meaning as a consistent decomposition of the
quadratic variation appear as benefits of the spectrum estimator. Second, based on
the Norwegian example, we provide new evidence in favor of quantitative guidance
compared to qualitative guidance. While our empirical results suggest that quan-
titative guidance does not improve the predictability of actual policy decisions, we
find that switching from qualitative to quantitative guidance stabilizes expectations
about future policy decisions. We conclude that key rate projections improve the

longer-term predictability of monetary policy.

Extension of the present work appear promising. We already indicate that the jump
detection approach can be easily extended to define estimates of the jump variation
and integrated volatility. Furthermore, the formulation of semimartingales under
additive noise appears as a simple extension since the wavelet transform can be
considered a smoothing operator and a further de-noising step is involved in the
spectrum estimate. For empirical investigations, longer histories of key rate projec-

tions would be helpful. Studying market adjustments to central bank’s revisions at
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particular projection horizons would further increase the understanding about cen-

tral banks’ ability to drive markets’ expectations. The analysis of common jumps

(cojumps) of particular interest rate maturities appears as a promising technique to

investigate that relation.
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A Evaluation of jump days

Based on the data introduced in Section 3 and the setup of Section 5, we investigate
the size of returns on days where jumps occur (jump days). On average, the absolute
change in interest rates should be relatively large on jump days. Table 3 reports

these sample averages and contrasts jump days with returns of the whole data set.

Table 3: Average absolute changes in interest rates.

Sample 1 month 1 year 3 year 5 year
Whole data set 3.75 3.09 3.69 3.60
Jump days 19.42 12.3 13.3 11.9

Announcement-days 3.54 3.10 2.33 4.97
Jump announc.-days 15.60 10.4 24.0 19.6

Notes: The average of absolute changes in interest rates for different maturities are
given in basis points. The whole sample includes 2721 observations and 94 policy
announcement days. Announcement days that induce jumps range from 5 jumps (5
year rate) to 11 jumps (1 month rate), compare Table 1.

B Robustness analysis

We document the sensitivity of our main results with respect to the specific choice
of wavelets and thresholds. Table 4 shows estimated jump probabilities for the
different subsets M of the date vector as defined in Table 1. We present results for
the Haar wavelet and Symmlets. The tuning-parameter is the threshold criterion
and its specific window size (i.e. six month and three month). We also tried different
numbers of vanishing moments for Symmlets (4 and 8), however the impact on jump

probabilities is rather negligible, thus, we do not report these results here.

Non-surprisingly, our study shows that the different setups have an impact on the
number of detected jumps. Thus, jump probabilities depend on the chosen threshold
and wavelet. However, the choice of setup has only a small impact on the relative
frequency of jumps between the different sets of the date vector (e.g. comparing
the qualitative guidance and quantitative guidance period). Since our economic

hypotheses are defined to elucidate relations between jump probabilities (given one
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specific setup), our empirical conclusions do not crucially depend on the chosen

setup.
Table 4: Jump probabilities for different estimation setups.
Sot Minimax(6) Universal(6)
¢ 1 month 1 year 3 year 5 year 1 month 1 year 3 year 5 year
DM, 22.5 30.0 17.5 10.0 12.5 20.0 12.5 10.0
= (6.60) (7.25) (6.01) (4.74) (5.23) (6.32) (5.23) (4.74)
< DMy 4.52 8.59 5.93 5.76 2.04 3.37 2.92 3.01
= (0.62) (0.83) (0.70) (0.69) (0.42) (0.54) (0.50) (0.51)
DMs 24.1 20.4 7.41 9.26 7.41 12.9 3.70 3.70
(5.82) (5.48) (3.56) (3.49) (3.56) (4.57) (2.57) (2.57)
DM, 7.88 6.54 5.87 6.01 2.94 2.54 2.87 3.94
L ©70) _ _(064) (061) (061) (044 (04D _ (0.43) _ (0.50)
Minimax(3) Universal(6)
1 month 1 year 3 year 5 year 1 month 1 year 3 year 5 year
£ Pmy 15.0 12.5 15.0 10.0 10.0 7.50 10.0 7.50
= (5.65) (5.23) (5.65) (4.74) (4.74) (4.16) (4.74) (4.16)
g PMs 5.31 5.93 3.72 5.61 2.57 3.01 1.15 1.42
S8 (0.67) (0.70) (0.56) (0.59) (0.47) (0.51) (0.32) (0.35)
P 14.8 5.56 3.70 3.70 5.56 1.85 1.85 0
(4.83) (3.12) (2.57) (2.57) (3.12) (1.83) (1.83) (0.00)
DM, 4.07 5.14 3.87 4.21 3.88 2.40 1.00 0.93
(0.59) (0.57) (0.50) (0.52) (0.50) (0.40) (0.26) (0.25)

Notes: Estimates of jump probabilities and standard errors in parentheses are given in
percent. Sets M, refer to ¢ = 1,2,3,4 different subsets of the date vector: M;j : Policy
announcement days during the qualitative guidance period, M : Non-announcement days
during the qualitative guidance period, M3 : announcement days during the quantitative
guidance period, M, : Non-announcement days during the quantitative guidance period.
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