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Abstract

We derive recursive representations of nonlinear moviregage (NLMA) perturbations of DSGE
models. As the stability of higher order NLMA representasidollows directly from stability at
first order, these recursive representations provideoigosupport for the practice of pruning that
is becoming widespread. Our recursive representatioardiffom pruned perturbations in that it
centers the approximation and its coefficients at the apmration of the stochastic steady state
consistent with the order of approximation. We compare tgorghm with six different pruning
algorithms at second and third order, documenting the réiffees between these six algorithms
and standard (non pruned) state space perturbations as@rsind, and third order in a unified
notation compatible with the popular software package Dyn@/hile our third order algorithm is
the most accurate, the gains over two alternate algoritmeeadest, suggesting that this choice

is unlikely to be a potential source of error.
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1 Introduction

Locally approximated models that are stable at first ordempraduce explosive simulations when
approximated at second or higher order. This is troublesasri@gher order approximations are
needed to capture salient features of the macroecofonmg instability induced by higher order
simulations is caused by the accumulation of nonlinear semigher than the order of approxi-
mation that add additional instable steady states to theoappation. Judd, Maliar, and Maliar
(2011) offer one solution to generate stable simulatiofisiently. Another solution offered by the
literature is to maintain the local, perturbation apprqdmit to “prune” these higher order terms
and restore the desired stability. This later approachlmasadditional advantage of enabling the
application of GMM and SMM to these nonlinear settifigs well as a decomposition of theoret-
ical moments into orders of approximation and risk adjustiie

The nonlinear moving average perturbations of Lan and M&arde (2012b) produce ap-
proximations that are stable at all orders of approximatihen the first order approximation is
stable. In this study, we derive recursive representatonsfinite moving average approxima-
tions, providing endogenously pruned algorithms for noedir simulations. While the pruning of
nonlinear perturbations introduced by Kim, Kim, Schaunghand Sims (2008), and indeed the
different algorithms to implement pruning, has prolifexhtn the recent literature, Den Haan and
De Wind (2012) and Lombardo (2012) have objected, callimgrtiethodology ad hoc, and Ruge-
Murcia (2012) has noted the nontrivial nature of extendingn KKim, Schaumburg, and Sims’s
(2008) second order algorithm to higher orders. We proweettetical support for pruning algo-
rithms, interpreting them as recursive formulations oflim@ar moving average approximations.

We compare our nonlinear moving average based recursigithign to the pruning algo-
rithms of (at second order) Kim, Kim, Schaumburg, and Sin@®& and Den Haan and De Wind
(2012) and of (at third order) Andreasen (2012), Fernandikaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe (2011), Den Haan and De Wind (2012), amaf2? providing the literature

IAs noted by Ruge-Murcia (2012), Fernandez-Villaverdeg@on-Quintana, Rubio-Ramirez, and Uribe (2011),
Andreasen (2012), and van Binsbergen, Fernandez-\itliay&oijen, and Rubio-Ramirez (2012), capturing the time
varying shifts in risk premia or precautionary behavioruiegs at least a third order approximation.

2See Ruge-Murcia (2012) and Andreasen, Fernandez-\itleyand Rubio-Ramirez (2012).

3See Lan and Meyer-Gohde (2013).

4This is an undocumented algorithm at third order by Michdlahd. On Dynare, see Adjemian, Bastani, Juillard,
Mihoubi, Perendia, Ratto, and Villemot (2011).



with an overview of the various algorithms in a unified naiati Additionally, we compare all the
algorithms with standard (non pruned) perturbations attfweugh third order and with the exact
solution when known or a highly accurate projection solutiden unknown.

We run three horse races to compare the various pruningitlgsbeyond theoretical consid-
erations. First, we choose the Brock and Mirman (1972) ledgoence and complete depreciation
case of the stochastic neoclassical growth médskcond, we evaluate the algorithms in Burn-
side’s (1998) asset pricing model. Finally, we examine #rdgsmance of the different algorithms
in Caldara, Fernandez-Villaverde, Rubio-Ramirez, aad'?Y(2012) model with recursive prefer-
ences and stochastic volatility. The first two models passksed form solutions and we measure
the distance of the various pruning algorithms as well asutigruned perturbations to the exact
solution in terms of average, mean square, and maximal étfoile the last model has no closed
form solution and needs to be approximated, we follow Cald&ernandez-Villaverde, Rubio-
Ramirez, and Yao (2012) and choose the Chebyshev polyhappeaoximation as the reference
solution of the model to examine the performance of the @ffealgorithms. The most accurate
pruning algorithms are those that can be derived directipnfa moving average approximation
or Lombardo’s (2012) matched perturbation, with our aldpn performing marginally better ac-
cording to several criteria we use to compare the algorithxigorithms, however, that drop terms
of the order of approximation or add higher order terms suifféerms of accuracy.

The paper is organized as follows. The family of models wé kgl analyzing is presented
with the nonlinear moving average solution form in sec@oiVe derive the recursive representa-
tion of the nonlinear moving average approximation in &c8, and present the various pruning
algorithms in a unified notation in sectidn We examine Lombardo’s (2012) matched perturba-
tion algorithm separately in sectidn The numerical performance of the different algorithms are
analyzed using Brock and Mirman’s (1972) neoclassicalhgtstic growth model and Burnside’s
(1998) asset pricing model in secti6pand in sectior®.3we report the numerical performance of
these algorithms in a neoclassical stochastic growth meitlelrecursive preferences and stochas-

tic volatility. Section7 concludes.

5See McCallum (1989).



2 Model Class

We begin by introducing our class of models, a standard syst€nonlinear) second order expec-
tational difference equations. We then present the sal@soa policy function that directly maps
from realization of the exogenous shocks to the endogeramiahles of interest, and approximate
the solution with a Taylor series. Adopting Dynare’s typplaf all the endogenous variables, we
differ from Lan and Meyer-Gohde (2012b) and present thesadémodels and the approximations

of its solution out to third order in a computationally eféiot notation.

2.1 Problem Statement

We analyze a family of discrete-time rational expectatimglels given by

1) 0=E|[f (ytflvfend?yt, Y]
f is an(negx 1) vector valued function, continuousi-times (the order of approximation to be
introduced subsequently) differentiable in all its argasey; is an (ny x 1) vector of endoge-
nous variables divided following, e.g. Dyndregdditionally into two subvectors; "4¢"%°and
ystate (nfwdendox 1) and(nsx 1) respectively, commensurate with the presence of eleménts o
Yt with subscriptd + 1 andt — 1 in the system of equations; the vector of exogenous shfycks
is of dimension(nex 1) and it is assumed that there are as many equations as endsge&ro
ables(neq= ny). & is assumed independently and identically distribGtegch thatE(g;) = 0
and E(st®[m]) exists and is finite for alin up to and including the order of approximation to be
introduced subsequenty.

As is usual in perturbation methods, we introduce an auyilgrameteio € [0, 1] to scale
the risk in the model. The value = 1 corresponds to the “true” stochastic model under study

ando = 0 represents the deterministic version of the m8d&bollowing Anderson, Levin, and

6See Villemot (2011) and Adjemian, Bastani, Juillard, MibgwPerendia, Ratto, and Villemot (2011).

"Thus in practice, any exogenous serial correlation musidarporated into the vectgy, which is why this vector
might be more properly labeled endogenous and exogenoiables. We maintain this practice of the literature for
brevity.

8The notations;®™ represents Kronecker poweis®™ is the m'th fold Kronecker product of; with itself:

& & ---®¢&. For simulations, of course, more specific decisions raggrthe distribution of the exogenous pro-
times
cesges will have to be made. Kim, Kim, Schaumburg, and Sif&32. 3402) emphasize that distributional assump-
tions like these are not entirely local assumptions. Dyadgemian, Bastani, Juillard, Mihoubi, Perendia, Rattad a
Villemot 2011) assumes normality of the underlying shocks.
90ur formulation follows Adjemian, Bastani, Juillard, Mitbi, Perendia, Ratto, and Villemot's (2011) Dynare,
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Swanson (2006, p. 4), we do not scéde, &1, ...} — the realizations of the exogenous shocks up
to (including)t — with o, as they are known with certainty @atThe perturbation parameter does
not enter the problem statement explicitly, but only implyathrough the policy functions, and its
role will become clear as we introduce the solution form da@pproximation.

Fleming (1971) and Jin and Judd (2002) emphasize that thefusdo transition from the
deterministic to the stochastic model depends cruciallghentwo models being “close,” in the
sense that the underlying risk scaleddys “small,” as a stochastic perturbation like this is sin-
gular in that it changes the underlying order of the problseg Judd (1998, ch. 13). Kim, Kim,
Schaumburg, and Sims (2008) note the importance of the flyidg assumption” of sufficient
differentiability within a neighborhood af = 0 and Anderson, Levin, and Swanson (2006) simply
make the explicit assumption that the policy function, tbkigon to be introduced the following
subsection, is analytic within a domain that encompassed) ando = 1, enabling its represen-
tation ino by a Taylor series evaluated anywhere within that domaimivideg explicit conditions
for the model witho = 1 to be sufficiently close to the = 0 model is beyond the scope of our
study here and we follow the literature by assuming that allapproach t@ remains valid as we

transition to the stochastic model.

2.2 Nonlinear Moving Average Solution Form

Let the policy function take the causal one-sided infinitgusmce of shocks as its state vector

following Lan and Meyer-Gohde (2012b) given by

(2) Vi =Y(0,€,& 1,...), g:RTxR™xR™x... 5 RW

Note thato enters as a separate argument. As the scale of risk chamgtes) will the policy
functiony itself change. Time invariance and scaling the risk assedith future shocks give us
3 S-1=Y (0,&-1,&2,...)

(4) Vir1 =Y (0,€.1,&, & 1,...), Whereg; 1 = 0& 1

The notationy, y—, andy", was adopted in Lan and Meyer-Gohde (2012b) to keep trackeof t

source (throughy, y;—1, andy; .1 respectively) of any given partial derivative of the polfapction

Anderson, Levin, and Swanson’s (2006) PerturbationAIM dimtlard (2011). This is not the only way to perturb the
model: Lombardo (2010), for example, scales the entir@tjisif shockso{e;,0¢_1,...} along with the unrealized
future shocks. See sectiérfor further discussion.



necessary in calculations. Likewise, we append a tildeatd + 1 as we dick att + 1 in deference
to timet conditioning in the equilibrium conditiond); from the timet perspective ofX), &1 is

a random variable, hengg. 1 as well, whereas;, & _1,... and hence; andy;_; are realizations
of random variables. These notational issues will play @niginor role here, as we will take the
calculations of Lan and Meyer-Gohde (2012b) as given. Dukd@ssumption of time invariance,
y,y~, andy" are the same function differing only in the timing of theigaments. The terrag;, 1

in (4) is the source of risk, vig; . 1, that we are perturbing witf.

With the policy function of the form2), (3) and @), we can write {) as
0= Et |:f (y+deend({o-7f§t+l7 &,.. ~)7Y(07 &, &—1,-- .),y*Stat%o-, &—1,&-2,.. ')78t)]
(5) = F(Ovetvet—la"‘>

a function with arguments and and the infinite history of innovatiofs_ | }T:O.lo

2.3 Nonlinear Moving Average Approximation

We will approximate the solution2], as a Taylor series in the infinite state vector (i.e., aefo#

series) expanded around a deterministic steady Statkee time invariant fixed point iy of (5),

with all shocks, past and present, set to zero and all riskrdégg the future eliminategb = 0)

Definition 2.1. Deterministic Steady State

Lety € R"Y be a vector such that

(6) 0= f (y™dendoy e 0) — £ (x) = F (0,0,...

Furthermorey = y(0,0,...) is the solution ) evaluated at the deterministic steady state.
Analogously, we define the stochastic or “risky” steadyesta$ the stationary point in the

absence of past and present shocks but the risk of futur&stoc

Definition 2.2. Stochastic Steady State

19Note thate, 1 is not an argument dF as it is the variable of integration inside the expectatioms,

F(0,,&, & 1,...) = f (y”Wde”d‘to,'ém,st, ) Y08, &1, .),y 0, stfl,€t727---)7st) @(&r+1) derin
o)

whereQ is the support ang the p.d.f. ofe; 1. Thus, whero = 0, &1 is no longer an argument dfand the integral
(and hence the expectations operator) is superfluousjiyietide deterministic version of the model.

This definition parallels to that of Coeurdacier, Rey, anah&iit (2011) within the state space context. See section
4 for our state space definition of this concept.



LetySto"=y(1,0,0,...) € R"Y be a vector such that
(7) 0= Et [f (y+fwdend({1 st+1, .. ) ystoch ystochsta’[e 0)] —F (1, 07 N )

Assuming thes = 1 model is sufficient close to its determinisiic= O counterpart, the stochas-
tic steady state can be approximated by expandiagH)(1,0,...) in o around the deterministic,
that is,0 = 0, steady state in definitich 1

Sincey is a vector valued function, its partial derivatives formypércube. We use the method
of Lan and Meyer-Gohde (2012b) that differentiates confdviy with the Kronecker product,
allowing us to maintain standard linear algebraic strieguo derive our results.

Definition 2.3. Matrix Derivatives
Let AB) : R®*! — RP*9 be a matrix-valued function that maps ax 4 vector B into an px q

matrix A(B), the derivative structure of 8) with respect to B is defined as

8) Ag = Tt {A)} = [a%l abs]@m

where b denotes i'th row of vector B, indicates transposition; n’th derivatives are
®[n]

9) Aer = D n{A} = ([a%l &] ) A

Adopting the abbreviated notation above, we wyit6,i,...i,, as the partial derivative, eval-
uated at the deterministic steady stateyofith respect too for n times and with respect to
stT_il,etT_iz, e ,etT_im. Thus, we can then write thié-th order Taylor approximation of the pol-

icy function @) as

(10) Z m |1ZO|2 . |m_O[ Z} y0nI1I2 im0 ] (Et—i; ® & —i, ® -+ @ & i)
where we refer to Lan and Meyer-Gohde (2012b) for furtheaitket

This nonlinear moving average, or \Volterra series with bl.rrrﬁzn 0 ycn.1 im0 } directly
maps the exogenous innovations to endogenous variabldsely-th order. The kernels ah
collects all the coefficients associated with théh fold Kronecker products of exogenous inno-
vationsiy, iz, ... andiy, periods ago. Importantly, the outer sum indicates that gmaimation
of any given order is linear in all the kernels up to and inabgdthe order in question; thus, the
approximation is linearly recursi®. For a given set of indicesy, i», ... andim, the sum over

n gathering terms in powers of the perturbation parametexrdjusts the kernel for risk up to the

12The terminology is Lombardo’s (2010). See secBdor a comparison with the method advocated by him.



n-th order!® thereby enabling a classification of the contributions sk io the model alongside
polynomial nonlinearity.

The nonlinear moving average constructs an approximatioine (countable) sequence space
as opposed to the (measurable) function space sought itatheesd state space set up. Thus, by
construction, the approximation will be bounded for bouhdequences of inputs, whereas itera-
tions on approximations in the standard function spacemege cannot. Differently, the nonlinear
moving average can be derived by “solving out” an “invedibhonlinear state space representa-
tion following Priestly (1988, p. 25), which is only definedtkm the region of convergence of the
state space representation. By jumping straight to thamesn moving average representation and
allowing shocks from distributions with infinite supporteware, from this perspective, imposing a
region of convergence with an infinite radius on the nonlirstate space policy function. That is,
we achieve stability by assumption and the constructionuofapproximation is only valid when

this assumption hold¥

3 Recursive Representation of Nonlinear Moving Averages

As shown in Lan and Meyer-Gohde (2012b), nonlinear movingraye perturbations are linear
in the kernels (or sums of product spaces in the history otlstjowhich inherit the stability
properties of the approximation at first order and whosefmoefits can be expressed recursively
similarly to the linear case explored by Taylor (1986). W& wow show that the recursivity in
parameters leads to recursive representations in the endag variables themselves, but in an
order dependent manner consistent with pruning algoritirtige literature, as we will explore in

detail in sectiort.

3.1 First Order Recursive Approximation

The first order approximation of the policy function takes trm

(11) y =yt Z)yist,i, i—012. ..
i—=

13A similar interpretation for standard state space poligycfions can be found in sectighand Lan and Meyer-
Gohde (2012a) for multivariate and Judd and Mertens (20dr)riivariate expansions.
14see Jin and Judd (2002) for an example of when this would ridt ho



where the superscript) ony; implies this is the first order of approximatiopdenotes the deter-
ministic steady state value of the vecyprThe partial derivative; is a linear convergent recursion
(See the Appendix.) with a saddle-stable matrias the coefficient on its homogenous part. For

notational ease in deriving the recursive representatidimeoprevious equation, we define

(12) ) =y" -y

It follows that
(13) it = 3 v

Anticipating the derivations of higher ordelr:recursivereqmntations, we first derive a recursive
representation for the increment and then, using this merg, express the first order approxima-
tion recursively. This is obviously unnecessary at firsteor@s this recursive representation is
a standard result, see, e.g., Uhlig (1999), but will fix idé@asthe more involved higher order
recursive representations.

The increment of the first order approximatid»yfl) can be expressed recursively, as we sum-
marize in the following
Proposition 3.1. The first order increment, {ﬁ} can be expressed as a linear function of its own

past and the current realizations of exogenous shocks
(14) dyt) = ady VP4 gy
Proof. See the Appendix. O

Accordingly, the first order approximation can likewise bpmssed recursively

Proposition 3.2. The first order approximation of ydenoted S}), can be expressed recursively

through

(15) W =y+dy”

where

(16) ayf? = y,d2Y, a7 — ldyfls)lstate]

Proof. This is an immediate consequence of the definitiotn of theement in (2). O

Thus recovering the state-space policy function in linettirsgs—see, e.g., Uhlig (1999)—and
reiterating the equivalence at first order of moving avenagpeesentations—see Taylor (1986)—
with state space methods. Note the coefficienn (14) is the homogenous coefficient of the

recursion ofy;.



3.2 Second Order Recursive Approximation

The second order approximation of the policy function takesform
(17) YW=+ Syt Sy +5 S S Viile @& )
T2 g 02,
For the derivation of the recursive representation of tleipus equation, we define the second

order increment as the difference between the first and demoler approximation, subtracting the

constant risk adjustment of the second order

1
(18) dyt” =%~ yer -
Inserting (1) and @L7) in the previous equation yields the moving averaging regméation of

the second order increment
(19 =35 5 viile9)
The increment of the second order a{gplr;ximation can be sgpderecursively, as we summa-
rize in the following
Proposition 3.3. The second order increment, @y can be expressed as a linear function of its
own past and products of terms of lower order according tofttlewing recursion
(20) dy” —a dyt(g)lstatez % [Bzzd tt_alt@[zl +2B20 (dyt(_)lstate® St) + Book; [2]]
Proof. See the Appendix. O
Combining the increment definitions and recursive repradiems at first and second order, we
construct the following second order recursive formulayfor

Proposition 3.4. The second order approximation @f yenoted §?>, can be expressed recursively

through
1

(21) W =5+ Syor ot +ay”
where

1)state
22 ay? =y, 7" = ld%? ]

t
2

(23) dyt? = yysaedyf IS4 %yzzdzfl)®[ ]

Proof. Combine (8) and (L2) to expresslt(z) as a linear function of the constaitand :—2Ly02 and

the first and second order incremedgél) anddyt(z). Expressing the the first order increment in

terms of the vectodzfl) and rearranging the coefficient matrices accordifRyyelds the desired

15 This can be implemented using Koning, Neudecker, and Wak&b€1991) block Kronecker product. See the

9



result. O

The second order recursive approximatif)(preserves the natural decomposition into order
of approximation embedded in its nonlinear moving averagenterpart {7) — Moving to the
second ordely,. adjusts the first order approximation for the variance afifeishocks, andyt(z)
for the second order effects of the realized shocks. WAilEié an equivalent rewriting ofl(7) and
therefore accordingly stable, its stability can be seendayrening the linearly recursive structure
of the second order increment. As a recursion in the varsialnléz) in (20) shares the same
coefficient with L4) on its homogenous part. The inhomogeneous part, corgistitme first order
increment and the shocks only, inherits the stability frow previous order of approximation.

Besides stability, the second order recursive approxond#l) is centered at the second order
approximation of stochastic steady state in definigddgiven by
(24) yZsteh=y %yoz
To see this, note that in the absence of the past and presecikssh(l3) and @9) imply that
both the first and second order increments are zero, lealim@pproximation centered at the
deterministic steady state value plus the risk adjustnoernhe variance of future shocks. Likewise,
F(0,0,...)~F(0,0,...)+ %Fcz (0,0,...) has two nonzero terms up to second order that are solved

by y and 3y, respectively.

3.3 Third Order Recursive Approximation

The third order approximation of the policy function takiae form

@ _ o, 1 1 12, Ne 1S S e _
(25) Vi =Y+ SYer + gYos + Zi; (Vi +Yoz,i) &t-i + 5 J;i;yj,.(st | ® &)

100 00 [ee]

te Y ;i;w,j,i(etfk@?&—i &)

K=0]
To derive the recursive representation at third order, wWeneehe third order increment as

the difference between the second and third order appraiximasubtracting the constant risk

adjustment of the third order

1
(26) dy? =y - Yos w2

Inserting @5) and (L7) in the previous equation yields the moving average reptatien of

Appendix.

10



the third order increment

0O 00 o0

12 1
(27) =5 3 Vorieritg 3 PIRILEELSELS)

The increment of the third order approximation can be exg@@secursively, as we summarize
in the following
Proposition 3.5. The third order increment, (ﬁ) can be expressed as a linear function of its own

past and products of terms of lower order according to thiing recursion
1
dyfs) _ O(dyt(g)lstate:6 [B?)g&ldyt(i)lstat@[S] + 80008;8[3]] 4B (dyt(i)lstate@) dthlstate> +Boo (dyt(i)lstate@) €t>

(28) + % [Bsoo (dyt(f)lstate® & [2]> + B3301 <dyt(f)1stat@[2] ® €t> + Bg20€t + Bozldy@lstate}
Proof. See the Appendix. O

Combining the increment definitions and recursive repragiems at first, second and third
order, we construct the following third order recursivaroita fory;

Proposition 3.6. The third order approximation of;ydenoted S?), can be expressed recursively

through
1 1
(29) v =yt Vo2 T Yoo+ dyY +dy? +dy®
where
1)state

(30) dyt(l) _ yzdél), dzfl) _ [dyf81

t

2

(31) dyt(z) = yystatedyt(g)lstateJr %yzquu)@[ )

32y = ey Zyadd? 4 Dy oy (o250 a7 )

Proof. Combine 26), (18), and (2) to expreszyt(s) as a linear function of the constavytand%yoz
and the first through third order incremeldly,(l), dy(z), anddy@. Expressing the the first order
increment in terms of the vectdq<1) and rearranging the coefficient matrices accorditfyyelds

the desired result. O

The third order recursive approximatio2dj follows the pattern of lower orders and can be
decomposed into order of approximation and risk adjustmknthe third ordery,s adjusts the
second order approximation for the skewness of future shothke third order incrememi,yfs),
adjusts the approximation for the third order effects ofrtradized shocks and opens the first order

increment to the variance of future shocks, delivering a&tirarying risk adjustment term.

16This can be done using the Block Kronecker product, see éwefib.

11



As in the second order cas9 is an equivalent rewriting of its moving average counterpa
(25) and accordingly stable. The stability is also implied bg tmearly recursive structure of
the third order incremertm(s) in (28). This recursion shares the same homogenous coefficient
with the recursions of the first and second order increméisttathomogeneous part, consisting of
shocks and the increments of the first and second order ahlgrits the stability from the previous
order of approximation.

As was the case in the second ord2€) (s centered at the third order approximation of stochas-

tic steady state in definitioR.2

(33) ydstoch—y 4 yoz + y03
as can be verified analogously to the second order case.

The third order increment can be decomposed into a timengnysk adjustment increment,
dyt¥"™k “and a third order amplification incrementy.>®™P. Both of which can be expressed
recursively, as we summarize in the following
Corollary 3.7. The third order increment can be decomposed into two separatements, cﬁo’) =
dyi ¥k 1 4y¥3MP poth of which can be expressed as linear functions of thein past and

products of terms of lower order according to the followiegursions

(34) d){<3 I’ISk dyfs staterlsk (BO‘ZOEt i l3021dyt(1 state)
(35) dy(3 amp adyt(?’ stateamp [[3333 dyt(l )states|3] i [30005?[3]]
+ By <dyt(2 state® dyt(l state) (dyt(z state® St)
(36) [[3300 (dyfl state® & ) i B33Q1 (dyfl )staten[2 ® St)}
Proof. See the Appendix. O

This decomposition clearly separates the nonlinear timgvg effects in a third order approx-
imation that arise from higher order (quadratic and cub&tgedministic terms and the linear time
varying risk adjustment terms. Thus, enabling a readilytifi@ble differentiation between, e.g.,

time varying precautionary motives and asymmetric respets shocks.

12



4 Pruning Abounds

In this section, we present the state space solution as@ygofiction that maps from the endoge-
nous variable in the past and the realization of currentlsimdo the endogenous variable itself,
to the class of models introduced in sectband approximate the solution with a Taylor sefiés.
Simulating such an approximation of second or higher ordey generate explosive time paths
as noted by Aruoba, Fernandez-Villaverde, and Rubio-Rezm(2006, p. 2479) and Kim, Kim,
Schaumburg, and Sims (2008, p. 3408), as additional, higtter nonlinear terms accumulate.
While various pruning algorithms for the second and thidkoapproximation have been provided
by the literature to restore the desired stability, a consparbetween these algorithms has yet to
be madée® We present these pruning algorithms in a unified notatiod, @mpare them to the

nonlinear moving average based recursive algorithm detriveection3.

4.1 State Space Perturbation Foundations

The state space counterpdrto the nonlinear moving average solution form of secfds given
by

(37) Yt =9(0,%z), ¢g:R"xR™—RY

whereo scales risk and the state vectpgiven by?°

tate
(38) z = {yfs_l } e R wherenz=ny+ne
t

Assuming time invariance of the policy function and usong¢p "denotey; 1, inserting into the

problem statement}, and scaling risk give

(39) 0= {f (g (o, [g“’z‘)D ,g<o,zt>,zt)} —F(0,2)

O€&t+1
a function with arguments andz.?! The Taylor series approximation of the state space solution

(2) will be developed around a deterministic steady stateckhliternatively but equivalently to

1This nonlinear state space perturbation literature waiad by Gaspar and Judd (1997), Judd and Guu (1997),
and Judd (1998, ch. 13).

18Den Haan and De Wind (2012) compare their version of the pgualgorithm with standard perturbations and
their own “perturbation plus’ algorithm, yet do not comp&rether pruning algorithms.

190ur formulation follows Adjemian, Bastani, Juillard, Mitbi, Perendia, Ratto, and Villemot's (2011) Dynare,
Anderson, Levin, and Swanson’s (2006) PerturbationAlM duntlard (2011). Jin and Judd’s (2002) or Schmitt-Grohé
and Uribe’s (2004) model classes can be rearranged %) fits(we will discuss below.

2ONote that we are recycling notation from the previous sedhiyp usingz in analogy tadz there.

2INote thate;, 1 is not an argument @ as discussed in secti@
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definition2.1can be defined as
Definition 4.1. Deterministic Steady State

Lety € R"Y be a vector such that

(40) 0=F(0,2), wherez— m
solving @9) in the absence of both riglko = 0) and shocksg = 0).

The policy function evaluated at the deterministic steddtess thug = g(0,2) and, assuming
(37) is CM with respect to all its arguments, we can write a Taylor Seajgproximation of; =
9(0,z) at a deterministic steady state as

M 1 [M-iq _ .
(41) *=35 L ﬁgzjoio'] (2 -2V
whereg,isi € RWY*"Z is the partial derivative of the vector functigwith respect to the state
vectorz | times and the perturbation parameter times evaluated at the deterministic steady
state. Here[zi'v':{)j Wigi Gi} collects all the coefficients associated with thi fold Kronecker
product of the state vectdiz —z). Higher orders ob adjust the Taylor series coefficients for risk
by successively opening the coefficients to higher momentke distribution of future shocks.
Out to third order and foo = 1, (41) is given, where only terms with nonzero coefficients have

been included, by

(42) W =y+g <Zt(1) - 2)
at first,

I 2 N, 1 2 )¢
(43) W=yt 2902+92(Zt Z)+2922 (Zt Z)
at second, and
(44)

3 1 1 1 3 1 3 \®[2 1 3y \®[3
W =Y+ 500+ 5003 + [924‘ égczz} (d%-2)+502 (27 -2 +50s (27 —2)

at third.

Stationary points, or steady statesyah approximations will play a key role in understanding
the differences between many of the pruning algorithms weexamine. Standard linear ap-
proximations are certainty equivalent and their statigmpaints are the deterministic steady states
of definition 2.1 (or equivalently definitior4.1). By extension, one might expect or dedfran

M’th order pruned perturbation to have as a stationary pbmb’'th order approximation of the

22See Evers (2010) and Den Haan and De Wind (2012).
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stochastic steady state. Accordingly and analogously timitien 2.2, we define the stochastic
or “risky” steady state as the stationary point in the absarfgast shocks but the risk of future
shocks, which in the state space setting here is given by

Definition 4.2. Stochastic Steady State

LetyStoch— g(1,251°" ¢ R™ be a vector such that
(45)

0= 1 (gsens 1 [FFNT g 200 2) | - Fi0. 20, wherezon— [V

&1
As in section2 for the nonlinear moving average representation, the agighsteady state can

be approximated by expanding=0F (0,2) in ¢ around the deterministic steady state, assuming
the 0 = 1 model is sufficient close to its deterministiz,= 0O counterpart. Notice that unlike
the nonlinear moving average, the state space formulaﬁ@ﬂ,F(o,:i), is complicated by the
additional argument; the steady state of the state vector—itself a function, dfeing equal to the

deterministic steady state when= 0 and the stochastic steady state when 1.

4.2 Second Order Pruning

When iterating on the second order approximationdd),(the quadratic term will generate non-
linear terms of successively higher order, see Kim, Kim,achburg, and Sims (2008). These
accumulated terms can lead to explosive time paths and Kim, 8chaumburg, and Sims (2008)
suggested pruning these higher order terms by operatinguidratic on the first order simulated
time path, restoring stability. The algorithms presentecehall agree on this point, but differ on
the the constant risk adjustment term that enters in theoappation. Throughout the rest of this
section and in sectioh, we recycle the notatiodyt(”) (wheren denotes the order of approxima-
tion) anddzfl) from section3 and redefine them in each and every pruning algorithm we will b

introducing.

4.2.1 Kim, Kim, Schaumburg, and Sims’s (2008) Pruning Algoithm

Kim, Kim, Schaumburg, and Sims (2008) were the first to fomtella pruning algorithm for the

second order approximatior}3).23

23In Dynare—see Adjemian, Bastani, Juillard, Mihoubi, PeianRatto, and Villemot (2011), the initial value of

the first order term, sayyél)smte, need not be set equal to the deterministic steady statesamidecset to any arbitrary
value. Whether this corresponds to a second order accyrptexamation of an arbitrary initial value has not, to our
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Lemma 4.3(Kim, Kim, Schaumburg, and Sims’s (2008) Second Order PigiAlgorithm).

(46) % =y df? +dy?
where
1)state
@) ! = gdg”, 7" = [d%? ]
t
1 2
(48) ) = om0 5 oo+ gt |

Apart from replacing the second order base of the two-foldrnecker power with its first
order counterpadil) to restore stability in simulation, this algorithm tramnsits deterministically
to a second order approximation to the stochastic steatly stalefinition4.2 I.e., setting the
initial value ofyg to its deterministic steady state valpend simulating forward with all shock
realizations set to zero, the constant risk correction igyms accumulated at each iteration as it
IS a component oﬂy(z), and therefore keeps accumulating along with the iterapaishing the

algorithm away frony, pasty + 39,2, and toy+ (I — gy) " 2ge2.
4.2.2 Den Haan and De Wind’s (2012) Second Order Pruning Algdghm

Den Haan and De Wind (2012) formulated the following altéxeasecond order pruning algo-
rithm motivated by the observation that the steady statb@fecond order approximation does
not coincide with the second order approximation of theg(sastic) steady sta#é,

Lemma 4.4(Den Haan and De Wind’s (2012) Second Order Pruning Algorjth

1

(49) % =Y+ 500+ dy”
where

1)stat
(50) dy¥) = g,d4?, d7Y = ldﬁ a ]

&

2)state 1 ®[2]

(51) dy” = g, ldyt(&l +58202"

While pruning the quadratic term in the same way as Kim, Kimha&mburg, and Sims’s
(2008) algorithm does, this algorithm does not transitietechinistically, but remains o2 —
y+ %gcz. It restores this consistency by excludigg from its dy(z), and therefore preventg;.

from accumulating in simulation. However, this point is mogecond order approximation of the

knowledge, been proven.
243ee also Evers (2010) for more on this and other consistesinysp
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stochastic steady state in definitidr2and its appropriateness as a centering point of the algorith

is unclear.

4.2.3 Comparison of Second Order Pruning Algorithms

As noted also by Den Haan and De Wind (2012), Kim, Kim, Schawngband Sims’s (2008)
pruning algorithm transitions from+ :—ngGz to some other steady state Wheyfl) is initialized
at zero?® As we state in the following proposition, Kim, Kim, Schaumipuand Sims’s (2008)
pruning algorithm transitions tp+ :—2Ly02, the second order approximation of the stochastic steady
state (see definitiod.2) using nonlinear moving average policy functions. Addiady, all other
coefficients (and hence all coefficients that are not partiath respect ta) are identical in all
three algorithms.
Proposition 4.5(Deterministic Equivalence, Risk Sensitive Nonequivatewith Sectior8). The
algorithms in lemmatd.3and4.4and in propositiorB.4 are identical in all coefficients except for
the constant term involvinggg (or 3y,2).

As a consequence, when all shock realizations are zero eaibds,

e the algorithm in lemmd.4 will remain aty+ %goz

e the algorithm in lemmd.3 will transition fromy+ %goz toy+ (I — gy)_l%gcz

¢ the algorithm in propositio3.4 will remain aty+ %yoz

o (1-0) ‘Go2=3V52
Proof. See the Appendix. O

Thus, asymptotically, Kim, Kim, Schaumburg, and Sims’sQ@0pruning algorithm and our
second order recursive nonlinear moving average (see pitapo3.4) converge deterministically,

as the former converges to the latter.

4.3 Higher Order Pruning

The third order approximatiord) contains quadratic and cubic terms, both of which are ssurc

of potential instability. As noted by Ruge-Murcia (2012)etpruning concept proposed by Kim,

25That is, when the first order approximation is started at #teministic steady state. It is noteworthy that Kim,
Kim, Schaumburg, and Sims’s (2008) pruning algorithm aslémented by Adjemian, Bastani, Juillard, Mihoubi,

Perendia, Ratto, and Villemot's (2011) Dynare lets the ustalize d){‘(l) arbitrarily, whether this translates to second
order accurate initial values is relegated to future study.
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Kim, Schaumburg, and Sims (2008) at second order does netagere straightforwardly to higher

orders. Indeed, at third order, we find discrepancies betywaaing algorithms in how they prune
the cubic term. While these differences are in line with Lamdo (2012) and Den Haan and
De Wind’s (2012) critique that pruning is an ad hoc procedowg nonlinear moving average
based recursive algorithm can be viewed as a theoreticpbsuffor pruning and guidance in terms
of choosing the way of reconstructing the potentially ib&anonlinear terms consistent with the

original, unpruned nonlinear approximation.

4.3.1 Andreasen’s (2012) Algorithri®

This algorithn?’ chooses to keep both the quadratic and cubic term in the nagrthird order
approximation,44). It prunes the quadratic term by replacing it with the Krcker product of the
first order approximation. The cubic term is replaced by trat Grder approximation raising to
the three-fold Kronecker power, and the Kronecker prodfith® pruned quadratic term and the
first order approximation.

Lemma 4.6(Andreasen’s (2012) and Third Order Pruning Algorithm)

(52) Y =y+dy? +dy? +dy®
where
1)state
53 ! = g, 7" = [d%? ]
t
1 2
(54) = om0 5 oo+ gt |

1 3] 1
(55) dy” = geaedlyf”} "4 2 {gos +gpdd?” } + 5802027 + gprme (A5 0 7))

This algorithm is, we argue, the third order equivalent tomKKim, Schaumburg, and Sims
(2008), because its differences to our nonlinear movingamesalgorithm are third order analogs

(owing to cumulative risk sensitive adjustments) to théedénces between Kim, Kim, Schaum-

26Downloaded on January 11, 2013 as For\WWeb_NewKeynesi anhbdel . zi p
from http://ideas.repec.org/c/red/ ccodes/ 11-84. ht m as linked through
http: //ww. econom cdynani cs. org/ REDL5. ht m  The file si nul at e_3rd_kron. m contains the the follow-
ing algorithm and is preceded by the header
% By Martin M Andreasen, April 22 2010
% This function sinulates the nodel when solved up to third order.

% The pruning schene is used.

2’See also Andreasen, Fernandez-Villaverde, and Rubicii@aif2012), for an implementation to time series prop-

erties and further documentation of this algorithm.

18


http://ideas.repec.org/c/red/ccodes/11-84.html
http://www.economicdynamics.org/RED15.htm

burg, and Sims’s (2008) and our algorithm at second order.
Proposition 4.7 (Deterministic Equivalence, Risk Sensitive Nonequivatewith Sectior8). The
algorithms in lemmat.6 and in 3.6 are identical in all coefficients except for terms involvimg
3902 (0T 3¥52), §903 (OF §Y03), aNd3Gq2, (OF 3Y2,)-

As a consequence, when all shock realizations are zero eaibds,

o the algorithm in lemma.6will transition fromy+ 3942+ 2gga toy+ (1 — gy) " (3942 + 2042

e the algorithm in propositior3.4 will remain aty+ %yoz + %ycs

o (I—g)* (3902 + §903) = 3Yo2 + Yo
Proof. See the Appendix. O

Skewed risk adjustments deterministically accumulatagiweith the second order risk adjust-
ments for variance. At third order, the differences in insaeous second order risk adjustments
for variance are interacted with the vector of states, lggado differences in the time varying

response to risk posited by the two algorithms.

4.3.2 Ferrandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe’s (2011) Algo-
rithm 28

This algorithm keeps both the quadratic and cubic term iuti@runed third order approximation,

(44), as well. While it again prunes the quadratic term by rapkad with the Kronecker product

of the first order approximation, this algorithm prunes thic term by replacing it with the

first order approximation raising to the three-fold Kroneckower only, and does not include

the Kronecker product of the pruned quadratic term and tisé dirder approximation like the

Andreasen’s (2012) algorithm does.

Lemma 4.8(Fernandez-Villaverde, Guerron-Quintana, Rubio-Ram and Uribe’s (2011) Third

Order Pruning Algorithm)

(56) y —y+dy’

where

(57) dyt = gd7?, dz" = [d%mftate]
&

28Downloaded on January 11, 201248690428 _dat a. zi p fromht t p: / / www. aeaweb. or g/ arti cl es. php?doi =10. 1257/ aer . 10
The filecode _AERi r f _nonment s. mcontains the the following algorithm and is dated Decemd@t.
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1

®[2] 1 ®[3
+3 {goz +9.202Y, ] +5 [gcs +0,.d2Y " +3g,2,d4Y

This algorithm, like the previous one, will transition frgm %goz + (—15903 toy+ (I — gy)’1 (%goz + %gc,s)

3)state
dy’}
&t

58) dy¥ =g [

as the two constant risk adjustment terigyg, andg,s, are included in it:dyt(?’) and therefore will

keep accumulating in iteration.

4.3.3 Michel Juillard’s Algorithm 29

This algorithm keeps both the quadratic and cubic term ofutingruned third order approxima-
tion, (44), pruning the quadratic term by replacing it with the Krokexcproduct of the first order
approximation just like the previous two algorithms. Wheunmng the cubic term, it raises the
first order approximation to the three-fold Kronecker powasrthe previous two algorithms do.
However, this algorithm then multiplies (in Kronecker) jisined second order term with the en-
dogenous state space of the first order approximationyii§férom Andreasen’s (2012) algorithm
who multiplies (in Kronecker) its pruned second order tertiwhe exogenous state space (vector
of shockse) as well.

Lemma 4.9(Michel Juillard’s Third Order Pruning Algorithm)

(59) v =y dy? £ dy? +dy®
where
(60) dy — gdAY . ddY — [dyt(i)ftate]
&
1 22
(61) dy? = gyl 250 5 [goz +g,pdz" : q
(62)
1 ®[3 1
dYt(3) = gyStatedyt(i)lstate-i_ 6 {903 + gzadél) | }] + égczzdél) + g(ystate)z (dyt<—)ftat6® dYt(E)lstate>

This algorithm, like the previous two, will transition fropa- %goz + %gos toy+ (I — gy)’1 (%gcz + %gos)
as the two constant risk adjustment terigyg, andg,s, are included in it:dyt(?’) and therefore will

keep accumulating in iteration.

29Downloaded asglynar e- 2013- 01- 10- wi n. exe from ht t p: / / www. dynar e. or g/ snapshot / wi ndows/ on Jan-
uary 11, 2013. Thank you to Michel Juillard for drawing outeation to this undocumented feature in Dynare.
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4.3.4 Den Haan and De Wind's (2012) Third Order Pruning Algoiithm

This algorithm keeps both the quadratic and cubic term ofutingruned third order approxima-
tion, (44), pruning the quadratic term by replacing it with the Krokexcproduct of the first order
approximation just like the previous three algorithms. Wihpeuning the cubic term, it raises the
first order approximation to the three-fold Kronecker poasgtthe previous three algorithms do.
However, unlike Michel Juillard’s algorithm who multipigin Kronecker) its pruned quadratic
term with the endogenous state space of the first order ajppation, and Andreasen’s (2012)
algorithm who multiplies (in Kronecker) its pruned quadraerm with the first order approxima-
tion, this algorithm raises the pruned second order terrhdgséecond-fold Kronecker power. This
introduces terms of fourth order, which is responsible ff@ar telative reduction in accuracy com-
pared to the other third order algorithms, as we shall docun#elditionally, the time-varying risk
adjustment at third order is applied retroactively to thet farder approximation, see Den Haan and
De Wind (2012, p. 1490) and Andreasen, Fernandez-Vildeeand Rubio-Ramirez (2012, p. 9).
It is conceivable that a large enough risk adjustment cduld tntroduce instability into their first
order approximation.

Lemma 4.10(Den Haan and De Wind’s (2012) Third Order Pruning Algori)hm

1 1
(63) yt(3) =y+ égcz + 6903 + dYt(3)
where
1 1
(64) dyt(l) = (gystate—l— égozystate) dy@lstate+ (gs + égczs) &t
1 1 2 1)state
(65) dyt(z) = (gystate+ égczystate) dyt(i)ftate—f— égzzdil)(g[ ], dZ(]') = [dys;’tl ]
M<3) B 1 y(3)state 1
d = gystate+ égozystate d k-1 + | Qe+ égczs &t
1 @[2 1 ®[3 2)state
(66) +50202” 2y <007 ¥ ag? = [dyt(stl ]

Unlike the previous three algorithms, this algorithm likesecond order counterpart does not
have a deterministic transition, remainingyat %goz + %903. Again, this point is not a third order
approximation of the stochastic steady state in defindi@and its appropriateness as a centering

point of the algorithm is unclear.
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5 Lombardo’s (2012) Matched Perturbation Algorithm

Lombardo (2012) presents a method based on “matched patiturb,” see Holmes (1995), that
delivers higher order stable recursive state space appatians that are linearly recursive in the
order of nonlinear terms. All of these features are shareslibynethod based on nonlinear moving
averages as presented in sectbas well as many of the various pruning algorithms examined
in section4. In this section, we will determine whether Lombardo’s (2Dinethod justifies a
particular pruning method of secti@ghor whether it produces an independent method as did our
nonlinear moving average in secti8nTo match his setup, we must redefine the problem statement

above slightly° by defining

tate
(67) 7= { =
and replacing; in (39)
_ ~ 9(0,%) svs )| _F
(68) 0=E {f (g (“’[oemD’g(“’Z‘)’Z‘)] —F(0.2)

still a function with arguments andz.3! Essentially Lombardo (2012) usesto expand from
the deterministic steady state to the stochastic dynanhitisn, whereas the formulation we have
used above following Jin and Judd (2002) and others agesexpand the deterministic dynamic
solution to the stochastic dynamic solutitfwheno = 1, however, both approaches are equiva-
lent.

To third order, the Taylor series approximation or stangedurbation of the solution t@®8),

where only terms with nonzero coefficients have been indudegiven by

1 1 1 . o 1 1 .
(69)  %=Y+5002+ Go+ [gz+ Egozz} (2-2)+592(2 -29)"? + £0a(2 -2

Lombardo (2012) gives the following procedure for derivimgtched perturbations or series
expansions of the foregoing: guess that the solution is efitirearly recursive (in order) form,

where we have adapted his procedure to our notation,

(70) vi —y = ody? + o2dy? + o3dy¥ + ...

%ONote, the following perturbation setup is widely used, sekrfiitt-Grohé and Uribe (2004) and others, but iden-
tical to the statement used above & 1. Unlike the other methods presented above, however, Latolsa(2012)
matched perturbation method cannot be readily adaptedsimative problem statements.

3INote thate 1 is not an argument df as discussed previously.

32 See also Den Haan and De Wind (2012), who state in their songpital Appendix that Lombardo’s (2012)
method “does not describe any transition dynamics” winen0.
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insert the guess int®Q)

1 1 1
odyl?) + 02dy? + o%dy® — égczo2 + 590303+ {gz+ 5902202

lcd)/t(l)lstate‘i_ szyt(g)lstate_i_ 03dyt(§)1sta’[e_i_ N

O¢€;
- 1®(2
n }g , Ody&)ftate+ GZdYt(E)lstate‘f’ Gsdyt(ﬁ)ftate_i_ N
2 O&
1 [ y(l)state 2 y(2)state 3 y(3)state 1 @3]
(71) +égzs Od t-1 +0 d £ —I—O’ d s +
O¢&t

and “equat[e] like powers” (Holmes 1995, p. 27)dnwhich gives
(12) oy g, df? [y

1 2
(73)  dy” = gpaddy 7% 3 <goz +gzad”” ])

1 ®[3 1
74) 7 = Gy § (g 0002”7 ) 4 "+ e (5 08"

and Lombardo’s (2012) second order series expansion aippaiirn for the stochastioo(= 1)

caseis

(75) Y =+ +dy?

and at third order

(76) yi = Y+ dy +dy? +o%dy

Lombardo’s (2012) method recovers Kim, Kim, Schaumburgl 8ms’s (2008) pruning al-
gorithm at second order and Andreasen’s (2012) algoriththit order, as we summarize in the
following
Proposition 5.1 (Equivalence of Series Expansion and Prunifig)mbardo’s (2012) method of
series expansion is identical to

¢ the algorithm in lemmd.3at second order

¢ the algorithm in lemmd.6 at third order
Proof. By inspection. O

While Lombardo (2012) identifies the first equivalence, thaiealence at third order is ap-
parently new. Indeed, Lombardo (2012, p. 12) seems to inmyay his series expansion at third
order would vyield the algorithm in lemm&8, which does not include the cross product term
dy %€ d2") as in the algorithm of lemmd.6. This would be mistaken, as we have shown

above. We conclude that Lombardo’s (2012) method providégoaous foundation for the vari-
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ants of pruning that are complete up to the order of approtxamaYet, as shown in propositions
4.5and4.7, these pruning algorithms (and hence Lombardo’s (2012hoakas well) differ from
the recursive algorithms in secti@in terms that adjust for risk, centering the approximation a

the deterministic model and its lack of risk adjustment.

6 Applications to Production and Asset Pricing

In this section, we compare the numerical performance ofdhieus pruning algorithms presented
in sectiond4. A version of the stochastic neoclassical growth model &edasset pricing model in
Burnside (1998) are chosen as the benchmarks to run the temes®, as both of the two models
possess closed-form solution and widely used in evalu#tti@gumerical performance of solution
methods for DSGE models.

We employ three criteria for comparing models

1 T X?IOIOYOX _Xgrue
(77) E1= i; e
(78) £y L5 (PP _ yirue)?
T2
approx | true
(79) Ew = max{ % }

measuring the distance of the various pruning algorithneuding the nonlinear moving average
based recursive algorithm, as well as the unpruned pettanisato the true solution in terms of

average, mean square and maximal error at second and tded or

6.1 The Discrete Brock and Mirman (1972) Neoclassical Grovit Model

In this section, we examine a version of the stochastic mssadal growth model, case of log
preferences in consumption and full depreciation, with avkm solution to compare methods.
This model has been used in numerous studies comparing imaechniques and is a natural
benchmark.

The model is populated by an infinitely lived representativasehold seeking to maximize its

expected discounted lifetime utility given by

80 Eo| S Bl
(80) o[t;B n(Ct)]
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whereC; is consumption, anfl € (0, 1) the discount factor, subject to
(81) G +Ki = 64K,
wherek; is the capital stock accumulated today for productive psegdomorrowZ; a stochastic

productivity processa € [0, 1] the capital share, and note that we have assumed complete dep

ciation. Maximization delivers the following first ordermdition

1 1
82 ~ =BE [—an“lKo‘_l}
(82) G P Ci1 '
an intertemporal Euler condition equalizing the expected@nt-discounted utility value of post-
poning consumption one period to its utility value today.
In this log preferences and complete capital depreciatise ca well-known closed-form solu-

tion for the policy functions exists given by

Ki = apeK |
(83) C = (1—ap) &K,
Additionally, we will assume that productivity is describby

(84) Zt =pzZi1+€zt, €21~ N <07 (Xsz)Z)

with |pz| < 1 andez the innovation with standard deviatigoz. We usex as a scaling factor that
when equal to one, gives the standard deviation of the téogyp@rocess asz, which we setto a
standard calibration value.

As the model is loglinear, we could redefine the variablesims of logarithms—e.g., exp) =
Ci—and a first-order approximation of either the state spacaforite moving average policy
function, see Lan and Meyer-Gohde (2012b), would deli@8).(However, to study the properties
of simulations generated by the methods compared above,ilveampute perturbations in the
the level variables using our method derived in sec8and compare it with the standard state
space perturbation and the “pruned” state space pertansadif Kim, Kim, Schaumburg, and Sims

(2008) for second order and Andreasen (2012) for third osdermarized in the previous section.
[Table 1 about here.]

In figures1, 2, and3, we plot theE;, Ep, andE, accuracy of the different perturbation and
pruning methods out to third order f&f measured relative t@8) for values ofy, thereby scaling
up the standard deviation of the technology process, froetofifty. We run 100 simulations of

10,000 periods and report the average resulEficandE, and the maximum foE..
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[Figure 1 about here.]
[Table 2 about here.]

For E; and Ep, a clear patter emerges. Increasing the order of approximatcreases the
accuracy of the approximation. The exceptions are providethe second and third order per-
turbations aftex equal to seven and forty respectively reflecting explosmeikations after these
values, as well as the third order pruning algorithm in lenghi®that disappointingly is roughly
as accurate as the first order approximation. TaBlasd4 confirm the results in Den Haan and
De Wind (2012), regarding the accuracy of perturbation andipg in the log preference and full

depreciation special case of the neoclassical growth nmiddel
[Figure 2 about here.]
[Table 3 about here.]

At second order, all three pruning algorithms deliver nupahy identical simulations. This
follows directly from propositiort.5, recognizing that the model of this section is certaintyiequ
alent in its nonlinear form. Consequently at third order, method in3.6is numerically identical

to the method in lemmA.6.
[Figure 3 about here.]
[Table 4 about here.]

Figures4 and5 display subsets of two simulations with large differenaedlifferent algo-
rithms. Note that both the first order perturbation and tlvel tbrder algorithm of Den Haan and
De Wind (2012) yield negative values for capital in theseesd$ The second order perturbation
and pruning algorithms fall above and the third order pédtion and other pruning algorithms

slightly below the exact value.

33They report in their Table 1 (Den Haan and De Wind 2012, p. 149 for oz = 0.1 and otherwise identical
calibration as we have chosen h&seandE., errors for a first order of 8.00E-1 and 7.61E-1, second ordegupbation
of 1.90E-2 and 3.10E-1, and second order pruning of 2.0086824a79E-1, which corresponds to a factorgof 14
and lines up roughly with the results we report. Likewisertliga andE. errors withaz = 0.2 for a first order of
8.00E-1 and 7.61E-1, second order perturbation of 1.90Ee23a10E-1, and second order pruning of 2.00E-2 and
4.79E-1 are comparable to our results.

%4Though, all the algorithms we compare here are capable afaiee due to their local nature.
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[Figure 4 about here.]
[Figure 5 about here.]

Figure6 shows an example explosive time path that the pruning dhgos guard against. A
shock around the 70th period pushes the third order petiarblbeyond a threshold, setting it on
an unrecoverable upward explosion. This inaccuracy olsWodominates all other differences

between the varying algorithms in this simulation.

[Figure 6 about here.]

6.2 The Asset Pricing Model of Burnside (1998)

An agent maximizes her expected discounted lifetime yfittm consumption

o) C[]-*V
85 L
(85) Eo L;B 1_y]
subject to the period budget constraint
(86) G+RS=(Di+R)S1

where § is the end of period holding of the single asset, which isqatig att and paysD;
dividends per unit held at the beginning of the period. Caninlg the agent’s first order condition
with market clearing delivers

(87) Vi = BE; et VX (1+Vt+l)]

wherev; = R/D; is the price dividend ratio and = In(D;/D¢_1) is the log dividend difference.

Assuming that

(88) X = (1—p)u—px_1+& & < A(0,0?)
Burnside (1998) derives a closed form solution givefPby
(90) =3 Bexlat b —)
where
1, o> p N ,1—p?

35To ensure convergence

(89) Bexp

1, o
au+ -a <1
2 (1—pf]
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and
(92) bi =a
wherea = (1—v).

We compare the different pruning algorithms relative ts ttlosed form solution for the dif-
ferent parameterizations used in Collard and Juillard {20€orresponding to different levels of
patience, of persistence and volatility of the log divideliifierence process, and of curvature in
the utility function. For each parameterization, we run $0fulations of 10,000 periods each and
present the relative errors @f according to the three criteria—averad® ), mean squarekb),

and maximum E.,)—in tables6 through8.
[Table 5 about here.]

As Collard and Juillard (2001) observed for the linear agpnation, all algorithms tend to de-
teriorate in accuracy as the log dividend difference predescomes more highly persistept (
increases) or volatileo(increases), or risk aversion is increasaddécreases). This follows nat-
urally from the local nature of all the approximations calesed here, as increasing either of the
two shock process parameters increases the cumulatianearof the process and increasing risk

aversion makes the agent’s policy functions more sengibitiee exogenous process.
[Table 6 about here.]

In general, increasing the order of approximation incredake accuracy of approximation.
According to thek; criterium, see tabl6, increasing the order of approximation (here from second
to third order) can, however, lead to a deterioration in thality of approximation in the case of
very risk aversed = —5 anda = —10) or very patient[§ = 0.99) agents. While this result
is not robust to the choice of criteria (tf® and E criteria do not display a loss in accuracy
with an increase in order), this reiterates that there is uerantee that a Taylor approximation
will converge monotonically to the true policy function,esvif the latter is analytic such that

convergence is assured in the limit of an infinite order Taghkpansiort®

[Table 7 about here.]

36See Judd (1998) and Lombardo (2010).
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For a given order of approximation, most algorithms perfadentically at each order of ap-
proximation. This is due to the lack of endogenous propagaii the fully forward looking model
of Burnside (1998), making an accumulation of risk adjusttaén steady states and slope coef-
ficients impossible. The exception is again the third ordgorithm of Den Haan and De Wind
(2012) in lemm&4.10 which was only as accurate as the first order approximasomeasured
with E.. Indeed, when the log dividend difference process is higiesistent@ = 0.9) or the
agent is highly impatient(= 0.5), it is even less accurate than the first order approximatio
according toE,. More interesting is that the algorithm of lemmal0is identical to the other
third order algorithms for all three measuré&s,(E>, andEs) when either log dividend growth is
not serially correlatedp(= 0) or the agent has an intertemporal elasticity of subsitudf unity
(y=1— a =0). In both of these cases, the true policy function is a @rstand even all second
and third order approximations coincide. This follows asshockg;, was assumed normally dis-
tributed, leading ty s = 0 and the second order teyy is identical for all algorithms, following

proposition4.5, due to the absence of propagatigp £ 0) in this case.
[Table 8 about here.]

Both Burnside’s (1998) and Brock and Mirman’s (1972) modedsit known closed form
solutions, enabling a precise investigation of the properof the different pruning algorithms.
However both lack important features of nonlinear modetse(nal propagation in Burnside’s
(1998) case and certainty nonequivalence in Brock and Miisn@l972)) that one would like
these pruning algorithms to cover. Accordingly, we willido our final model, a highly nonlinear
variant of the neoclassical growth model due to Caldarap&etez-Villaverde, Rubio-Ramirez,
and Yao (2012), and abandon a closed form baseline solu®mone is known, for a highly

accurate global projection solution as a baseline.

37Substituting eithep = 0 ora = 0 into (92) deliversb; = 0, Vi and, hence 90) becomes
(93) v = Bexpa
2

whereg; is as given in 91).
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6.3 Caldara, Fermandez-Villaverde, Rubio-Ranirez, and Yao’s (2012) Model
with Recursive Preferences and Stochastic Volatility

In this section, we examine Caldara, Fernandez-Villawgfubio-Ramirez, and Yao’'s (2012)
stochastic neoclassical growth model with recursive pesfees and stochastic volatility. We do so
as the previous two models have lacked either risk sertgi{tfie model of sectioB.1is certainty
equivalent}® or endogenous state variables to propagate risk adjussrttartmodel of sectio.2
is entirely forward looking in endogenous variables). Aseddoy Caldara, Fernandez-Villaverde,
Rubio-Ramirez, and Yao (2012), the model incorporateemonlinearities and therefore imposes
a challenge on different solution algorithms. Due to thesals of closed-form solution, the model
needs to be approximated. We choose the Chebyshev polyrappieximation as the true solu-
tion to run the three horse races again since it achieves/aigr level of accuracy as reported by
Caldara, Fernandez-Villaverde, Rubio-Ramirez, and(284.2).

As the first two welfare theorems hold in their model, we magéatrto the social planner’s
problem, in which the planner maximizes the expected distullifetime utility of a representa-

tive household given by the recursive preferences
<]

(95) Ui = max [(1_ B) (CY (1- |t)1—v)17ry B (Et [UtlglyD%] Ty

C,le

wherec; is consumptionl; labor, € (0,1) the discount factow a labor supply parametey risk

aversion, and

(96) 60— 11__‘_1’

wherey is the elasticity of intertemporal substituqtjion. The sbpilanner faces the resource con-
straint

(97) o+ =T+ (1-8) ks

with k; being capital§ its share and its depreciation rate, arml a mean reverting productivity
process given by
(98) z = pzi—1+0£7 €, & ~ N (0,1)

38Judd, Maliar, and Maliar (2011, p. 197) rearrang2) @s

(94) Ki =E [BiGeZ“tha}
G

and note that thimtegrandunder the conditional expectations on the left hand sidgusiktoK; for all values ofzZ; 1.
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with |p;| < 1 a persistence parameter, the homoskedastic volatility of, ando; a stochastic
volatility process contributing conditional heterosksiilzty to z given by

(99) Ot = PoOt—1+ 0oy, & ~ N(0,1)

with |pg| < 1 a persistence parameter anglthe standard deviation of innovations to the volatility
processgi.

The first order conditions are the intratemporal condition

(100) 1= _ v 13 — (1)K I

and the intertemporal condition
(101) 1-E [M+l (aezf+1l<f‘1lt1‘E r1- 6)]

where the pricing kernel is given by
1y

1-v\ & B 11
(102) Mg = 0M/0c11 _ , G <CY+1(1— lt+1) ) < UtlJer ) 8
+1= = s _
o0Vt /0 v ;

The presence df; . ; in the pricing kernel necessitates the inclusion of thee/élmction evaluated

at the optimum
0

-l (@a-) +B(Et[t+1})$]1y

along with the first order conditions, the resource consti@i7), and the exogenous driving force

(103)

(98) and its volatility @9) to characterize an equilibrium.

Following Caldara, Fernandez-Villaverde, Rubio-Ramjrand Yao (2012), we will also track
two asset prices, the gross return on capital
(104) R=E8AK I 8+1-3
and the gross risk-free rate
(105) 1=E [m.R]

In contrast to the first two models, Caldara, Fernandelaxérde, Rubio-Ramirez, and Yao'’s
(2012) model has no known analytic solution to serve as alihasi®r comparing the different
pruning algorithms. However, they show that a projectiolutsan with Chebyshev polynomial
basis functions consistently achieves a high degree ofracgacross different parameterizations
and for a large range in the state space. With this resultakestheir Chebyshev projection as our

baseline for comparison.
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[Table 9 about here.]

We parameterize the model as in Caldara, Fernandez-¥illiey Rubio-Ramirez, and Yao
(2012) and will examine a baseline and an extreme calibratithe parameters that stay fixed
across both calibrations are in ta®land are standard values that reflect post-war USYathe
differences between the baseline and extreme paraméitenzaan be found in table0 and are
in the value of risk aversiory(= 5 versus 40), in the homoskedastic volatility in the proohifyt
process@; = 0.007 versus M21), and in the standard deviation of the stochastic \ibjgprocess
(n = 0.06 versus ). The values for the extreme parameterization are pulypeseat the edge
of credulity to introduce a very large amount of nonlineaiitto the model to test the different

algorithms.
[Table 10 about here.]

For each calibration, we run 100 simulations of 10,000 prieach and present the relative
errors ofk, ¢, i, It, Vi, Rtf, andR;, according to the three criteria—averagg)( mean squares),
and maximum€E.). For the baseline calibration, the results can be foundhies11 throughl13

and for the extreme calibration, the results can be foundbtes14 throughl6.
[Table 11 about here.]

Broadly speaking, increasing the order of approximatiangases the accuracy of the approx-
imation. This is not, however, true for the non pruned pédtions, which frequently perform
worse at third than at second order ($gthroughR; in tables1l and12) Under the same two
E; andE; criteria, the pruned algorithms actually perform bettantithe non pruned algorithms.
This stands in contrast to the results reported in Den HadrDanWind (2012) and is likewise a
combination of the different models and their choice of pmgralgorithm; the latter is consistently

outperformed by the other pruning algorithms.

[Table 12 about here.]

39Note that the value of here yields a deterministic steady state value-efl/3, correcting Caldara, Fernandez-
Villaverde, Rubio-Ramirez, and Yao's (2012, p. 197) Tablevhich mistakenly reported equal to 0357, the value
of 0 stated on the same page.
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As the model of Caldara, Fernandez-Villaverde, Rubio-Rem and Yao (2012) is risk sensitive
and has internal propagation, the three second order tilgawill differ, see propositiod.5. The
second order pruned series are more accurate than theiranadcounterparts, with Den Haan
and De Wind’s (2012) second order algorithm performing Wwohs third order, time varying risk
corrections enter the algorithms, which are crucial fordipeamics under stochastic volatility and

recursive preferences, see, e.g., Caldara, Fernandlazevide, Rubio-Ramirez, and Yao (2012).
[Table 13 about here.]

For the third order, all of the pruning algorithms perfornmgzarably except for that of Den Haan
and De Wind (2012), detailed in lemn#alQ which performs markedly poorer. To blame are
the terms of fourth order introduced into their third ordé&goaithm and the imposition of third
order risk correction on the first order transition, whichmgise the major differences to the
other algorithms. The algorithm of lemma8—Fernandez-Villaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe’s (2011) algorithm, while more acaeithbin Den Haan and De Wind’s (2012),
is inferior according to all three criteria and for all theriedles considered here.Thus, the cross
terms (products of the second and first order approximatimestioned in Lombardo (2012) are
important contributors to the accuracy of third order pngnalgorithms. The algorithm of lemma
4.9 sheds some light on which cross terms might be most impgiitacintains only the product
of the second order approximation of endogenous variabiistiae first order endogenous state
space—neglecting the cross products with the first ordegexous state space—yet is generally
only marginally worse than the two top performing third ardégorithms and, for some cases, is

even the most accurate algorithkg ih table11 andc andi; in table13).
[Table 14 about here.]

Our nonlinear moving average (see proposi8d) and Andreasen’s (2012) third order pruning
algorithm (see lemma4.6) are the two top performing algorithms. Simply enumeratimg cases
where one or the other performs better as displayed in tddldgoughl3, our nonlinear moving
average displays superior performance 50% more oftentelstiagly, in those cases where these
two algorithms display different average mean squaredatievis (the measure, displayed in

table12), it is always our nonlinear moving average that is on toplebd, as measured at full
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double precisiod® our nonlinear moving average is uniformly superior acamgdio the mean
square criterium. This must be tempered, however, as tfexeliices in accuracy between the two

algorithms for the model here are marginal.
[Table 15 about here.]

The results for the extreme calibration parallel those aflaseline calibration, higher order
leads to more accuracy, Den Haan and De Wind’s (2012) prualggrithms are generally the
least accurate second order and the least accurate thedalgbrithms, and the inclusion of more
cross products in third order pruning algorithms improvasiaacy. For the average and maximum
criteria, tabled4andl16respectively, all algorithms are about one order of magieitess accurate
than under the baseline calibration (for the mean squasicm in tablel5the loss is about two
orders of magnitude). The evidence in favor of our nonlimaaring average is now more clear
cut: itis the most accurate algorithm in 16 cases in tabllgbroughl6 (compared to Andreasen’s
(2012) 3, the next most accurate) and is the most accuratgl feariables according to the mean

square criterium, see tahl®.
[Table 16 about here.]

In sum for all three models we have examined here, there ipebimg evidence that the third
order nonlinear moving average, expressed recursivelsoipgsition3.6, is the highest performing
algorithm among the perturbation and pruning algorithmsaee examined here. Yet, the gains
are modest at best compared with the third order algorittmhsmnmata4.6 and4.9 and, e.g., in

the absence of risk sensitivity or endogenous propagatieralgorithms coincide.

7 Conclusion

We have derived a recursive representation from the narlim®ving average approximation of
Lan and Meyer-Gohde (2012b). That this recursive algorithinerits stability from first order
invites comparison with so-called pruning algorithms ia literature that purport to do the same.

We document six different pruning algorithms from the htieire at second and third order and

40The full tables, along with the algorithms, are availabléran We stopped at two digit accuracy here to minimize
clutter.
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show that even with its closest counterparts, at second tdrdelgorithm of Kim, Kim, Schaum-
burg, and Sims (2008) and at third the algorithm of Andred26d2), differences remain in that
our algorithm centers the approximation and its coeffigaitthe stochastic steady state as ap-
proximated up to the order in question. Hence our algorithraga stable approximation taking
into account steady state risk adjustments, whereas aggsticounterparts center their algorithms
at the deterministic steady state making the interpretatfdhe risk adjustment components more
difficult.

Numerically, we compare the six algorithms with our second #ird order recursive repre-
sentations and the first through third order standard geations for accuracy. We choose three
models to test the algorithms in: the Brock and Mirman (195{@cial case of the stochastic
neoclassical growth model, Burnside’s (1998) asset micnodel, and the model of Caldara,
Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012hweécursive preferences and stochas-
tic volatility. The first two have known closed form solutebut are not rich enough to capture the
differences from the propagation of risk adjustments—tracB and Mirman’s (1972) is certainty
equivalent and Burnside’s (1998) lacks endogenous statebles—Ileading many algorithms to
be identical; the last model is highly risk sensitive and éiadogenous propagation, but does not
possess a known closed form solution forcing us to rely othem@pproximation as a baseline.

In general, the differences are modest, with the major idiffee coming with the increase of
order of approximation. The exception is the algorithm ohB#aan and De Wind (2012), which
at third order performs more comparably to a first order agpration. We do not find evidence
that much accuracy in simulations is lost by choosing a prgiailgorithm to guarantee stability.
On the contrary, pruned series are often more accurate tigastdandard perturbation. This is not
surprising as the two most accurate algorithms are not agzhming algorithms, but theoretically
justified nonlinear moving average perturbations (see lrahNeyer-Gohde (2012b)) or matched

perturbations (see Lombardo (2012)).
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Appendix

A Dimension Reduction Typology

We adopt Dynare’s typology of all the endogenous varidblas minimize superfluous calcula-
tions.
Definition A.1. Typology of Endogenous Variables
e Static endogenous variables: those that appears only at period t. Their number is nstatic
e Purely forward endogenous variables: those that appear only at periodt1, possibly at
period t, but not at period+ 1. Their number is nfwd
e Purely backward endogenous variables: those that appear only at period+t1, possibly at
period t, but not period - 1. Their number is nbwd
e Mixed endogenous variables: those that appear both at periodtl and t+ 1, and possibly
at period t. Their number is nmix
These four types variables, abbreviated as st, fwd, bwd ardaspectively, form a partition of
the endogenous variables with the identity
nstatic+ nbwd+ nmix+ nfwd = ny
For notational ease in derivations, we also define
e Forward endogenous variables: the union of mixed and purely forward endogenous vari-
ables. Their number therefore is nfwdendm f wd+ nmix
e Backward endogenous variables: the union of static and purely backward endogenous vari-
ables. Their number therefore is nbwdendastatic+ nbwd
e Endogenous state variables: the union of the purely backward and the mixed endogenous
variables. Their number therefore is asnbwd-+ nmix
with the abbreviation fwdendo, bwdendo and state respalgtiv
Note that, the last two types of variables, i.e., the backvesmxdogenous and endogenous state
variables in definitionA.1), are different from those defined by Dynare: (i) the backixerdoge-
nous variables in Dynare refers to the union of the pureljkWwacd and the mixed endogenous

variables, which is the endogenous state variables in e, @) the state variables in Dynare

41See again Adjemian, Bastani, Juillard, Mihoubi, Perer@atto, and Villemot (2011)
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refer to the union of our endogenous state variables andkthgee@ous variables of the model.
Based on the definitiond(1), the entries of the vector of the endogenous variablesrdered?

such that the vector admits the partitions

tatl _
g ttat| ystatlc dend
o ybw . ystate o ybwd Ytbw en
Yt = ym|x = = fwdendo
fwd fwdendo Vi
yfwd Yi Yi
t

While all the partitions irny; are superscripted with the abbreviated names of the vartgpé,
these superscripts can be considered as the indicatordaoruitmber of rows of that partition, for
exampley$'®i¢is of dimensiomstaticx 1.

The definition A.1) and the ordering of; in the previous equation implies that the derivatives
of the f function with respect tg—, y andy™ have the structure

:[ 0  fybwd fyboth

£ 0
y nyxnstatic nyxnfwd

0
y state q

nyxnstatic nyxnfw

fystatlc fybwd fymlx fyfwd}

fystatlc fystate fy fwd}

fe fyrmix  fy+ fwd]

nyx nstatic ny>< nbwd

[
=
[
[fybwdendo fyfwdend&
-
g

f
nyx nstatic nyxnbwd Wdeend%
where the abbreviated names as subscripts can be consaketee indictor of the number of

columns of that partition, for exampl®,-pyq is of dimensiomy x nbwd

B Coefficients of Nonlinear Moving Averages Recursive in the
Minimal State Representation

Here we apply the dimension reduction to the equations ofdrahMeyer-Gohde (2012b). As

(B-1) 0=E[f(Vt+1, Vs Yt—1,&t)]
can be rewritten
(B-2) 0=Ef(y /1" %y, &)

42This is the decision rule order of Dynare. See again AdjenBastani, Juillard, Mihoubi, Perendia, Ratto, and
Villemot (2011).
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For notational ease in derivations, we will define the vegtpcontaining the complete set of

variables
fwdend
t+1
(B-3) x=| Xt

&
with the dimensiomx x 1 with (nx= nfwdendot ny+ ns+ne). This differs from the vector of
total variables in Lan and Meyer-Gohde (2012b) by allowimigthe possibility, mentioned above,
that only a subset of the variablesyiris presentin +1, ytfffe”d‘? and only a subset in- 1, ysta'e

With the policy function of the form3), (3) and @), we can writex as

(B-4) X = X(O-a’gt-i-lv &, &-1,-. )

B.1 First Order Coefficients

At first order, the approximation is

(B-5) Y=Y+ _%Wet—i

where we have already removed coefficientsI equal to%ZeAxcordingly, the task is to pin down
Yi-

As itis serially uncorrelated vector of innovatiogscan be represented by trivial infinite mov-
ing average with the first or impact coefficient the identitstrix and all other coefficients zero.
This makes the relation between endogenous variables andniterlying innovations different
upon impact than in subsequent periods after a realizatmm the vector of innovations. Ac-
cordingly, we split the problem in two: indices,greater than zero and= 0. Accordingly, the

first-order equation of Lan and Meyer-Gohde (2012b) becomes

fwdend
(B-6) fy*state\’isialteJr fyyi + fwfwdend&/ilvl e~ o

for positivei and

fwdendo

(B-7) fyyo + fy+fwdend6/1 +f:=0
otherwise. We summarize the solutions in the following

Proposition B.1. The solution toB-6) and B-7) takes the form
(B-8) yi = ay’devi >0

4BHereyy is zero, see Lan and Meyer-Gohde (2012b) and more genenaditate space contexts, Jin and Judd
(2002), Schmitt-Grohé and Uribe (2004), and Lan and Mé&yehde (2012a).
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(B-9) Yo = Bo
Proof. y solves the deterministic systef-¢) as studied by Anderson (2010) for positivevith
a unique solutiom such that all the eigenvalues of'®€are inside the unit circl& Substituting

this fory; in (B-7) yields a linear equation iyp, whose solution we cafly. See the Appendix. [

B.2 Second Order Coefficients

At second order, the approximation is

(B-10) Ve =y+ %ycz + ii)’iet—i + % jiiiiji (&—j @ &)

where we have already removed coefficients equal to Pefxcordingly, the task is to pin down
yj,i andy,. and we shall proceed in that order.

The equation from Lan and Meyer-Gohde (2012b)yfgris now
(B-11) fy-state/f1g -1+ fyYji + fyr fwdenda’}cﬂfﬂo-i- fe(Xj®X)=0
From B-8), we rewrite the derivative of; with respect te;_; as the product of a constant matrix
and the vector of state variable coefficients from the firdeor

X = [yisﬂalté y, y/vdendd si’}/ =y q© Vi>0
(B-12) wherey, = [Ins @' (aeniqstay nsgne}’

This reducesB-11) to a difference equation system with inhomogenous terrtisgtirst order
coefficients of the endogenous state variables and homagenefficients identical td(6), the
equation at first order. This is in line with the so-calledmpng algorithm of Kim, Kim, Schaum-
burg, and Sims (2008), though they are not entirely idehéisave will show in sectiod.

Eliminating redundant calculationg;; can be split into three difference equations according
to the different values that the indicgsindi take on. The initial values (whepand/ori are zero)
are handled separately, as in the first order case, by redngrihat the inhomogenous component

associated with the zero index is a known constant
(B-13) X0 = [ 0 B (afwdenchState)’ I

/
]
nexns
We summarize the solutions in the following

44see Villemot (2011) for details on solving the first order logeanous problem with the variable typology we have
adapted here from Adjemian, Bastani, Juillard, MihoubrgiRdia, Ratto, and Villemot's (2011) Dynare.
“®Hereyy is zero, see footnos3.
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Proposition B.2. The solution toB-11) takes the form

(B-14) yii =0y S 1+ By e v Vi&j>0

(B-15) ¥j.0 = B2o(¥ 45 Ine) Viji>0

(B-16) Y0,0 = Boo

Proof. See the Appendix. ]

The coefficientg; follows from the commutability of the matrix derivative apéor and upon
application of Magnus and Neudecker’'s (1979) commutati@triog K, to reverse the order of

Kronecker tensors. Accordingly

(B-17) Yo,i =Bo2(lne® ySt e) whereBoz = B2ooKnsne
The second order approximation also contains a constargatmm for risk that is generically
nonzero, see, e.g., Collard and Juillard (2001) or Sch@itthé and Uribe (2004),

Proposition B.3. y,2 solves

1
Yoz = [fystatic  fy-bwd+ fybwd  fy-mix+ fymix+ fyemix  fyfwd+ fy+ fwal

(B-18) [fowdench(f)gdendo‘f' f(wfwdendgzﬁdeend(@[ q E, (st+[?>

Proof. Direct verification of Lan and Meyer-Gohde’s (2012b) eqoiafior y;2

(B-19) Yor = —(fy-+ Ty ) fyyoo+ fyeavg 2B (17

upon application of the variable typology here yields theiidel result. O
This set of coefficients corrects for the risk of future shoels captured b <st H) the

(column vectorized) variance of next period’s shocks.

B.3 Third Order Coefficients

The third order approximation of the policy function takiee form

@ o, 1 °°<_1 ) B
Vi =Y+ 5Yo2 + Vi+ =Yo2i | €t—i+ = V(& ®&_)
20 i; | 20,| | Zj;)i;“ J i
1 00 00 00
(B-20) += Vi ji(E k@& D Ei)
GK;j;i; T : |

where again we have already removed coefficients equal td*¢ekccordingly, the task is to pin

downyy j i andygz ;.

4®Hereys, j andy,s are zero, see again footnot8. The latter follows from our assumption of normality, see
Andreasen (2012) for a third order perturbation with nommairshocks and, consequently, nonzero third order constant
risk corrects likeyys
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Lan and Meyer-Gohde’s (2012b) equation yRi; i with nonzera, j, andi is now given by’

fwdendo

(B-21) fy*stateylitfi,ejfl,ifl + fyYiji + fy+fwdendd’k+17j+17i+1 +VY333%,j,i =0

where the inhomogenous terms consists of the state spaa#saber orders
yﬁtaie@) y$taie® .talte
(B-22) s = tate tate tate tate) (| K tate tate) K
1 -1 QYT o (VR -1 @Y%) (Ine® Knene) + ( Y5215 -1 ® Vit©) Knene
mapped intoB-21) with the following constant matrix

(B-23) Y333 = _fx3V(i§[3] + Fe(Y22® Y1) (Ing + Ins @ Kngns+ Kng ) fxzy?[zq
where
[ fwdenchstate+ Bdeendoastat@[Z])/ 0 /
i = 0 . a
(B-24) Y22 | ngxns 822 ( 22 22 nszxne}

and whereK again is Magnus and Neudecker’s (1979) commutation matrix.

To eliminate redundant calculations, we split; ; into four difference equations according
to the different values that the indick&s j, andi take on and replace repeated coefficients with
their lower order predecessors. The initial values (wkiep and/ori are zero) are again handled
separately by recognizing that the inhomogenous compaesaciated with the zero index is a
known constant® We summarize the solutions in the following

Proposition B.4. The solution toB-11) takes the form

(B-25) Yioji = 0¥t 1o+ [Bass Bo2) e Vi, j,&k>0
tate tate
RYSE| .
(B-26) Ykj,0 = [B3so B2o] {yﬁ_ltateyf éﬂ ne] Vk&j>0
k-1,j—1®Ine

(B-27) Yi0,0 = B3oo (Y 1°® Ine) Vk>0

(B-28) ¥0,0.0 = Booo

Proof. See the Appendix. O

The third order approximation also contains a time varyiagection for risk that is generi-
cally nonzero, see, e.g., Andreasen (2012), Ruge-Mur6ibAR, or Caldara, Fernandez-Villaverde,
Rubio-Ramirez, and Yao (2012). Analogously to the firseorg,. ; must be split into two equa-

tions to respect the nonzero value of the shocks at impacmdéieroai, the source equation can

4’See appendik for the problem statement with zekis, j’s, and/ori’s, which reduces the underlying state space
to products of lower order state spaces.

48As the calculation are rather onerous, the reader is dileictehe Appendix for details and the second order
calculations above for an example.
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be written

fwdendo

(B-29) fy-stateg o el + fyYg2 i + 1:y+fwdend(y02 i1
- { {fxs <x8 Y1 ) +2f, <xg ® <y B(f)‘gde“do» (Ine @09 + fo (xez @ V1)

+ fy <V4B(f)\év:;jend0(| 2® astate)) } (E st+[1] ® |ns> + fo(on ®V1)} tate -0
wherexg, Xe g, Xq2, V4, X, andxgz; are constant matrices and coefficients from previous caicul

tions. Fori = 0, the source equation is

fwdendo

fyYo2, 0+ Ty fwdenddpz 4 fy2 (Xg2 @ X0)

(B-30) + { (x8 ®XO) +fe (Xez ®%0) + 2fe (Xe ® X 0) + fke o} <Et€§ﬁ} ® |ne> ~0
wherexg o andx;z o are coefficients from previous calculation

We summarize the solutions in the following
Proposition B.5. The solution toB-29 and B-30) takes the form
(B-31) Yoz = OY55i® 1 + BorrYid® Vi>0
(B-32) Yo2.0 = Bo2o
Proof. The first equation follows directly as the homogenous coreporis identical to that of the
first order with the first order itself being the inhomogenoasiponent. The second follows from
inserting the first intoB-30) and solving the resulting linear problem. See the Appendix [

This set of coefficients corrects (up to first order) for timeetivarying conditional risk of future

shocks as captured iy (st ﬁ]) the (column vectorized) variance of next period’s shocks.

C First Order Recursive Approximation Appendix

We define

(C-33) dy” =y -y
It follows that

(c-34) i = 5 v

Evaluating and rearrangirdyl” — ady"; S‘ta‘teylelds

d 1) ady(l state Vigr_i—a - ystatec‘ o
yt< t i; 1et—i i; i t—i—1
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AVRLYE SIS

=PBoet + Zi (vi — oy?e®) &
i=
(C-35) =Post
where the last line follows ag = ay™a® Vi > 0 from the first order solution in propositid 1.

Therefore the state space representation of the first opgieogmation (1) takes the form

(C-36) dyt(l (xdyfl state+ Bost

D Second Order Recursive Approximation Appendix

Inserting the first order approximatiohl) into the definition of the second order increme8)(

yields
1
(D-37) S
It follows

(0-38) 7 =33 3 il e)

Evaluating and rearrangirdy” — ady > ®yields

d){<2 — dyt<25tate [%%yll & j Q&) %% taiel 1(8-j ® &)

state
y (- ®&—i)+ ) Yo,(&t ®Ei)
BB )@ s o

(D-39) + Z Yjo(&—j®E) +YO705;®[2]}

applying the second order solutloy]s ay$'@S 1+ B2V Y1), ¥ j,i > 0,0, = Boz(lne®
yae v ji=0,i>0,yj0= Bzo(y$tate® Ine), ¥V j > 0, i =0 and notingBoo = Yo.0

dy? — dyt<2 ate_ [B 22 Zl (V"2 v (gt j @ &t-i) 4 Bo2 i( ne@Ya®) (g @ &)

(D-40) +B2o Z}( J2° Ine) (81— @ &) + Booef@[z]]
=
which, using the mixed product rule can be rewritten as

dy(z _ dyt(z )state [[3 ZZ Zl tate'ét ]®y5tatest |)+Boz %( nest®y?£afeet4)

j=1i =
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+B20o %(yﬂ A% @ Ineki) + Boogt }]

=
=3 {[322 <y(s)tatest71+yitatest72+ B ) ® <y(s)tatest71+yitatest72+ Ny )
+ Bozgt ® (yétateetfl + yﬁtate‘étfz +.. )
(D-41) + B0 (Vo -1+ V3 B2 +...) @& + Booe?m]
and from (1)
(D-42) dyl(z cxdyt<2 )state __ [B dy; tat@ 2] 1 Boz (St ® dystate) + Bao (dystalte® St) n Booef@[z]
The previous equatiori) can be further simplified by usingf'3®® &) = Knsne (& ® Y49
andp2o = Bo2Knens

(D-43) dy(z B dyt(z )state _ [Bzzd taten[2 + 2820 (d)’t<1 state® 8t> + [3008?[2]}

D.1 Block Kronecker Expression of Second Order Coefficients

Following Koning, Neudecker, and Wansbeek (1991), we ddfweeblock Kronecker product,

denoted byX, as

A®B11 ... ARBt
(D-44) AXB= : :
A®Bsg ... A®Bsgt

for a u x v matrix B consisting of block®y, of sizeux x vi, whereu= y§_; ux andv=y}_,v.

This contrasts with the standard Kronecker product
B11®A ... Bpy®A b1iA ... bi/A
(D-45) BRA= : : = : :
Ba®A ... Bsg®A buA ... byA
whereb is used to distinguish the individual elementBdifom the blocks defined above.

Applying the properties of the block Kronecker product, va@ connecy,. and

|:yystat62 Yeystate  Yystates ysz}
through operations with Magnus and Neudecker’s (1979) cotation matrix, denoted here by

Kapb, as follows

K 0
4(1)‘3’[2] nsnsene ns(ns+ne) xng(ns+ne) dyt<1 Jstate
yada™ =¥z 0 Knenst ne

ne(ns+ne) xngns+ne)

dy(l state]
1

-

=G,

X[2]
(D-46) = |:yystat£ Yeystate  Yystates y82:| dil)
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Accordingly,
(D-47) V2Go = [yystate? Yeystate  Yystates VSZ]

Hence, the block Kronecker product, through, allows us to extract the individual block second
derivatives with respect tg'®€ande from the matrix of second derivatives with respect to the

entire state vectog.

E Third Order Recursive Approximation Appendix

Using the second order approximatidy), the definition of the third order incremengg), can

be written as

(E-48) dy” =37y
It follows
(E-49) dYt(?)) 3 Vo2 i€t— |+:—L S S S ijl -k E&—j O E— i)
22, 2,202,

Rearranging and evaluatlmtg/( — ady ¥ yields

dy(S _ dyt(3 )state = %<y02 o —(XySta >8tfi

(E-50) S » Z} (Vioji — @55 1) (e k@ @8 )
k=0 j=0i
The first term on the right hand side of the previous equatambe written as
(E-51) Z) (yo-27i0-2 — ny;.tza 10 ) &—i = BO’ZOSt + [3021dyt<1 state
1=

The second term can be written as
%%(ykll O‘YE 1,j—1i— 1) (Et—k D E— | D &)
k= Oj

= Z Yi0,0(Et—k ® & ® &) + z Y0,j,0(E&t ®&—j R &)+ ZYO,O,i(St R E QE—i)
=1 i=

+ Z Zykjo S KkDE_jOE)+ Z Z\yk70,i(8t—k®5t®et [ Zijl & D E_j Q&)
k=1j=1 k=1i J=1i
(E-52)
+ Z(ykjl Gy& 1j-1i— 1) (Et—k ® & j Q& i) +Y000(&t @& @ &)
k 1j=1i

Each term can be converted into the corresponding state sppesentation. We will proceed
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one by one

(E-53) ¥0,0,0(&t ® & ® &) = Booo <8f® [3]>

The triple sum, by commuting, can be written as

o 00 00

(ykj,i - O‘ﬁﬂejfl,ifo (E1-Kk D E—j ® &)

=,
Il
[y

I

M
IMe Mz M
IMs [M s M

8

B333Skj|(5t K®E—j ®E—j)

Baza1 [(Yi1E—k) @ (Y 5%—j) @ (V71 %i)]

|
M s

[l
=

+<ySt1| 1®ysate> (Ine® Knene) (Et—k ® & —j ® &)
+

ta:tLel 1®Yﬁ e)KneZne -k E—j D& |)}

(E-54) —Basa1 (dyt(l )state®(3 ) 4602 <dyt(2 state ., dyfl state)

The following applies to, by commuting, all three of the sengums

Z Yk 00(Et—k @& @ &)

= Z B3oo (Ve '@ &—k) (Ing © & ® &)

(E-55) =PB3o00 (dyfl el ])
The following applies to, by commuting, all three of the deusums

00 00

Z Zykjoet K®E—jDE)
k=1j=

0 o [33 {ystate®ystate®|n
Yk—1,j-1® lne

e} (&t k@& ®E&)
1=

(E-56) =B3301 (dyfl jstate”l2 ® St) +2B20 (dyfz e St)

Combining the above

% Z)Z) <ykvivi N ayﬁtfai,ejfl,i—1> (&t k@ E—j &)
—Paza1 (dyt(l state?[3 ) + Booo <e{®[3]>
+ 3BS3Q1 (d)/t<1 staté® ® St) + 3B300 (dyfl State® 8?[2])
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+6B22 (dm(f)ftate@@ dyff)ftate) +6B20 (d%f)ftate@@ st)

E.1 Block Kronecker Expression of Third Order Coefficients

Similarly to the derivations at second order, we can conpeeind

[yystat@ Yeystar@  Yystaigystate  Yeaystate Yystarde  Yeystate  Yystates2 ys3]
with operations involving Magnus and Neudecker’s (1973houtation matrix, denoted here by
Kab, following the definition of the block Kronecker product obKing, Neudecker, and Wansbeek
(1991) as follows

K 2 0
3 ns (ns+ne) 2
yzsdél)@’[ | — vy [ 0 ns(nslzne)zxne(nskne)zl <d2t<1)®[ ]) gdZ‘(l)
ne (ns+ne)2
ne(ns+ne)2 xng(ns+ne)2

7

~
=G31

R[2]
= v,5Ga1 (szz§1) ) Xdz?

— y3G31 G2 N Insind da(l)&[ﬂ

= ¥, (Insne® Gy) G31dzt(1)x[3}
(E-57) = [yystate? Yopstard  Yystatagystate Yerystate Vs Yeystatw  Yistate? y€3} q él)@[S}
whereG, was defined in the proof of the block Kronecker formulatiotihef second order approx-

imation. Accordingly
(E-58)

Y3 (Insine® G2) Ga1 = |:yystate3 Yeystate  Yystategystate  Yeaystate  Yystar?e  Yeystate  Yystates2 YSS]
As in the second order case, the block Kronecker producugirG, andGsy, allows us to extract
the individual block third derivatives with respectyf®®ande from the matrix of third derivatives

with respect to the entire state vectar,

E.2 Proof of Proposition4.5

Our assumption of the existence of a nonlinear moving aeepajcy function g)

(E-59) Vi = VY(O, &, &—1,...)
requires that the state space representa8a@hn (
(E-60) Vi = 9(0, &, 799
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can be “inverted” in the sense that recursive substitutiqi@9) in itself will deliver (2)
(E-61) Vi = 9(0,&, 0590, & 1,...)) = y(0,&, & 1,...)

stat
ate
Y1

Thus, we can rewrite3() by replacing withy; andy®a®with (2), appropriately lagged and with

the subvector of states selected for the latter. This gives
(E-62) (0, & & 1,...) = 9(0,&, Y90, & 1,8 2,...))
By differentiating E€-62 with respect to the arguments of the nonlinear moving aeolicy
function @), we will demonstrate the equivalence or difference of thefficients in the recursive
algorithms of sectio® with those of the pruning algorithms in sectién

At first order, we differentiate with respect#oand the sequence of shocdf_i};- ;. Accord-
ingly
(E-63) Yo = Qo+ ey e

which when evaluated at the deterministic steady statercostf

(E-64) 96 =0—Y5=0s=0
and with respect to the sequence of shocks
state :
(E-65) Vi = Qystatey; 7 ,for! >0
Oe Jfori=0

comparing with B-8), it follows by inspection thagjystate = 0 = yystate andge = Bo = Ve
At second order, we differentiate with respectdotwice, o and the sequence of shocks
{e—i}i—o, and with respect to two sequences of sho¢ks, i}~ and{&_ | }T:O'
Beginning with the derivative with respectdatwice,
2
(E'66) Vo2 = Og2 + chystate otate—f— gystatgycsytateg)[ ] + gystate otzate

evaluating at the deterministic steady state yields

tate

(E-67) Yg2 = Qg2 + Qystatey 2
or, reexpressing the second term on the r.h.s in terms ofitheefctor of endogenous variables,
(E-68) Yoo = (Iny—Gy) "' g2

as was claimed.

49See Schmitt-Grohé and Uribe (2004), Jin and Judd (2008)L.an and Meyer-Gohde (2012a).
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With respect tas and the sequence of shocl&_i }i-, we obtain
o goystate iiafe—l— gystate'i (ygtate® iia:lfe) + gystate otla;tf ,for i>0
Yoi = tate fori —
gystat%y?y + Joe ,Jori = 0
evaluating at the deterministic steady statgstate = 0 andgge = 0 andV recalling the results from

(E-69)

the first order above
(E-70) Voi =0
With respect to two sequences of shocks
OystaneyS'AE ) + Oysiate (y?t_a{e@@ yisﬂalte> forj,i>0
(E-71) Vi = 4 g (Y3 Ine) Jfor j > 0,i = 0%
Oe2 Jdforj,i=0
comparing with B-14), it follows by inspection thagystatez =P = Yystar, Gystate = B2o = Yystate,
andgez = Boo = Ye2-

This completes the proof that all coefficients in the secomtiopruning algorithms and re-
cursive formulation of the nonlinear moving average arentidal, except for the constant risk
adjustment termg,2 andg,2. The transitions follow immediately when setting all shoekliza-
tions to zero. For example, Kim, Kim, Schaumburg, and SigZ&X8) algorithm in lemm4.3in

the absence of shocks is

(E-72) W =y+dy?
where
1
(E-73) dy? = gyl 25t 5002
. 1) 2) . 2) . -1
with dyé anddyé initialized to zero.dyt( transitions from zero t¢l,y — gy) ~ 9,2 and the same
(2)

follows for y;™ due to its linearity.

E.3 Proof of Proposition4.7

Here we follow the proof of propositiod.5 above. At third order, we have four derivatives:
thrice,o twice and a sequence of shockxynce and two sequences of shocks, and three sequences
of shocks. In our derivations, we will jump right to the eqaas evaluated in the deterministic

steady state.

50see again Schmitt-Grohé and Uribe (2004), Jin and Judd2)280d Lan and Meyer-Gohde (2012a).
51The casé > 0, j = 0 follows symmetrically.
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With respect tao thrice at the deterministic steady state

(E-74) Y03 = Qg3 1 Qystate Gtsate
or, reexpressing the second term on the r.h.s in terms ofitheefctor of endogenous variables,
(E-75) Yoo = (Iny—Gy) " g3

as was claimed.
With respect too twice and a sequence of shocks and evaluating at the detstinisteady
state
gczystateyisiafe + Qe <ystate® ystate) + gyerae state fori>0
o2 + Oystates (yState® Ine> Sfori=0
comparing with B-31) ggz, + Gystates <y§t2ate® Iy e) Bo2o = Yoze ANUGgzysatet Gae <ys e |, )
Bo21 = Yo2ystate AN, clearlyggae # Vg2, aNdggaystate 7 Yoz state.
Derivatives with respect to once and two sequences of shocks are zeros in both representa

(E'76) Yo2i =

tions,52 gcystate'i = ycystate'z =0, gcystat% = ycystat% =0, andgosz =VYe2 = 0
Finally, the terms with respect to three sequences of shocks

(E-77)
4
Yystae? [yﬁta 1 ® ystate+ (yﬁtate 1® ystate> (Ine® Knene) + ys ate 1 ® }/ﬁtate]
+gystateyﬁ (& 1t s <yﬁtate® ystate® tate) fork,j,i>0
Ykii = Qystates (}’ﬁtai i—1 ® |ne> + gystatég (yState® YTt,a}_e® Ine) ,for k, J > O,| — 053
Oystataz (Vi1 ® Ine) fork>0,j,i=0%
9es Sfork, j,i=0

\

comparing with B-25), g siae = B333= Yysara, Gystary = B330 = Yistargs Gystaterz = B300 = Yystare2,
andges = Booo = Yes-

This completes the proof that all coefficients in the thirdesrpruning algorithm in lemma
4.6 and recursive formulation of the nonlinear moving averaggeidentical, except for the risk
adjustment termg,s andggs as well asygaystae aNdggaystae. The transitions follow immediately

when setting all shock realizations to zero, see the secatet oase.

525ee Andreasen (2012), Jin and Judd (2002), and Lan and Neofele (2012a).
%4The caseg,i > 0, j = 0 andi, j > 0,k = O follow symmetrically.
%4The case$> 0,k, j = 0 andj > 0,k,i = O follow symmetrically.
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Online Appendix

F First Order Coefficients Appendix

We divide the problem into two cases, as the exogenous slaoeksnzero only upon impact.

F0.1 Caseli>0

Inserting B-8) into (B-6), noting thatg; = O for all positivei. The coefficient matrixa solves
a matrix quadratic problem and as our typology of variabtd®ds that of Dynare, we refer to
Villemot (2011) for details on how this problem can be soleéitiently.

a is partitioned as

r GSt
GSt ast
O(bwd abwdend
a = mix ostate) — CXde = fwdend
nyxns a o fwd o fwdendo a
cxfwd
r~ St st
abwd U mix
bwd bwd bwdendo ~bwdend
Opwd  Amix Apwd Umix
N mix mix N fwdendo fwdendo|
Opwd  Amix Upwd U nix
fwd fwd
-abwd amix_

For stability, we assume that the square partiti§'®has eigenvalues all inside the unit circle.

F0.2 Case2i=0

The impact effect of shocks o is 3o which can be partitioned as

B!
(F-1) Bo= | B3
Bfwd
0
Wheni = 0, the source equation reduces to
(F-2) fyYo+ fys fwdenad/y o+ fe =0
inserting B-8) in the previous equation and collecting terms yields
B3
(F-3) [fyst fystatet fy twdena® ™% fytw] ?%ta:je =—f¢
~ - BOW

A
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Solving for g therefore is a standard linear problem

(F-4) Bo=—A"f
G Second Order Coefficients Appendix

G.1 Solving the Unknown Coefficienty;

To avoid unnecessary repetitive calculation, we split éxévation ofy; ; into three parts according
to the different values that the indicgsndi take on. This enables us to use smaller state spaces

to construct the solutions.

G.1.1 Casel:j>0andi>0

Note that the derivative o§ with respect te;_j can be written as the product of a constant matrix

and the vector of state variables

(G-5) X = yayia®
ey s
- a
(G-6) wherex; = fwﬁlendo ; YL = | o fwdendgystate
i+1 0
& nexns
Using the previous equation, the source equation take®the f
fwdend
(G-7) fy*staté’jstfﬁ—l"' fyyji+ fy*fwdendd/JiVuej:lo‘i‘ % Vl[ ]( jt—aie® ylsialte) =0
The solution takes the form
(G-8) Yii= O(ySt 1i— 1+ B2z tate® ystate>
where22 can be partitioned as
2
oy
(G-9) [322 = BmIX
fidd
B22

wdendo
+1i+1

(G-10) y}‘i\l(lj,iej:(io: afwdendqxstatey?tiaﬁil_i_ [ fwdenchstate+ Bfwdend(bstat@ 2]] (ystate® ystat

Inserting the solution®-8) and G-10) in the source equation and matching coefficients yields

With this partition, the recursion (ylj takes the form

the following

(G-11) fyBoo -+ foWdendo[adeend%gtzate‘i‘ BZWdendoastat@ 2]} + fxzyi@[z] -0
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Again using the partition of322 and collecting terms yields the following equation in two

unknowns

fwdend bwdendo wdendo fwdendo
[fyst 1:ybwd‘f' fy+fwdend(§xbwd 1[3 [fymliF foWdend(gml fnyd

g g

A B
(G-12)
+ [fyrmic fyrwa] B WIS 4 £y % = 0

UsingAO(;o denote the null space #fand pre-multiplying the previous equation A§ yields
the following Sylvester equation "%
(G-13) (AOB)Bf wdendo AoC)B;wdend%stat@ 2 | A0 fxzv?m 0

With Bdeendoln hand, solving33y9e"9%s a standard linear problem
(G-14) Bg\évdendo: —pinv(A) [BBfwdendo+ CBfwdend%stat@ 2] + e yig[z]

wherepinv(A) represents the Moore-Penrose inversA.of

G.1.2 Case2;j>0andi=0

Notice that
nsxne nsxne
) _| Bo |_ Bo
(G 15) Xo = fwdendo| afwdenchstate
1 0
|ne Ine

which is a known constant matrix given the results from thet firder result8® and the source

equation takes the form

fwdend

(G-16) fyyj0+ fy twdenad 110+ he(Xj©X0) =0
The solution G-8) impliesy{‘?’ff”dotakes the form

(G-17) yIiV;iindO_ a fwdendcyjsfgte_i_ B;;Vdendchljstate® Bgtat%

Inserting the previous equation in the source equati®i§) and collecting terms yields
St

0
fwdendo fyfwd} ys{ate

[fyst fystatet fy+ fwdend & .0
< Ny fw
A Yo

Yj,0

55 While the first zero block should be removed frogin order to further reduce the size of the state space in

this case, we choose to keep it as otherwise the dimensirpisfdifferent from that ofx. This difference requires
additional efforts in indexing the variables when coding thethod.
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(G-18)  + Ty rutenadBzs 10" BEY + (1 ©%0) | (V1456 Ine) = O

The solution ofyg ; takes the form

(G-19) Vio= B2 (V]4*®Ine)
nyx (nexns)

Inserting the previous equation in the source equati®i® and matching coefficient yields
(G-20) ABoo = — [fy+ fwdendBan ¥ e B3 4 £ (v @ Xo)]
which is a standard linear equation in the unknown coefftdteg
(G-21) Boo = ~A~t [ fy+ rwaenadBgy "0 BFY + fa(va @)

The coefficientypj, can be computed by exploiting the commutability of the imaterivative
operator

Yo,i =Yj,0Knene = B2o( -tf‘ie® Ine) Knene
=B20Knsne(Ine® Y54 KneneKnene

(G-22) —Boz(lne® Y29
with
(G-23) Bo2 = B20Knsne

G.1.3 Case3;j=0andi=0

In this case the source equati@+11) takes the form

2
(G-24) fy¥0.0+ fy rwdenad} 1%+ Xy 2 =
The solution G-8) |mpI|esy{"i’de”d°takes the form

(G-25) yvalldendo O(fwdend%fate_i_ Bzwdend(Bstat@ 2]

Inserting the previous equation in the source equati®®4) and collecting terms yields
(G-26)

t
0,0
: 2 2
[fyst_fystatet s waenadt ™™ fytwa] |Y88°°| + 1y rwaenadzp ™ N
~~ - W
A Yo,0
Yo0,0
Solvingyoo therefore is a standard linear problem
2
(G-27) Y0,0 = A" [fyﬂwdenchszend(BStat@ + fxzxg@[ q

For the consistency of notation between the moving averagetate space representations of
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the second order approximation of the policy function, we le

(G-28) Boo = Y0,0

G.2 Solving the Unknown Coefficienty2

The source equation takes the form

(G-29) Yoz = —(fy + fy ) Hlyeyoo+ fyrayg VI (512

Making use of the special structure §f , fy and f,+ and collecting terms yields

1
Yoz = [fyst fybwd+ fybwd  fy-mix+ fymix+ fyrmix  fyfwa=+ fyr fwd]
fwdend fwdendo|2 2
(G-30) [fyﬂwdenchogv endo,, f(wfwdendngOW endo| ]} E, <8§[1])

H Third Order Coefficients Appendix

Given the results from lower orders, including that termgdir in the perturbation parameter are

zero, the third order approximation of the policy functiakes the form

@ _ o, 1 - < 1 ) Ll o . .
Vo =Y+ SYoe+ S (it 5Yori ) Eit 5 yii(&-j©ei)
t 2°° = L7 ! Zj;i;“ J |

1 (o] (o] (o]
(H-31) += Yicji(Et—k @& —j @ & i)
620 2o

The task at hand is to pin down some third derivatives of tHepéunction, includingy j i,
Yo2,i-
H.1  Solving the Unknown Coefficientyy j ;

As in the second order case, to avoid redundant calculate@split the derivation ofj j; into

four parts according to the different values that the inslicg andi take on.

H.1.1 Caselk>0,j>0andi>0

Note the second derivative &f vector,x; j can be written as the product of a constant matrix and

the second order state spage

(H-32) Xji = Y25,
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state
j—Li—-1

Yj.i _taie_ 1
wherex; j = |, fwdendo| | S;; = —Li-
= Y S = [yateyste
0
nex ne?
nsxng?
a B22
(H-33) Y2 = o fwdendgystate afwdenchatzate_i_ B;;Vdendoastat@[Z]
0
nexns nexng

In particular, let
0

nsxng

B22

(H-34) Y22 = Cxfwdend(BStzate_i_ B;gdend%stat@[z}
0

nexns?
theny, can be written as

(H-35) Y2=[y1 V22|

which implies

(H-36) Yo®@y1 = [v?m V22®y1}

This is a very useful property for avoiding redundant corapiahs in solving for the coefficients

of the third order approximation. The third order state spamnsists of the state spaces of all lower

orders
e v?iayijg ¥
S(,j ® i—1
(H-37) Sqji = atec o) (1
YT_l ® (Knene® Ine)
kt,a}_e@) Sj i
By constructing the following constant matrix
v¥ o 0 0
_ 1 0 ey O 0
H-38 =
(F-39) v 0 0 vi®y, O
0 0 0 vi®ye

the source equation can be written as

fwdend
(H-39) fy*stateylitfiejfl,ifl‘f’ fyyiji+ fowdendd’kivljil?prl‘i‘ [fe e fe fe]ysSji=0

The state space for the third order approximatt&n,i, can be further reduced using-36),
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the partition ofy,. Multiplying out the last term of the previous equation P
(e fe fe telvsSii=faviY (3o Yo a9 + fely2 @) (S @ ¥i'a9
+he(vi®ya) [(V] 2% Sei) Knene (Ine® Knene) |
(H-40) +he(r®y2) (RA® S;,i)

Using H-35) and H-36), terms on the right hand side of the previous equation camrlien

as
(H-41)

fx2 (V2®V1 S(] ® tate)
—f, [yl (ﬁtaie] ® yisialte) (Y222 V1) (ystate® ystate® ylsialteﬂ
(H-42)
fo (Vl ® VZ) [( tate® S« ) nanez( ne® Knene)]
=fe [Vig[z} (yﬁtﬂﬁ,l & y?tf‘f‘) (Ine® Knene) + (Y22@ Y1) (Ins® Knsns) (yﬁtf‘ie@@ jt_aie® y.sialte)}
(H-43)
fe(y1®Y2) ( tate® S, |)
- fxz [yl 2 ( taiel 1 ®yﬁ e) Kne2 ne+ (V22®V1) ng,ns (yﬁtaie@) taie® ystate)]

therefore

[fxs fe fe fxz} Y3 j.i

= [fxgy(lg’B] + f2(Y22@ V1) + 2 (Y22 @ Y1) (Ins® Knsns) + 2 (Y22 @ y1) Ko ns} ( tate® ystate® yISEJ\lte)
2
ey VRS @y (VS 1 @ Vi) (Ine Knene) + (V551 @ V9 Knge e
(H-44)
=Y333%,j,i
with
(H-45) Y333 = [fXSVi?[S] + fr2(Y22@ Y1) (Ing + Ins @ Knsns + Kng ns) foV?[zq

wheres, j; is the state space for the third order approximation defingB-22) that replaces the

largerS j i, and the source equatioH{39) can therefore be written as

fwdend

(H-46) fy-statdft-1i-1+ Fy¥kii + fyr twdenddet g1 + Y3335k ji = O
The solution takes the form

(H-47) Yiji = QYR 1 1+ P33k j,

56We W|” make repeated use Of the faCt trmhe® Ine - (Knene@ Ine)(lne® Knene)(lne@ Knene) - KneneZ(Ine®
Knene), see Lan and Meyer-Gohde (2012b), as this last represemtaiil prove better suited to our needs.
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which implies

fwdendo fwdendag, state state fwdendagystate - fwdend o
(H-48) Vi1 41041 =0 S i1 T (0‘ 333 ) Siit+Bazs  SkrLjilitd
where
(H-49)

g states[3] (Yﬁtflie(g Y?t,aie(@ yisialte>

LI T | quaes(?) [ysae | g ystate (e | o ySale) (1ne Knene) + (V481 ©YEEE) Kngtne

| (B0 (e s Knsns Ko ) (EARYT V)
With B33 conformably partitioned, the last term iH{48) takes the form

(H-50) B;\év:? end%«+l,j+l,i+1

fwdendo, state (3]
= fwdend Pag1 b fwdend i
- waenao waen 5
+BS332 (Bgtzate(g> cxstate) (Ins?‘ +1hs® Knsns+ Knsz,ns> [33332 G staten[2]
therefore H-48) can be written as
(H-51)
fwdendo
k1, j+1i+1
—a deendQ]StatGYEtfﬁ',Li,l
. O(deend%gtg%ﬁ + B;\é\/glend%stat@[ﬂ affvx;der;ch:s))%%% .
fwdend wden N
+B3\§I&§n 0(B§t2ate® astate) (Ing + Ins® Knsns+ Knsz,ns) +Bg332 Qstates[2) j
Inserting the solutionH-47) and H-51) in the source equatiorB(21) and matching coeffi-
cients yields
(H-52)

[fyB3az1 fyPBasz2]

Y t

+Y333=0
which consists of two blocks. The second block takes the form
fwdend 2
(H-53) fyBaaz2 + fwfwdendo(Gdeend 3535+ Bazas OO‘Stat@[z}) + vy 3 =0
PartitioningPz332 conformably (in rows) and collecting terms yields the fallng equation in

two unknowns
(H-54)

fwdendo fwdendo

fwdend bwdendo
fyst  fybwd+ fy+fwdend(§xb\,\,o| i 3332 T [fymix‘i‘ fy+fwdend(§xmix fyfwd} B3332

g g

A B
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+ [fyrmix  fy+ fw] B:‘;g??gnd%stat@m B o0

~~

C
noting that the coefficients irH-54) are identical to those inGQ-12). As in sectionG.1.1, we

pre-multiply the null spacé® through the previous equation to obtain the Sylvester éoyut

I?)fwdendo
3332
(H-55) (AOB> B;\évgfzendo'i‘ (AOC) B;gggnd%stat@m +A° fxzy?[ﬂ ~0

As the coefficients in the previous Sylvester equation agtidal to those inG-13), it follows

immediately that

fwdend fwdend
(H-56) Bsgazen °= Bzg enee
Givenplass S solvingB3udsndis a standard linear problem
(H-57) BYySs o= —pinv(A) | BBL3ss """+ CBIgss " betae 2l 4 1,y
It follows
(H-58) B3sas 0= P53 e
Hence
(H-59) B3332 = P22

Given 3332, the first block of H-52) takes the form

fwdend

(H-60) fyB33z1+ fy+fwdendo[a deend%:sstsa:ﬁ + Bsgale " OO‘Stat@[?’]] +D3=0
where
(H-61)

Ds =foy; 2+ [fXZ(V22® Y1) + fyt twaenadag o O O(BSEte® O‘State)] (Ing + Ins® Knsns+ Kng ns)
PartitioningPz331 conformably (in rows) and collecting terms yields the fallng equation in

two unknowns

fwdend fwdend fwdend
[fyst fybwd+ fowdend(gb\\:vvden i g\évgfndo"' [fymix‘i‘ fy+fwdend(§xmvivx endo fyfwd B3\:;V31en °
A B
(H-62)
fwdend
+ [fyrmix fy-rwal Bagar 00 % +D3=0
c

Pre-multiplying the null spaca® through the previous equation yields a Sylvester equation i

Bfwdendo
3331

(H'63) (AOB) B;\ggfndo_i_ (AOC) B:f;\évgfnd(%xstat@[ﬂ +AOD3 =0

62



Givenplss; % solvinggudendois a standard linear problem

(H-64) Bg\évglendo: . pinv(A) BB;ggfndo_’_ Cﬁéévgfnd%stat@[:’)] +Ds

H.1.2 Case2k=0,j=0andi=0

Note that
0

nsxne?

Yo,0
(H-65) X0,0 = |, fwdendo
Y11
0

nexne?
which is a known constant matrix given the lower order ressulhe source equation takes the form

3
fyyo.00+ fowdendd’IY\lIfjlendo‘i‘ fxsxgg[ I fr2 (X0,0 ®X0)

(H-66) +f2 (X ® XO,O) (Knene® Ine) + fye (Xo ® XO,O) =0
Note that rolling the solutionH-47) one period forward and taking only the forward endoge-

nous variables part yields

fwdend fwdend
(67 VAT 0= o OIS B 1
wheres; ; 1 can be obtained by settihg= j =i = 1in (B-22)

0
S1,1,1 =
- [(ygfgte(@ y(thate> (Ine + Ine® Knene + Kne2 ne)
As all the terms on the right hand side of the previous eqoaii@ knowns; 1 1 is a known

staten|[3]
(H-68) ]

constant matrix. InsertindH-67) in the source equationd¢66) and collecting terms yields

(H-69) [fyst fystatet fy+fwdend(gf\/\/dencIO fyfwd] Y0,0,0

- /
-~

A
fwdend 3
- [fwwdend@sgs MY 114 Bx 7+ fe (X008 %0) (Ings +Ine® Knene + K”ezv”E)]

Solvingyo00 is therefore a standard linear problem
(H-70)

~_ 3
Y000 =—A"1 [fowdench:fg\éVgend%l,l,l + % + e (X0,0 @ X0) (Ine + Ine® Knene + Knez,ne)]

For notational consistency, we let

(H-71) Booo = ¥0,0,0
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H.1.3 Case3k>0,j=0andi=0

Note that
0

nsxne?

Yj.0
(H-72) Xj0= fwtjjendo
yj+1,1
0

nexne?
and from the solutionG-10) and B-17)
fwdend fwdend
(73 O [ e B (o B (4 I
Xj,0 can be written as the product of a constant matrix and a péatiéirst order state space

(H-74) Xj,0 =Y20 (y?t_aie@b Ine)

0
Nnsx (Ns«ne)
B2o
(H-75) whereyzo = a fwdend13§t(Jate+ B;;V((:endo(astate® Bgtate)
nex (ns«ne)
The source equation takes the form
2
X @ X5
fwdendo Xk.0 ® Xo o
(H-76) fyVk 0.0+ fv+ fwdendd, +fe fo f2 fe s =
koo + Ty twdenadiciazr e fe fe el (%0 ©@%k0) (Knene® Ine)
Xk ® X0,0

Using the constant matrices we defined and rearrangingyéveopis equation can be rewritten
(H-77)

(nox%™) (%o Ine)

tate
fyyko0+ fy*fwdendd’liW(ljinldo"" [fe fe fe fel (Vo0 20) (Y47 lnee) =0
T ©om e Knxnx (Y20 @ X0) (Ins ® Knene) (Yﬁt,aie@? Inez)
(Y1©%0,0) (Vg 1°® Ine2)
collecting terms and notinf. = f,2Knynx yields

fwdendo
fyYko,0+ fy+ fwdenddk+1,1.1

+ |:fx3 (yl ® X§[2]> + fX2 (V20® XO) (Insmez + lhs® Knene) + fx2 (yl ®X070>} ( kt—aie® Inez)
(H-78) =0
Note that, from the solutiorH-47)

fwdendo fwdendq state fwdend
(H-79) Ykr111 =@ k0,01 Baz3 ERRY
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where
tat statex|[2)]

(H-80) St111 = (Vedie® Ine)

(Bgtate@) Bstate) ( nsine2 T Ins® Knene)
(Bstate® O(state) Knez,ns

The solution H-79) therefore can be written as

fwdendo fwdendq state
(H-81) Yer11,1 =9 Y00

state o, pStates[2]
a & BO

fwdendo tate
+ ®1
8333 (Bgtate® Bstate) ( sn + Ins® Knane) (YE nez)

(Bstate® astate) Kn62 ns
Inserting the previous equation in the source equatibi@®) and collecting terms yields

(H'82) [fyst fystate+ fowdendcngdendo fyfwdl)’k,o,o

g

A

= _{ fy (Vl ® X?[z]) + f2(Y20©%0) (Insine + Ins® Knene) + f2(Y1 ®X0,0)
gstate BStat@)[Z}

fwdendo tat
+ foWdendCBS33 (Bstate Bstate) ( 2+ Ine® Knene) } (YE a e® |ne2)
ns«n )

(Bstate® O(state) Kne2 ns
Solvingyk o0 is then a standard linear problem, and it is obvious yha takes the form

(H-83) Yi0,0 = Boo (Yri*® Ine)
where

(H'84) B300 = _'K\_l{ fx3 (yl ® X(?[Z]) + fx2 (y20® XO) (|r1s>(<ne2 + |ns® Knene) + fx2 (yl X XQO)

state o, pStatex[2]
a ® BO

fwdendo

+ fy+ fwdenad
y* fwdendd’333 (B3Ee® ™) (Insine + Ins @ Knene)
(Bstate® astate) Kne ns
The two associated coefficients, i, 0 andyo,ei can be obtained by commutinygoo

(H-85) ¥0,j,0 =Yk,0,0 (Knene® Ine) = BSOO( tate® Inez) (Knene® Ine)
=PB300(Knsne® Ine) ('ne@}’ﬁ?}e(@ |ne)
(H-86) ¥0.0i =Yk00Knene = B300 (Vi1 ® Ine) Knene?

—[3300Knsne2 ( ne @ yﬁtat
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therefore
(H-87)
(H-88)

(H-89)
(H-90)

¥0,j,0 = B30 (Ine® ¥§4°® Ine)
¥0.0i = Booz (Ine @Y%)
where

Bozo = B3oo(Knsne® Ine)

Booz = B3ooKngnez

H.1.4 Case4k>0,j>0andi=0

The source equation takes the

fwdendo

(H-91)  fyykjo+ fy+ fwdenddk+1,j+1,1 T

form

[fe fe Mfﬂ(

Xk @ X] @ Xo
Xk, j ©Xo

X| ®Xk,0) (Knane® Ine)

Xk ®Xj.0

Using the constant matrices we defined and rearranging,réveops equation can be written

as
(H-92)

fwdendo
fy¥ijo+ fyt fudenddicrs, 411+ |

collecting terms yields

fe fe fo fel

fwdendo

(H-93) fyYk,00+ fy+ fwdendd/k+1,1.1

=0

Using H-36), the partition ofy,, the previous equation can be further reduced to

fs <V§Q[2] ®XO>
+f2 (Y1 ®Y20) (In2sne+ Knsns @ Ine)

fwdendo

(H-94) fyVk. 0,0+ fy+ fwdendd/k+1,1.1

fa (in)

2

%)

t + fx2 (Vl ® VZO) (Insz*ne"" Knsns® Ine)

+ f12 (Y22 @ X0)

=0
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fy2 (Y2®Xo)

(v %) (1o 5o ne)

(Y2©X0) (S(,j ® Ine)

(Y1®Y20) (Knsns @ Ine) ( ktflie® Y?t,aie® |ne>
(Y18 Y20) (yﬁtj"{e@o ystates |ne>

PR Y
Yk-1,j-1® lne
fi2 (Y1 ®Xo)

[yﬁ‘aie@ yaeel,
S(,j ® lne




Note that, from the solutiorH-47)

fwdendo _ _ fwdendq state fwdend
(H-95) Yir1,j+11 = A k.j.0 T Paz3

where

%k+17j+171

Sk+1,j+1,1

<O(stat@[2] ® Bgtate) <y§t_aie® y?@ie(g |ne>

H-96) =
( ) [Bgtzate@) Bgtate-l- (Bi‘oate® astate) (Ins® Knens+ Knynens)} (Yﬁt_aie@) y?t_‘""{e® |ne>
_ + (ostateg ptate) (yﬁtﬂ?jfl 2 |ne)
With Bs33 conformably partitioned, the last term in the solutiéh95) takes the form
(H-97)

fwdend
8333 %k+1,j+1,1

B;ggfnm(astat@m ® Bgtate) ]
fwdend fwdend
+Bz\£/ en 0[ ;tzate® Bgtate+ (Bgtoate® astate) (lns® Knans+ Knsmens)} Bz\év en O(sttate® Bgtate)
yRoeo ystaew |ne]
tate |
k-1,j—1®Ine
Inserting the previous equation in the source equatit84) and collecting terms yields
(H-98)

fwdendo fyfwd}

[fyst fystatet fy+ fwdend® Yk.,j.0

~~

A
{ fa <V(1®[2] ® XO)

+f2 (Y1 ®VY20) (Ingsne + Knsns® Ine)
+ e (Y22 ® X0) f2 (Y12 X%0)

fwdend
fy+fwdendo[[33\évalen O staten(2] ®Bgtate>

fwdend
! fwdendo +B2\£I i O(Batzate(@ Bgtate) fwdendo }

+BI (BSt2te® aStae) (1056 Knans+ Knsinens) | - twdendBes (ostatey ptate)

Vet @ Y@ Ine
tate I
k-1,j-1®1Ine
Solvingyy j o therefore is a standard linear problem arglo takes the form
Yoo yseew |ne}

(H-99) Yk7j,028330{ tate * o |
k—1,j—1< 'ne
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where
(H-100)

o 1
B3zo=—A + T2 (YL ®V20) (Ingsne T Knsns® Ine)
+f,2 (Y22 @ Xo) fe2 (Y1 @X0)

_ { fa (Vig[z] ® XO)

fy+fwdendo[[33331
+ _i_B;;VdendO(Bstate@ Bgtate) }
fwdend fwdend
‘i‘Bz;V o 0<Bstate® astate) (|ns® Knens+ Knyne,ns)} fyﬂwdenchzév o 0<O(state® BState)
With 3330 conformably partitioned

fwdendo gstates (2] ® BState)

(H-101) PBazz01= ~ Al { ( ) + f,2 (Y1 ®VY20) (Ingsne+ Knsns @ Ine) + fr2(Y22® Xo)

fwdendo tates|[2 tat
+ fy+fwdendcf33331 (as ates] ]®Bgae>
fwdendO( state® Bstate)

+ 1cy+ fwdenchzz
state® astate) Ins® Knens+ Knsmans)}

fwdendo

+ fyﬂwdenchzz
~ fwdend
(H-102) Bagaz=—A"" [fXZ(Vl®XO)+ fys fwdenadan (026 BState)}
noting that as the right hand side &f-(L02) is identical to that of G-21), we therefore have
(H-103) B3302 = P20
so that onlyB33q1 needs to be calculated. The two associated coefficientsydg andyg,ji can

be obtained by commuting j o.

H.2  Solving the Unknown Coefficienty: ;

Wheni > 0, the source equation takes the form

fwdendo

(H'104) 1:y*stat otza|e1+ fyyoz + fy+fwdend(y(,2,_,_1 + f 2(X02®Xi)
+ o (6P @%) +2fe (e @ 361) + e (e @ %) + ez | (B3 @ lne) =0

With the following group of shifting matrices

[ 0 ] tate [ 0 ]
nsxne nsx ne? g2 nsxnfwdendg
nyOne Oe2 Vo2 fod d
. X ~~ — | nyxn — — | nyxnfwdendg
X fwdendol * XEE fwdendol Xg2 yf\évdendo , Ya )II
0 BOO o 0 nfwdendo
0
nexne | nexne | nex1 | nexnfwdendg
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_ 0 _
nsxne?

0

nyxne? = y4B(f);vdend0(| ne® astate) (l ne® yfﬂalte)

(f);vdendo“ne@ yistat%
0

L nexne? i
_ 0 _
nsxne3

0
fwdendo tat tat
X2 = fwdendrc‘)yxné tate, | YaBoos  (Ine ® A% (Ine @719
Booz  (Une®@Y¥9
0

| nexne’ i
the source equatiotd¢104) can be written asB-29)

X i

The solution takes the form

(+105) Vo = Y3 + By
which implies
fwdend fwdend

(H-106) ycgv,if;] o_ afwdendq]statey;tzajitgl_i_ (afwdend f}tzalte-l- Bc\évl en %state) state

Inserting the previous equation in the source equatA9) and collecting terms yields

fwdendd pbwdend fwdend fwdendo
[fySt fybwd"‘ fy+fwdend<§xb\,v:,lden i Bo\évl endoy [fymix'i‘ fy+fwdendcgbghen ° fyfwd} Bczl
A B

(H-107)

n [fy+mix f;wd} B(fj\évldend(bstate_i_ Dgi = 0

—_———

C
whereDy; is a constant

Doi =fe (X2 @ Y1) + [fx3 (X?[Z] ®V1> +2f (X?. ® <V4[3(f)\£1dendo)) (Ine2 ® astate)

(H108)  +fe ez @ 1) + f (VaBoos ™ (lpe 0 a5 ) } (Beer % @ Ins)

Pre-multiplying the previous equation by the null spABeyields the following Sylvester equa-
fwdendo
021

(H-109) (AOB)pFvdendo, (AOC)B

021

tionin 3

fwdendtbstate+ (AODoi) —0

021

With B;‘évlde“doin hand, solving3?#9e"%%is a standard linear problem

(H-110) phudendo_ _ piny(A) [Bsyfe”"% Cp/yendgstate . Dci]
We now move to the case= 0. The source equation in this case takes the form

fwdendo

fyyo{o + 1:y+ fwdend(yozi + fe (X2 ®Xo)
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(H-111) + [fxg <x§’[2] ®Xo) +fe (X2 @%0) +2f,2 (X @ X 0) + fx&zyo} (Etsf?ﬁ] ® |ne) ~0

where

_ 0 - _ 0 -
nsxne? nsxned
0 2 0 5
Xg 0= nyxn , Xg2. 0 = nyxn
g fwdendo J fwdendo
02 (Ine® B3™°) 003 (Ine B39
0 0
L nexne? i L nexned i
For notational consistency, we let
(H-112) Yo2.0 = Bo2o
and from the solutionH-105
fwdendo fwdend fwdend
(H-113) yo\é\fl — ¢ fwden f,tz%te-i— Bo\évl State

inserting the last two equations in the source equation aléating terms yields
(H-114) [fyst fystatet fy twdena® "% fytwa] Bo2o = —Doo
whereDy is a constant

Doo = [fxs (x;@ g XO) +fe (Xez ®X0) + 2fe (X @ Xe0) + fXng,o} (Et el @ |ne>
(H-115) + fwfwdendcﬁégvldend%gtate
Solving for Bz therefore is a standard linear problem

-1
(H-116) Bg2g = — [fyst fystatet fy+fwdend<§xfwdendo fnyd} Doo

H.3 Solving for ygs

The source equation takes the form

3

(H-117)  ygs = —(fy + fy+ o) [ feavp  +3f,02(Yo,0©Yo) + fy+Yo,00)Ex <sff§])

Making use of the special structure §f, fy and f,+ and collecting terms yields

-1
y0_3 frd [fyst fy*de+ fbed fyfmix‘i‘ fymix+ fy+mix fnyd+ foWd]

(H-118) [fy+3y((§Q ¥ 3 fy+2(Yo,0®Yo) + fy+ Y000/ Et <efﬁ)
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Table 1: Stochastic Growth Model
Section6.1
Baseline Parameter Values

Parameter 3 a p o

Value 0.99 0.36 0.95 0.712%

See Hansen (1985).

Table 2:E; Performance of the Different Algorithms
Model of Sectior6.1

Baseline x=3 x=10 x=25 x=50

First 5.90E-04 5.02E-03 4.55E-02 1.73E-01 2.50E-01
Second-Perturbation 1.13E-05 2.86E-04 8.07E-03 6.36E-ORlaN
Second-Kim et al 1.09E-05 2.76E-04 8.11E-03 7.28E-02 1-@PE
Second-Den Haan and De Wind 1.09E-05 2.76E-04 8.11E-03 E7028 1.82E-01
Second-NLMA 1.09E-05 2.76E-04 8.11E-03 7.28E-02 1.82E-01
Third-Perturbation 5.72E-08 4.99E-06 NaN NaN NaN
Third-Andreasen 1.79E-07 1.35E-05 1.29E-03 2.79E-02 H-@6

Third-Den Haan and De Wind 5.80E-04 4.88E-03 4.74E-02 2@BE 5.39E-01
Third-Fernandez-Villaverde etal 1.62E-06 4.35E-05 1-83E 3.18E-02 1.34E-01
Third-Juillard 1.33E-06 3.58E-05 1.60E-03 2.93E-02 1-PAE
Third-NLMA 1.79E-07 1.35E-05 1.29E-03 2.79E-02 1.26E-01

Table 3:E, Performance of the Different Algorithms
Model of Sectior6.1

Baseline x=3 Xx=10 x=25 X =50

First 4.43E-08 3.64E-06 5.24E-04 4.90E-02 2.68E+01
Second-Perturbation 3.02E-11 2.26E-08 3.94E-05 2.25E-OANaN
Second-Kim et al 3.04E-11 2.24E-08 3.52E-05 1.83E-02 208E
Second-Den Haan and De Wind 3.04E-11 2.24E-08 3.52E-05 E1023 2.48E+01
Second-NLMA 3.04E-11 2.24E-08 3.52E-05 1.83E-02 2.48E+01
Third-Perturbation 1.40E-15 2.27E-11 NaN NaN NaN
Third-Andreasen 1.66E-14 1.11E-10 1.92E-06 5.77E-03 EXD3

Third-Den Haan and De Wind 4.77E-08 3.54E-06 5.21E-04 563E 2.94E+01
Third-Fernandez-Villaverde etal 5.06E-13 4.70E-10 2-06E 6.00E-03 2.19E+01
Third-Juillard 3.54E-13 3.67E-10 2.41E-06 6.12E-03 220E
Third-NLMA 1.66E-14 1.11E-10 1.92E-06 5.77E-03 2.19E+01
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Table 4:E., Performance of the Different Algorithms
Model of Sectiort.1

Baseline x=3 X =10 X =25 X =50

First 1.50E-02 1.06E-01 7.59E-01 2.34E+00 2.32E+00
Second-Perturbation 8.96E-04 1.99E-02 3.30E-01 1.14E+0O0Inf
Second-Kim et al 9.07E-04 1.87E-02 4.55E-01 3.55E+00 H6BE
Second-Den Haan and De Wind 9.07E-04 1.87E-02 4.55E-01 E3@®% 7.63E+00
Second-NLMA 9.07E-04 1.87E-02 4.55E-01 3.55E+00 7.63E+00
Third-Perturbation 1.60E-05 2.45E-03 Inf Inf Inf
Third-Andreasen 4.14E-05 2.50E-03 1.96E-01 3.94E+00 B+DQ

Third-Den Haan and De Wind 2.98E-02 1.19E-01 1.63E+00 1+64E 7.00E+01

Third-Fernandez-Villaverde etal 1.29E-04 4.14E-03 1-83E 3.69E+00 1.57E+01

Third-Juillard 1.28E-04 4.12E-03 1.64E-01 3.56E+00 1-83E

Third-NLMA 4.14E-05 2.50E-03 1.96E-01 3.94E+00 1.70E+01

Table 5: Asset Pricing Model
Section6.2
Baseline Parameter Values

Parameter a B U p o

Value -1.5 0.95 0.0179 -0.139 0.0348

See Burnside (1998) and Collard and Juillard (2001).
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Table 6:E; Performance of the Different Algorithms
Model of Sectiorb.2

Baseline 0=1E-04 0=01 p=0 p=05 p=09

First 1.42E-02 1.18E-07 1.16E-01 1.85E-02 4.94E-02 1.01E-
Second-Perturbation 1.92E-04 9.74E-11 1.29E-02 3.29E96E-03 6.74E-02
Second-Kim et al 1.92E-04 9.74E-11 1.29E-02 3.29E-04 2@BE6.74E-02
Second-Den Haan and De Wind 1.92E-04  9.74E-11 1.29E-02 E3029 2.96E-03 6.74E-02
Second-NLMA 1.92E-04 9.74E-11 1.29E-02 3.29E-04 2.96E-634E-02
Third-Perturbation 1.91E-04 9.74E-11 1.29E-02 3.29E-0462R2-03 5.82E-02
Third-Andreasen 1.91E-04 9.74E-11 1.29E-02 3.29E-04 BE2®2 5.82E-02

Third-Den Haan and De Wind 1.92E-04 1.93E-09 1.29E-02 3Q@9E2.91E-03 8.29E-02

Third-Fernandez-Villaverde etal 1.91E-04 9.74E-11 1-P2E 3.29E-04 2.62E-03 5.82E-02

Third-Juillard 1.91E-04 9.74E-11  1.29E-02 3.29E-04 24E 5.82E-02

Third-NLMA 1.91E-04 9.74E-11  1.29E-02 3.29E-04 2.62E-0382k-02

B=05 PB=099 a=-10 a=-5 a=0 a=05

First 2.36E-03 2.92E-02 2.28E-01 9.06E-02 9.95E-11 2.83E-
Second-Perturbation 1.28E-05 8.30E-04 4.65E-02 7.52E985E-11 8.41E-06
Second-Kim et al 1.28E-05 8.30E-04 4.65E-02 7.52E-03 93BbHE8.41E-06
Second-Den Haan and De Wind 1.28E-05 8.30E-04  4.65E-02 E7032 9.95E-11 8.41E-06
Second-NLMA 1.28E-05 8.30E-04 4.65E-02 7.52E-03 9.95E-8U1E-06
Third-Perturbation 3.78E-06 8.31E-04 4.66E-02 7.54E-0®5B-11 7.84E-06
Third-Andreasen 3.78E-06 8.31E-04 4.66E-02 7.54E-03 BBH 7.84E-06

Third-Den Haan and De Wind 6.49E-06 8.32E-04 4.67E-02 T7-B3E9.95E-11 8.10E-06

Third-Fernandez-Villaverde etal 3.78E-06 8.31E-04 4-0RE 7.54E-03 9.95E-11 7.84E-06

Third-Juillard 3.78E-06  8.31E-04 4.66E-02 7.54E-03 9493E 7.84E-06

Third-NLMA 3.78E-06  8.31E-04 4.66E-02 7.54E-03 9.95E-1184E-06

See Burnside (1998) and Collard and Juillard (2001).
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Table 7:E, Performance of the Different Algorithms
Model of Sectior6.2

Baseline 0=1E—-04 0=0.1 p=0 p=05 p=09

First 3.17E-02 2.10E-12 2.66E+00 5.36E-02 4.29E-01 1.73E+
Second-Perturbation 7.05E-06 1.44E-18 3.37E-02 1.70EAD38E-03 4.00E+00
Second-Kim et al 7.05E-06 1.44E-18 3.37E-02 1.70E-05 2@BE 4.00E+00
Second-Den Haan and De Wind  7.05E-06 1.44E-18 3.37E-02 E10B0 2.38E-03 4.00E+00
Second-NLMA 7.05E-06 1.44E-18 3.37E-02 1.70E-05 2.38E-830E+00
Third-Perturbation 5.74E-06 1.44E-18 3.29E-02 1.70E-0221E-03 1.75E+00
Third-Andreasen 5.74E-06 1.44E-18 3.29E-02 1.70E-05 B-@3 1.75E+00

Third-Den Haan and De Wind 6.50E-06 5.92E-12 3.29E-02 1.UDE1.75E-03 4.58E+00

Third-Fernandez-Villaverde et al 5.74E-06 1.44E-18 3:-P2E 1.70E-05 1.21E-03 1.75E+00

Third-Juillard 5.74E-06  1.44E-18 3.29E-02 1.70E-05 1-2BE 1.75E+00

Third-NLMA 5.74E-06  1.44E-18 3.29E-02 1.70E-05 1.21E-0375E+00

B=05 PB=099 a=-10 a=-5 a=0 «a=05

First 5.04E-06 6.43E-01 1.37E+00 4.43E-01 3.58E-18 4.3BE-
Second-Perturbation 2.38E-10 5.48E-04 5.95E-02 3.27E338E-18 5.33E-08
Second-Kim et al 2.38E-10 5.48E-04 5.95E-02 3.27E-03 3.BBE 5.33E-08
Second-Den Haan and De Wind 2.38E-10  5.48E-04 5.95E-02 E3037 3.58E-18 5.33E-08
Second-NLMA 2.38E-10 5.48E-04 5.95E-02 3.27E-03 3.58E-B333E-08
Third-Perturbation 1.30E-11 5.21E-04 5.71E-02 3.07E-03%8B-18 3.31E-08
Third-Andreasen 1.30E-11 5.21E-04 5.71E-02 3.07E-03 BB8 3.31E-08

Third-Den Haan and De Wind 4.84E-09 5.25E-04 5.72E-02 303E 3.58E-18 3.15E-07

Third-Fernandez-Villaverde etal 1.30E-11 5.21E-04 5-0PE 3.07E-03 3.58E-18 3.31E-08

Third-Juillard 1.30E-11 5.21E-04 5.71E-02 3.07E-03 34%E 3.31E-08

Third-NLMA 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18.31%(-08

See Burnside (1998) and Collard and Juillard (2001).
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Table 8:E., Performance of the Different Algorithms
Model of Sectiort.2

Baseline 0=1E-04 0=01 p=0 p=05 p=09

First 1.48E-02 1.22E-07 1.21E-01 1.85E-02 7.10E-02 6.61E-
Second-Perturbation 6.63E-04 1.09E-10 2.27E-02 3.29E4043E-02 5.15E-01
Second-Kim et al 6.63E-04 1.09E-10 2.27E-02 3.29E-04 1-@3E 5.15E-01
Second-Den Haan and De Wind 6.63E-04  1.09E-10 2.27E-02 E3029 1.43E-02 5.15E-01
Second-NLMA 6.63E-04 1.09E-10 2.27E-02 3.29E-04 1.43E-6215E-01
Third-Perturbation 1.99E-04 9.74E-11  1.34E-02 3.29E-0400B-03 3.89E-01
Third-Andreasen 1.99E-04 9.74E-11 1.34E-02 3.29E-04 BO® 3.89E-01

Third-Den Haan and De Wind 1.96E-02 5.68E-05 5.40E-02 3Q@2E1.18E-01 1.36E+00

Third-Fernandez-Villaverde et al 1.99E-04 9.74E-11 1-82E 3.29E-04 3.90E-03 3.89E-01

Third-Juillard 1.99E-04 9.74E-11  1.34E-02 3.29E-04 393E 3.89E-01

Third-NLMA 1.99E-04 9.74E-11  1.34E-02 3.29E-04 3.90E-03.89E-01

B=05 PB=099 a=-10 a=-5 a=0 a=05

First 2.97E-03 2.98E-02 2.48E-01 9.65E-02 9.95E-11 2.03E-
Second-Perturbation 9.13E-05 1.78E-03  8.55E-02 1.67EM95E-11 3.94E-05
Second-Kim et al 9.13E-05 1.78E-03 8.55E-02 1.67E-02 9PBE 3.94E-05
Second-Den Haan and De Wind 9.13E-05 1.78E-03  8.55E-02 E10@7 9.95E-11 3.94E-05
Second-NLMA 9.13E-05 1.78E-03 8.55E-02 1.67E-02 9.95E-B194E-05
Third-Perturbation 5.19E-06 8.48E-04 5.12E-02 8.07E-03®5B-11 8.02E-06
Third-Andreasen 5.19E-06 8.48E-04 5.12E-02 8.07E-03 BBH 8.02E-06

Third-Den Haan and De Wind 2.09E-02 1.88E-02 1.36E-01 5@BE 9.95E-11 6.53E-03

Third-Fernandez-Villaverde etal 5.19E-06 8.48E-04 5:02E 8.07E-03 9.95E-11 8.02E-06

Third-Juillard 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9493E 8.02E-06

Third-NLMA 5.19E-06  8.48E-04 5.12E-02 8.07E-03 9.95E-11.02E-06

See Burnside (1998) and Collard and Juillard (2001).



Table 9: Recursive Utility and Stochastic Volatility
Section6.3
Constant Parameter Values

Parameter [ v ¢ o AP

Value 0.99 (B6218 0.3 0.0196 0.95 0.9

See Caldara, Fernandez-Villaverde, Rubio-Ramirez, and
Yao (2012).

Table 10: Recursive Utility and
Stochastic Volatility
Section6.3
Values for Different
Parameterizations

Parameter Y (o P n

Baseline Value 5 0.007 0.06

Extreme Value 40 0.021 0.1

See Caldara, Fernandez-Villaverde,
Rubio-Ramirez, and Yao (2012).
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Table 11:E; Performance of the Different Algorithms
Model of Sectior6.3
Baseline Parameterization

ke Ct It it Vi R R
First 6.25E-03 3.81E-03 1.61E-03 1.32E-02 5.31E-03 1.00E-1.20E-04
Second-Perturbation 1.79E-03 3.06E-03 3.57E-03 2.78E826E-03 2.20E-04 2.44E-04
Second-Kim et al 1.12E-03 6.16E-04 3.83E-04 2.64E-03 T7@4E?2.21E-05 2.22E-05
Second-Den Haan and De Wind 1.18E-03 6.38E-04 3.90E-04 E2087 7.95E-04 2.40E-05 2.43E-05
Second-NLMA 1.12E-03 6.16E-04 3.83E-04 2.64E-03 7.94E-Q#L1E-05 2.23E-05
Third-Perturbation 1.56E-03 3.01E-03 3.58E-03 2.79E-0211B-03 2.21E-04 2.46E-04
Third-Andreasen 7.19E-04 3.42E-04 3.27E-04 2.03E-03 B®0 1.63E-05 1.50E-05

Third-Den Haan and De Wind 5.58E-03 3.40E-03 1.47E-03 1-@PE4.74E-03 9.91E-05 1.08E-04

Third-Fernandez-Villaverde etal 7.37E-04 3.53E-04 3-P4E 2.10E-03 3.83E-04 1.65E-05 1.52E-05

Third-Juillard 7.19E-04 3.42E-04 3.27E-04 2.04E-03 342E 1.64E-05 1.50E-05

Third-NLMA 7.20E-04 3.42E-04 3.27E-04 2.03E-03 3.60E-0463E-05 1.50E-05
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Table 12:E, Performance of the Different Algorithms
Model of Sectior6.3
Baseline Parameterization

ke Ct It it Vi R R
First 6.68E-03 1.39E-05 6.28E-07 1.48E-05 4.65E-05 2.08E-2.60E-08
Second-Perturbation 5.57E-04 8.14E-06 2.45E-06 5.08EB8E-05 8.24E-08 1.02E-07
Second-Kim et al 3.02E-04 4.49E-07 4.94E-08 9.33E-07 1®G&E 1.06E-09 1.10E-09
Second-Den Haan and De Wind 3.27E-04 4.75E-07 4.99E-08 ED33 1.55E-06 1.16E-09 1.20E-09
Second-NLMA 3.02E-04 4.49E-07 4.94E-08 9.33E-07 1.54E-066E-09 1.10E-09
Third-Perturbation 3.97E-04 7.97E-06 2.47E-06 5.13E-083B-05 8.29E-08 1.03E-07
Third-Andreasen 1.12E-04 1.29E-07 3.21E-08 4.76E-07 BAD 5.92E-10 4.76E-10

Third-Den Haan and De Wind 5.19E-03 1.09E-05 5.02E-07 1-Q5E3.64E-05 1.72E-08 2.08E-08

Third-Fernandez-Villaverde etal 1.34E-04 1.47E-07 3-PBE 5.35E-07 4.25E-07 5.85E-10 4.78E-10

Third-Juillard 1.12E-04 1.29E-07 3.21E-08 4.79E-07 3-BE 5.93E-10 4.76E-10

Third-NLMA 1.12E-04 1.29E-07 3.21E-08 4.75E-07 3.09E-0791%-10 4.75E-10
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Table 13:E., Performance of the Different Algorithms
Model of Sectior6.3
Baseline Parameterization

ke Ct It it Vi R R
First 5.61E-02 3.49E-02 2.80E-02 1.79E-01 5.66E-02 1.09E-1.40E-03
Second-Perturbation 1.87E-02 2.45E-02 3.42E-02 2.40E36E-02 1.91E-03 2.26E-03
Second-Kim et al 2.00E-02 1.05E-02 1.08E-02 6.29E-02 1-@2E 3.42E-04 4.15E-04
Second-Den Haan and De Wind 2.03E-02 1.07E-02 1.09E-02 E6)27 1.85E-02 3.33E-04 4.06E-04
Second-NLMA 2.00E-02 1.05E-02 1.08E-02 6.29E-02 1.84E-B242E-04 4.15E-04
Third-Perturbation 1.43E-02 2.39E-02 3.39E-02 2.38E-0117F-02 1.86E-03 2.20E-03
Third-Andreasen 1.09E-02 5.10E-03 7.07E-03 3.86E-02 B@® 2.52E-04 2.30E-04

Third-Den Haan and De Wind 5.01E-02 3.25E-02 2.31E-02 1-@bE5.01E-02 9.07E-04 1.15E-03

Third-Fernandez-Villaverde etal 1.38E-02 6.03E-03 7-03E 4.63E-02 1.22E-02 2.56E-04 2.36E-04

Third-Juillard 1.10E-02 5.07E-03 7.11E-03 3.86E-02 8&KE 2.56E-04 2.29E-04

Third-NLMA 1.08E-02 5.12E-03 7.08E-03 3.88E-02 8.46E-0352E-04 2.31E-04
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Table 14:E; Performance of the Different Algorithms
Model of Sectior6.3
Extreme Parameterization

ke Ct It it Vi R R
First 4.88E-02 2.19E-02 8.81E-03 6.93E-02 3.06E-02 8.85E-8.52E-04
Second-Perturbation 1.08E-02 1.05E-02 1.16E-02 8.11EZ38E-02 7.28E-04 8.05E-04
Second-Kim et al 1.10E-02 5.06E-03 2.62E-03 1.93E-02 7Q3E1.66E-04 1.71E-04
Second-Den Haan and De Wind 3.41E-02 1.46E-02 5.33E-03 E0?29 9.83E-03 7.74E-04 7.91E-04
Second-NLMA 1.10E-02 5.08E-03 2.63E-03 1.94E-02 7.11E-03%7E-04 1.72E-04
Third-Perturbation 7.24E-03 9.37E-03 1.15E-02 8.15E-052R-02 6.94E-04 7.70E-04
Third-Andreasen 8.06E-03 2.66E-03 1.97E-03 1.24E-02 BG83 1.22E-04 1.14E-04

Third-Den Haan and De Wind 458E-02 2.30E-02 8.99E-03 5@BE 2.55E-02 8.95E-04 9.30E-04

Third-Fernandez-Villaverde etal 8.78E-03 3.13E-03 2:0BE 1.40E-02 4.38E-03 1.60E-04 1.53E-04

Third-Juillard 8.01E-03 2.63E-03 1.97E-03 1.25E-02 387 1.23E-04 1.15E-04

Third-NLMA 8.15E-03 2.60E-03 1.84E-03 1.25E-02 3.59E-0319E-04 1.10E-04
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Table 15:E, Performance of the Different Algorithms
Model of Sectior6.3
Extreme Parameterization

ke Ct It it Wi R R
First 4.66E-01 5.24E-04 1.90E-05 6.21E-04 1.91E-03 1.06E-1.14E-06
Second-Perturbation 3.22E-02 1.11E-04 2.80E-05 6.24E4048E-03 9.40E-07 1.16E-06
Second-Kim et al 4.27E-02 3.89E-05 2.41E-06 9.62E-05 1®6E5.04E-08 5.72E-08
Second-Den Haan and De Wind 1.69E-01 1.61E-04 4.75E-06 E10d0 2.46E-04 6.50E-07 6.81E-07
Second-NLMA 4.28E-02 3.90E-05 2.42E-06 9.63E-05 1.86E-BH9E-08 5.78E-08
Third-Perturbation 1.09E-02 8.62E-05 2.77E-05 6.16E-0413E-03 8.63E-07 1.08E-06
Third-Andreasen 1.74E-02 9.63E-06 1.13E-06 3.57E-05 HG® 2.66E-08 2.28E-08

Third-Den Haan and De Wind 3.52E-01 4.91E-04 1.68E-05 3OHE1.25E-03 1.15E-06 1.26E-06

Third-Fernandez-Villaverde etal 2.56E-02 1.47E-05 1-PBE 5.63E-05 8.22E-05 4.42E-08 4.20E-08

Third-Juillard 1.74E-02 9.51E-06 1.14E-06 3.68E-05 4®% 2.73E-08 2.35E-08

Third-NLMA 1.52E-02 8.57E-06 1.04E-06 3.07E-05 4.02E-0529E-08 1.95E-08
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Table 16:E,, Performance of the Different Algorithms
Model of Sectior6.3
Extreme Parameterization

ke Ct It it Wi R R
First 3.31E-01 1.94E-01 1.44E-01 6.58E-01 3.26E-01 8.08E-1.15E-02
Second-Perturbation 1.49E-01 1.01E-01 1.47E-01 1.01E#0@O8E-01 9.84E-03 1.04E-02
Second-Kim et al 1.93E-01 8.81E-02 6.92E-02 3.36E-01 1@BE3.00E-03 5.48E-03
Second-Den Haan and De Wind 2.08E-01 9.68E-02 7.42E-02 E3033 1.86E-01 2.33E-03 4.79E-03
Second-NLMA 1.93E-01 8.81E-02 6.92E-02 3.36E-01 1.83E-BID0E-03 5.48E-03
Third-Perturbation 8.53E-02 8.92E-02 1.47E-01 1.11E+0M3B-01 9.32E-03 9.96E-03
Third-Andreasen 1.25E-01 4.67E-02 3.93E-02 2.18E-01 H-06 1.89E-03 2.50E-03

Third-Den Haan and De Wind 2.71E-01 1.83E-01 1.19E-01 80BE 2.97E-01 5.90E-03 6.99E-03

Third-Fernandez-Villaverde etal 1.59E-01 5.74E-02 4-BQE 2.80E-01 1.41E-01 1.90E-03 3.07E-03

Third-Juillard 1.26E-01 4.52E-02 3.99E-02 2.25E-01 1-D0E 1.97E-03 2.67E-03

Third-NLMA 1.19E-01 4.42E-02 4.17E-02 2.21E-01 1.04E-0182E-03 2.42E-03
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Figure 1:E; Performance of the Different Algorithms, Model of Secti®i
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Figure 2:E, Performance of the Different Algorithms, Model of Secti®i
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