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Abstract

We derive recursive representations of nonlinear moving average (NLMA) perturbations of DSGE

models. As the stability of higher order NLMA representations follows directly from stability at

first order, these recursive representations provide rigorous support for the practice of pruning that

is becoming widespread. Our recursive representation differs from pruned perturbations in that it

centers the approximation and its coefficients at the approximation of the stochastic steady state

consistent with the order of approximation. We compare our algorithm with six different pruning

algorithms at second and third order, documenting the differences between these six algorithms

and standard (non pruned) state space perturbations at first, second, and third order in a unified

notation compatible with the popular software package Dynare. While our third order algorithm is

the most accurate, the gains over two alternate algorithms are modest, suggesting that this choice

is unlikely to be a potential source of error.
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1 Introduction

Locally approximated models that are stable at first order can produce explosive simulations when

approximated at second or higher order. This is troublesomeas higher order approximations are

needed to capture salient features of the macroeconomy.1 The instability induced by higher order

simulations is caused by the accumulation of nonlinear terms higher than the order of approxi-

mation that add additional instable steady states to the approximation. Judd, Maliar, and Maliar

(2011) offer one solution to generate stable simulations efficiently. Another solution offered by the

literature is to maintain the local, perturbation approach, but to “prune” these higher order terms

and restore the desired stability. This later approach has the additional advantage of enabling the

application of GMM and SMM to these nonlinear settings2 as well as a decomposition of theoret-

ical moments into orders of approximation and risk adjustment.3

The nonlinear moving average perturbations of Lan and Meyer-Gohde (2012b) produce ap-

proximations that are stable at all orders of approximations when the first order approximation is

stable. In this study, we derive recursive representationsof infinite moving average approxima-

tions, providing endogenously pruned algorithms for nonlinear simulations. While the pruning of

nonlinear perturbations introduced by Kim, Kim, Schaumburg, and Sims (2008), and indeed the

different algorithms to implement pruning, has proliferated in the recent literature, Den Haan and

De Wind (2012) and Lombardo (2012) have objected, calling this methodology ad hoc, and Ruge-

Murcia (2012) has noted the nontrivial nature of extending Kim, Kim, Schaumburg, and Sims’s

(2008) second order algorithm to higher orders. We provide theoretical support for pruning algo-

rithms, interpreting them as recursive formulations of nonlinear moving average approximations.

We compare our nonlinear moving average based recursive algorithm to the pruning algo-

rithms of (at second order) Kim, Kim, Schaumburg, and Sims (2008) and Den Haan and De Wind

(2012) and of (at third order) Andreasen (2012), Fernández-Villaverde, Guerrón-Quintana, Rubio-

Ramı́rez, and Uribe (2011), Den Haan and De Wind (2012), and Dynare,4 providing the literature

1As noted by Ruge-Murcia (2012), Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (2011),
Andreasen (2012), and van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012), capturing the time-
varying shifts in risk premia or precautionary behavior requires at least a third order approximation.

2See Ruge-Murcia (2012) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2012).
3See Lan and Meyer-Gohde (2013).
4This is an undocumented algorithm at third order by Michel Juillard. On Dynare, see Adjemian, Bastani, Juillard,

Mihoubi, Perendia, Ratto, and Villemot (2011).
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with an overview of the various algorithms in a unified notation. Additionally, we compare all the

algorithms with standard (non pruned) perturbations at first through third order and with the exact

solution when known or a highly accurate projection solution when unknown.

We run three horse races to compare the various pruning algorithms beyond theoretical consid-

erations. First, we choose the Brock and Mirman (1972) log preference and complete depreciation

case of the stochastic neoclassical growth model.5 Second, we evaluate the algorithms in Burn-

side’s (1998) asset pricing model. Finally, we examine the performance of the different algorithms

in Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao’s (2012) model with recursive prefer-

ences and stochastic volatility. The first two models possess closed form solutions and we measure

the distance of the various pruning algorithms as well as theunpruned perturbations to the exact

solution in terms of average, mean square, and maximal error. While the last model has no closed

form solution and needs to be approximated, we follow Caldara, Fernández-Villaverde, Rubio-

Ramı́rez, and Yao (2012) and choose the Chebyshev polynomial approximation as the reference

solution of the model to examine the performance of the different algorithms. The most accurate

pruning algorithms are those that can be derived directly from a moving average approximation

or Lombardo’s (2012) matched perturbation, with our algorithm performing marginally better ac-

cording to several criteria we use to compare the algorithms. Algorithms, however, that drop terms

of the order of approximation or add higher order terms suffer in terms of accuracy.

The paper is organized as follows. The family of models we will be analyzing is presented

with the nonlinear moving average solution form in section2. We derive the recursive representa-

tion of the nonlinear moving average approximation in section 3, and present the various pruning

algorithms in a unified notation in section4. We examine Lombardo’s (2012) matched perturba-

tion algorithm separately in section5. The numerical performance of the different algorithms are

analyzed using Brock and Mirman’s (1972) neoclassical stochastic growth model and Burnside’s

(1998) asset pricing model in section6, and in section6.3we report the numerical performance of

these algorithms in a neoclassical stochastic growth modelwith recursive preferences and stochas-

tic volatility. Section7 concludes.

5See McCallum (1989).
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2 Model Class

We begin by introducing our class of models, a standard system of (nonlinear) second order expec-

tational difference equations. We then present the solution as a policy function that directly maps

from realization of the exogenous shocks to the endogenous variables of interest, and approximate

the solution with a Taylor series. Adopting Dynare’s typology of all the endogenous variables, we

differ from Lan and Meyer-Gohde (2012b) and present the class of models and the approximations

of its solution out to third order in a computationally efficient notation.

2.1 Problem Statement

We analyze a family of discrete-time rational expectationsmodels given by

0= Et [ f (y
f wdendo
t+1 ,yt ,y

state
t−1 ,εt)](1)

f is an(neq×1) vector valued function, continuouslyM-times (the order of approximation to be

introduced subsequently) differentiable in all its arguments; yt is an (ny× 1) vector of endoge-

nous variables divided following, e.g. Dynare,6 additionally into two subvectors,yf wdendo
t and

ystate
t , (n f wdendo×1) and(ns×1) respectively, commensurate with the presence of elements of

yt with subscriptst +1 andt −1 in the system of equations; the vector of exogenous shocksεt

is of dimension(ne×1) and it is assumed that there are as many equations as endogenous vari-

ables(neq= ny). εt is assumed independently and identically distributed7 such thatE(εt) = 0

andE(εt
⊗[m]) exists and is finite for allm up to and including the order of approximation to be

introduced subsequently.8

As is usual in perturbation methods, we introduce an auxiliary parameterσ ∈ [0, 1] to scale

the risk in the model. The valueσ = 1 corresponds to the “true” stochastic model under study

andσ = 0 represents the deterministic version of the model.9 Following Anderson, Levin, and

6See Villemot (2011) and Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
7Thus in practice, any exogenous serial correlation must be incorporated into the vectoryt , which is why this vector

might be more properly labeled endogenous and exogenous variables. We maintain this practice of the literature for
brevity.

8The notationεt
⊗[m] represents Kronecker powers,εt

⊗[m] is the m’th fold Kronecker product ofεt with itself:
εt ⊗ εt · · ·⊗ εt︸ ︷︷ ︸

m times

. For simulations, of course, more specific decisions regarding the distribution of the exogenous pro-

cesses will have to be made. Kim, Kim, Schaumburg, and Sims (2008, p. 3402) emphasize that distributional assump-
tions like these are not entirely local assumptions. Dynare(Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and
Villemot 2011) assumes normality of the underlying shocks.

9Our formulation follows Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot’s (2011) Dynare,
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Swanson (2006, p. 4), we do not scale{εt ,εt−1, . . .} — the realizations of the exogenous shocks up

to (including)t — with σ, as they are known with certainty att. The perturbation parameter does

not enter the problem statement explicitly, but only implicitly through the policy functions, and its

role will become clear as we introduce the solution form and its approximation.

Fleming (1971) and Jin and Judd (2002) emphasize that the useof σ to transition from the

deterministic to the stochastic model depends crucially onthe two models being “close,” in the

sense that the underlying risk scaled byσ is “small,” as a stochastic perturbation like this is sin-

gular in that it changes the underlying order of the problem,see Judd (1998, ch. 13). Kim, Kim,

Schaumburg, and Sims (2008) note the importance of the “underlying assumption” of sufficient

differentiability within a neighborhood ofσ = 0 and Anderson, Levin, and Swanson (2006) simply

make the explicit assumption that the policy function, the solution to be introduced the following

subsection, is analytic within a domain that encompassesσ = 0 andσ = 1, enabling its represen-

tation inσ by a Taylor series evaluated anywhere within that domain. Deriving explicit conditions

for the model withσ = 1 to be sufficiently close to theσ = 0 model is beyond the scope of our

study here and we follow the literature by assuming that a local approach toσ remains valid as we

transition to the stochastic model.

2.2 Nonlinear Moving Average Solution Form

Let the policy function take the causal one-sided infinite sequence of shocks as its state vector

following Lan and Meyer-Gohde (2012b) given by

yt = y(σ,εt ,εt−1, . . .), g : R+×R
ne×R

ne×·· · →R
ny(2)

Note thatσ enters as a separate argument. As the scale of risk changes, so too will the policy

functiony itself change. Time invariance and scaling the risk associated with future shocks give us

yt−1 = y−(σ,εt−1,εt−2, . . .)(3)

ỹt+1 = y+(σ, ε̃t+1,εt,εt−1, . . .), wherẽεt+1 ≡ σεt+1(4)

The notation,y, y−, andy+, was adopted in Lan and Meyer-Gohde (2012b) to keep track of the

source (throughyt , yt−1, andyt+1 respectively) of any given partial derivative of the policyfunction

Anderson, Levin, and Swanson’s (2006) PerturbationAIM andJuillard (2011). This is not the only way to perturb the
model: Lombardo (2010), for example, scales the entire history of shocksσ{εt ,σεt−1, . . .} along with the unrealized
future shocks. See section5 for further discussion.
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necessary in calculations. Likewise, we append a tilde toy at t+1 as we didε at t+1 in deference

to timet conditioning in the equilibrium conditions (1); from the timet perspective of (1), εt+1 is

a random variable, henceyt+1 as well, whereasεt ,εt−1, . . . and henceyt andyt−1 are realizations

of random variables. These notational issues will play onlya minor role here, as we will take the

calculations of Lan and Meyer-Gohde (2012b) as given. Due tothe assumption of time invariance,

y, y−, andy+ are the same function differing only in the timing of their arguments. The termσεt+1

in (4) is the source of risk, viaεt+1, that we are perturbing withσ.

With the policy function of the form (2), (3) and (4), we can write (1) as

0= Et

[
f
(

y+ f wdendo(σ, ε̃t+1,εt , . . .),y(σ,εt,εt−1, . . .),y
−state(σ,εt−1,εt−2, . . .),εt

)]

= F(σ,εt,εt−1, . . .)(5)

a function with argumentsσ and and the infinite history of innovations{εt− j}
∞
j=0.10

2.3 Nonlinear Moving Average Approximation

We will approximate the solution, (2), as a Taylor series in the infinite state vector (i.e., a Volterra

series) expanded around a deterministic steady state,y, the time invariant fixed point iny of (5),

with all shocks, past and present, set to zero and all risk regarding the future eliminated(σ = 0)

Definition 2.1. Deterministic Steady State

Let y∈ R
ny be a vector such that

0= f
(

yf wdendo,y,ystate,0
)
= f (x) = F (0,0, . . .)(6)

Furthermore,y= y(0,0, . . .) is the solution (2) evaluated at the deterministic steady state.

Analogously, we define the stochastic or “risky” steady state as the stationary point in the

absence of past and present shocks but the risk of future shocks11

Definition 2.2. Stochastic Steady State

10Note thatεt+1 is not an argument ofF as it is the variable of integration inside the expectations. I.e.,

F(σ, ,εt ,εt−1, . . .) =

∫
Ω

f
(

y+ f wdendo(σ, ε̃t+1,εt , . . .),y(σ,εt ,εt−1, . . .),y
−state(σ,εt−1,εt−2, . . .),εt

)
φ(εt+1)dεt+1

whereΩ is the support andφ the p.d.f. ofεt+1. Thus, whenσ = 0, εt+1 is no longer an argument off and the integral
(and hence the expectations operator) is superfluous, yielding the deterministic version of the model.

11This definition parallels to that of Coeurdacier, Rey, and Winant (2011) within the state space context. See section
4 for our state space definition of this concept.
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Let ystoch= y(1,0,0, . . .) ∈ R
ny be a vector such that

0= Et

[
f
(

y+ f wdendo(1,εt+1,0, . . .),y
stoch,ystoch,state,0

)]
= F (1,0, . . .)(7)

Assuming theσ=1 model is sufficient close to its deterministic,σ=0 counterpart, the stochas-

tic steady state can be approximated by expanding 0= F (1,0, . . .) in σ around the deterministic,

that is,σ = 0, steady state in definition2.1.

Sincey is a vector valued function, its partial derivatives form a hypercube. We use the method

of Lan and Meyer-Gohde (2012b) that differentiates conformably with the Kronecker product,

allowing us to maintain standard linear algebraic structures to derive our results.

Definition 2.3. Matrix Derivatives

Let A(B) : Rs×1 → R
p×q be a matrix-valued function that maps an s×1 vector B into an p×q

matrix A(B), the derivative structure of A(B) with respect to B is defined as

AB ≡ DBT{A} ≡
[

∂
∂b1

. . . ∂
∂bs

]
⊗A(8)

where bi denotes i’th row of vector B,T indicates transposition; n’th derivatives are

ABn ≡ D(BT)n{A} ≡

([
∂

∂b1
. . . ∂

∂bs

]⊗[n]
)
⊗A(9)

Adopting the abbreviated notation above, we writeyσni1i2···im as the partial derivative, eval-

uated at the deterministic steady state, ofy with respect toσ for n times and with respect to

εT
t−i1

,εT
t−i2

, · · · ,εT
t−im. Thus, we can then write theM-th order Taylor approximation of the pol-

icy function (2) as

yt =
M

∑
m=0

1
m!

∞

∑
i1=0

∞

∑
i2=0

· · ·
∞

∑
im=0

[
M−m

∑
n=0

1
n!

yσni1i2···imσn

]
(εt−i1 ⊗ εt−i2 ⊗·· ·⊗ εt−im)(10)

where we refer to Lan and Meyer-Gohde (2012b) for further details.

This nonlinear moving average, or Volterra series with kernels
[
∑M−m

n=0
1
n! yσni1···imσn

]
, directly

maps the exogenous innovations to endogenous variables up the M-th order. The kernels atm

collects all the coefficients associated with them’th fold Kronecker products of exogenous inno-

vationsi1, i2, ... andim periods ago. Importantly, the outer sum indicates that an approximation

of any given order is linear in all the kernels up to and including the order in question; thus, the

approximation is linearly recursive.12 For a given set of indices,i1, i2, ... andim, the sum over

n gathering terms in powers of the perturbation parameterσ, adjusts the kernel for risk up to the

12The terminology is Lombardo’s (2010). See section5 for a comparison with the method advocated by him.
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n-th order,13 thereby enabling a classification of the contributions of risk to the model alongside

polynomial nonlinearity.

The nonlinear moving average constructs an approximation in the (countable) sequence space

as opposed to the (measurable) function space sought in the standard state space set up. Thus, by

construction, the approximation will be bounded for bounded sequences of inputs, whereas itera-

tions on approximations in the standard function space in general cannot. Differently, the nonlinear

moving average can be derived by “solving out” an “invertible” nonlinear state space representa-

tion following Priestly (1988, p. 25), which is only defined within the region of convergence of the

state space representation. By jumping straight to the nonlinear moving average representation and

allowing shocks from distributions with infinite support, we are, from this perspective, imposing a

region of convergence with an infinite radius on the nonlinear state space policy function. That is,

we achieve stability by assumption and the construction of our approximation is only valid when

this assumption holds.14

3 Recursive Representation of Nonlinear Moving Averages

As shown in Lan and Meyer-Gohde (2012b), nonlinear moving average perturbations are linear

in the kernels (or sums of product spaces in the history of shocks) which inherit the stability

properties of the approximation at first order and whose coefficients can be expressed recursively

similarly to the linear case explored by Taylor (1986). We will now show that the recursivity in

parameters leads to recursive representations in the endogenous variables themselves, but in an

order dependent manner consistent with pruning algorithmsin the literature, as we will explore in

detail in section4.

3.1 First Order Recursive Approximation

The first order approximation of the policy function takes the form

y(1)t = y+
∞

∑
i=0

yiεt−i , i = 0,1,2, . . .(11)

13A similar interpretation for standard state space policy functions can be found in section4 and Lan and Meyer-
Gohde (2012a) for multivariate and Judd and Mertens (2012) for univariate expansions.

14See Jin and Judd (2002) for an example of when this would not hold.
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where the superscript(1) on yt implies this is the first order of approximation. ¯y denotes the deter-

ministic steady state value of the vectoryt . The partial derivativeyi is a linear convergent recursion

(See the Appendix.) with a saddle-stable matrixα as the coefficient on its homogenous part. For

notational ease in deriving the recursive representation of the previous equation, we define

dy(1)t ≡ y(1)t − ȳ(12)

It follows that

dy(1)t =
∞

∑
i=0

yiεt−i(13)

Anticipating the derivations of higher order recursive representations, we first derive a recursive

representation for the increment and then, using this increment, express the first order approxima-

tion recursively. This is obviously unnecessary at first order, as this recursive representation is

a standard result, see, e.g., Uhlig (1999), but will fix ideasfor the more involved higher order

recursive representations.

The increment of the first order approximationdy(1)t can be expressed recursively, as we sum-

marize in the following

Proposition 3.1. The first order increment, dy(1)t , can be expressed as a linear function of its own

past and the current realizations of exogenous shocks

dy(1)t = αdy(1)state
t−1 +β0εt(14)

Proof. See the Appendix.

Accordingly, the first order approximation can likewise be expressed recursively

Proposition 3.2. The first order approximation of yt , denoted y(1)t , can be expressed recursively

through

y(1)t = y+dy(1)t(15)

where

dy(1)t = yzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(16)

Proof. This is an immediate consequence of the definition of the increment in (12).

Thus recovering the state-space policy function in linear settings—see, e.g., Uhlig (1999)—and

reiterating the equivalence at first order of moving averagerepresentations–see Taylor (1986)—

with state space methods. Note the coefficientα in (14) is the homogenous coefficient of the

recursion ofyi .
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3.2 Second Order Recursive Approximation

The second order approximation of the policy function takesthe form

y(2)t = ȳ+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(17)

For the derivation of the recursive representation of the previous equation, we define the second

order increment as the difference between the first and second order approximation, subtracting the

constant risk adjustment of the second order

dy(2)t ≡ y(2)t −
1
2

yσ2 −y(1)t(18)

Inserting (11) and (17) in the previous equation yields the moving averaging representation of

the second order increment

dy(2)t =
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(19)

The increment of the second order approximation can be expressed recursively, as we summa-

rize in the following

Proposition 3.3. The second order increment, dy(2)
t , can be expressed as a linear function of its

own past and products of terms of lower order according to thefollowing recursion

dy(2)t −αdy(2)state
t−1 =

1
2

[
β22dystate⊗[2]

t−1 +2β20

(
dy(1)state

t−1 ⊗ εt

)
+β00ε⊗[2]

t

]
(20)

Proof. See the Appendix.

Combining the increment definitions and recursive representations at first and second order, we

construct the following second order recursive formula foryt

Proposition 3.4. The second order approximation of yt , denoted y(2)t , can be expressed recursively

through

y(2)t = y+
1
2

yσ2 +dy(1)t +dy(2)t(21)

where

dy(1)t = yzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(22)

dy(2)t = yystatedy(2)state
t−1 +

1
2

yz2dz(1)t
⊗[2]

(23)

Proof. Combine (18) and (12) to expressy(2)t as a linear function of the constantsy and 1
2yσ2 and

the first and second order incrementsdy(1)t anddy(2)t . Expressing the the first order increment in

terms of the vectordz(1)t and rearranging the coefficient matrices accordingly15 yields the desired

15 This can be implemented using Koning, Neudecker, and Wansbeek’s (1991) block Kronecker product. See the
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result.

The second order recursive approximation (21) preserves the natural decomposition into order

of approximation embedded in its nonlinear moving average counterpart (17) — Moving to the

second order,yσ2 adjusts the first order approximation for the variance of future shocks, anddy(2)t

for the second order effects of the realized shocks. While (21) is an equivalent rewriting of (17) and

therefore accordingly stable, its stability can be seen by examining the linearly recursive structure

of the second order increment. As a recursion in the variables, dy(2)t in (20) shares the same

coefficient with (14) on its homogenous part. The inhomogeneous part, consisting of the first order

increment and the shocks only, inherits the stability from the previous order of approximation.

Besides stability, the second order recursive approximation (21) is centered at the second order

approximation of stochastic steady state in definition2.2given by

y(2)stoch= y+
1
2

yσ2(24)

To see this, note that in the absence of the past and present shocks, (13) and (19) imply that

both the first and second order increments are zero, leaving the approximation centered at the

deterministic steady state value plus the risk adjustment for the variance of future shocks. Likewise,

F (σ,0, . . .)≈F (0,0, . . .)+ 1
2Fσ2 (0,0, . . .) has two nonzero terms up to second order that are solved

by y and1
2yσ2 respectively.

3.3 Third Order Recursive Approximation

The third order approximation of the policy function takes the form

y(3)t =y+
1
2

yσ2 +
1
6

yσ3 +
1
2

∞

∑
i=0

(
yi +yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(25)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)

To derive the recursive representation at third order, we define the third order increment as

the difference between the second and third order approximation, subtracting the constant risk

adjustment of the third order

dy(3)t = y(3)t −
1
6

yσ3 −y(2)t(26)

Inserting (25) and (17) in the previous equation yields the moving average representation of

Appendix.
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the third order increment

dy(3)t =
1
2

∞

∑
i=0

yσ2,iεt−i +
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(27)

The increment of the third order approximation can be expressed recursively, as we summarize

in the following

Proposition 3.5. The third order increment, dy(3)t , can be expressed as a linear function of its own

past and products of terms of lower order according to the following recursion

dy(3)t −αdy(3)state
t−1 =

1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

]
+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)
+βσ20εt +βσ21dy(1)state

t−1

]
(28)

Proof. See the Appendix.

Combining the increment definitions and recursive representations at first, second and third

order, we construct the following third order recursive formula foryt

Proposition 3.6. The third order approximation of yt , denoted y(3)t , can be expressed recursively

through

y(3)t = y+
1
2

yσ2 +
1
6

yσ3 +dy(1)t +dy(2)t +dy(3)t(29)

where

dy(1)t = yzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(30)

dy(2)t = yystatedy(2)state
t−1 +

1
2

yz2dz(1)t

⊗[2]
(31)

dy(3)t = yystatedy(3)state
t−1 +

1
6

yz3dz(1)t
⊗[3]

+
1
2

yσ2zdz(1)t +yystatez

(
dy(2)state

t−1 ⊗dz(1)t−1

)
(32)

Proof. Combine (26), (18), and (12) to expressy(3)t as a linear function of the constantsy and1
2yσ2

and the first through third order incrementsdy(1)t , dy(2)t , anddy(3)t . Expressing the the first order

increment in terms of the vectordz(1)t and rearranging the coefficient matrices accordingly16 yields

the desired result.

The third order recursive approximation (29) follows the pattern of lower orders and can be

decomposed into order of approximation and risk adjustment. In the third order,yσ3 adjusts the

second order approximation for the skewness of future shocks. The third order increment,dy(3)t ,

adjusts the approximation for the third order effects of therealized shocks and opens the first order

increment to the variance of future shocks, delivering a time-varying risk adjustment term.

16This can be done using the Block Kronecker product, see footnote15.
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As in the second order case, (29) is an equivalent rewriting of its moving average counterpart

(25) and accordingly stable. The stability is also implied by the linearly recursive structure of

the third order incrementdy(3)t in (28). This recursion shares the same homogenous coefficient

with the recursions of the first and second order increments.Its inhomogeneous part, consisting of

shocks and the increments of the first and second order only, inherits the stability from the previous

order of approximation.

As was the case in the second order, (29) is centered at the third order approximation of stochas-

tic steady state in definition2.2

y(3)stoch= y+
1
2

yσ2 +
1
6

yσ3(33)

as can be verified analogously to the second order case.

The third order increment can be decomposed into a time varying risk adjustment increment,

dy(3)risk
t , and a third order amplification increment,dy(3)amp

t . Both of which can be expressed

recursively, as we summarize in the following

Corollary 3.7. The third order increment can be decomposed into two separate increments, dy(3)t ≡

dy(3)risk
t + dy(3)amp

t , both of which can be expressed as linear functions of their own past and

products of terms of lower order according to the following recursions

dy(3)risk
t = αdy(3)state,risk

t−1 +
1
2

(
βσ20εt +βσ21dy(1)state

t−1

)
(34)

dy(3)amp
t =αdy(3)state,amp

t−1 +
1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

]
(35)

+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)]
(36)

Proof. See the Appendix.

This decomposition clearly separates the nonlinear time varying effects in a third order approx-

imation that arise from higher order (quadratic and cubic) deterministic terms and the linear time

varying risk adjustment terms. Thus, enabling a readily identifiable differentiation between, e.g.,

time varying precautionary motives and asymmetric responses to shocks.
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4 Pruning Abounds

In this section, we present the state space solution as a policy function that maps from the endoge-

nous variable in the past and the realization of current shock into the endogenous variable itself,

to the class of models introduced in section2 and approximate the solution with a Taylor series.17

Simulating such an approximation of second or higher order may generate explosive time paths

as noted by Aruoba, Fernández-Villaverde, and Rubio-Ram´ırez (2006, p. 2479) and Kim, Kim,

Schaumburg, and Sims (2008, p. 3408), as additional, higherorder nonlinear terms accumulate.

While various pruning algorithms for the second and third order approximation have been provided

by the literature to restore the desired stability, a comparison between these algorithms has yet to

be made.18 We present these pruning algorithms in a unified notation, and compare them to the

nonlinear moving average based recursive algorithm derived in section3.

4.1 State Space Perturbation Foundations

The state space counterpart19 to the nonlinear moving average solution form of section2 is given

by

yt = g(σ,zt), g : R+×R
nz→ R

ny(37)

whereσ scales risk and the state vectorzt given by20

zt =

[
ystate

t−1
εt

]
∈ R

nz×1, wherenz= ny+ne(38)

Assuming time invariance of the policy function and using ˜g to denoteyt+1, inserting into the

problem statement (1), and scaling risk give

0= Et

[
f

(
g̃

(
σ,
[
g(σ,zt)
σεt+1

])
,g(σ,zt),zt

)]
= F(σ,zt)(39)

a function with argumentsσ andzt .21 The Taylor series approximation of the state space solution

(2) will be developed around a deterministic steady state, which alternatively but equivalently to

17This nonlinear state space perturbation literature was initiated by Gaspar and Judd (1997), Judd and Guu (1997),
and Judd (1998, ch. 13).

18Den Haan and De Wind (2012) compare their version of the pruning algorithm with standard perturbations and
their own “perturbation plus’ algorithm, yet do not compareto other pruning algorithms.

19Our formulation follows Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot’s (2011) Dynare,
Anderson, Levin, and Swanson’s (2006) PerturbationAIM andJuillard (2011). Jin and Judd’s (2002) or Schmitt-Grohé
and Uribe’s (2004) model classes can be rearranged to fit (5) as we will discuss below.

20Note that we are recycling notation from the previous section by usingzt in analogy todzt there.
21Note thatεt+1 is not an argument ofF as discussed in section2.
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definition2.1can be defined as

Definition 4.1. Deterministic Steady State

Let y∈ R
ny be a vector such that

0= F(0,z), wherez=

[
y
0

]
(40)

solving (39) in the absence of both risk(σ = 0) and shocks (εt = 0).

The policy function evaluated at the deterministic steady state is thusy= g(0,z) and, assuming

(37) is CM with respect to all its arguments, we can write a Taylor series approximation ofyt =

g(σ,zt) at a deterministic steady state as

yt =
M

∑
j=0

1
j!

[
M− j

∑
i=0

1
i!

gzjσi σi

]
(zt −z)⊗[ j ](41)

wheregzjσi ∈ R
ny×nzj

is the partial derivative of the vector functiong with respect to the state

vectorzt j times and the perturbation parameterσ i times evaluated at the deterministic steady

state. Here
[
∑M− j

i=0
1
i! yzjσi σi

]
collects all the coefficients associated with thej ’th fold Kronecker

product of the state vector,(zt −z). Higher orders ofσ adjust the Taylor series coefficients for risk

by successively opening the coefficients to higher moments in the distribution of future shocks.

Out to third order and forσ = 1, (41) is given, where only terms with nonzero coefficients have

been included, by

y(1)t = y+gz

(
z(1)t −z

)
(42)

at first,

y(2)t = y+
1
2

gσ2 +gz

(
z(2)t −z

)
+

1
2

gz2

(
z(2)t −z

)⊗[2]
(43)

at second, and

y(3)t = y+
1
2

gσ2 +
1
6

gσ3 +

[
gz+

1
2

gσ2z

](
z(3)t −z

)
+

1
2

gz2

(
z(3)t −z

)⊗[2]
+

1
6

gz3

(
z(3)t −z

)⊗[3]
(44)

at third.

Stationary points, or steady states, ofy in approximations will play a key role in understanding

the differences between many of the pruning algorithms we will examine. Standard linear ap-

proximations are certainty equivalent and their stationary points are the deterministic steady states

of definition 2.1 (or equivalently definition4.1). By extension, one might expect or desire22 an

M’th order pruned perturbation to have as a stationary point theM’th order approximation of the

22See Evers (2010) and Den Haan and De Wind (2012).
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stochastic steady state. Accordingly and analogously to definition 2.2, we define the stochastic

or “risky” steady state as the stationary point in the absence of past shocks but the risk of future

shocks, which in the state space setting here is given by

Definition 4.2. Stochastic Steady State

Let ystoch= g(1,zstoch) ∈ R
ny be a vector such that

0= Et

[
f

(
g̃f wdendo

(
1,

[
gstate(1,zstoch)

εt+1

])
,g(1,zstoch),z

)]
= F(1,zstoch), wherezstoch=

[
ystoch

0

](45)

As in section2 for the nonlinear moving average representation, the stochastic steady state can

be approximated by expanding 0= F(σ, z̃) in σ around the deterministic steady state, assuming

the σ = 1 model is sufficient close to its deterministic,σ = 0 counterpart. Notice that unlike

the nonlinear moving average, the state space formulation,0 = F(σ, z̃), is complicated by the

additional argument,̃z the steady state of the state vector—itself a function ofσ, being equal to the

deterministic steady state whenσ = 0 and the stochastic steady state whenσ = 1.

4.2 Second Order Pruning

When iterating on the second order approximation of (43), the quadratic term will generate non-

linear terms of successively higher order, see Kim, Kim, Schaumburg, and Sims (2008). These

accumulated terms can lead to explosive time paths and Kim, Kim, Schaumburg, and Sims (2008)

suggested pruning these higher order terms by operating thequadratic on the first order simulated

time path, restoring stability. The algorithms presented here all agree on this point, but differ on

the the constant risk adjustment term that enters in the approximation. Throughout the rest of this

section and in section5, we recycle the notationdy(n)t (wheren denotes the order of approxima-

tion) anddz(1)t from section3 and redefine them in each and every pruning algorithm we will be

introducing.

4.2.1 Kim, Kim, Schaumburg, and Sims’s (2008) Pruning Algorithm

Kim, Kim, Schaumburg, and Sims (2008) were the first to formulate a pruning algorithm for the

second order approximation, (43).23

23In Dynare—see Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011), the initial value of

the first order term, saydy(1)state
0 , need not be set equal to the deterministic steady state and can be set to any arbitrary

value. Whether this corresponds to a second order accurate approximation of an arbitrary initial value has not, to our
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Lemma 4.3(Kim, Kim, Schaumburg, and Sims’s (2008) Second Order Pruning Algorithm).

y(2)t = y+dy(1)t +dy(2)t(46)

where

dy(1)t = gzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(47)

dy(2)t = gystatedy(2)state
t−1 +

1
2

[
gσ2 +gz2dz(1)t

⊗[2]
]

(48)

Apart from replacing the second order base of the two-fold Kronecker power with its first

order counterpartdz(1)t to restore stability in simulation, this algorithm transitions deterministically

to a second order approximation to the stochastic steady state of definition4.2. I.e., setting the

initial value of y0 to its deterministic steady state valuey and simulating forward with all shock

realizations set to zero, the constant risk correction termgσ2 is accumulated at each iteration as it

is a component ofdy(2)t , and therefore keeps accumulating along with the iteration, pushing the

algorithm away fromy, pasty+ 1
2gσ2, and toy+(I −gy)

−1 1
2gσ2.

4.2.2 Den Haan and De Wind’s (2012) Second Order Pruning Algorithm

Den Haan and De Wind (2012) formulated the following alternative second order pruning algo-

rithm motivated by the observation that the steady state of the second order approximation does

not coincide with the second order approximation of the (stochastic) steady state,24

Lemma 4.4(Den Haan and De Wind’s (2012) Second Order Pruning Algorithm).

y(2)t = y+
1
2

gσ2 +dy(2)t(49)

where

dy(1)t = gzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(50)

dy(2)t = gz

[
dy(2)state

t−1
εt

]
+

1
2

gz2dz(1)t
⊗[2]

(51)

While pruning the quadratic term in the same way as Kim, Kim, Schaumburg, and Sims’s

(2008) algorithm does, this algorithm does not transition deterministically, but remains atystoch(2) =

y+ 1
2gσ2. It restores this consistency by excludinggσ2 from its dy(2)t , and therefore preventsgσ2

from accumulating in simulation. However, this point is nota second order approximation of the

knowledge, been proven.
24See also Evers (2010) for more on this and other consistency points.
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stochastic steady state in definition4.2and its appropriateness as a centering point of the algorithm

is unclear.

4.2.3 Comparison of Second Order Pruning Algorithms

As noted also by Den Haan and De Wind (2012), Kim, Kim, Schaumburg, and Sims’s (2008)

pruning algorithm transitions fromy+ 1
2gσ2 to some other steady state whendy(1)t is initialized

at zero.25 As we state in the following proposition, Kim, Kim, Schaumburg, and Sims’s (2008)

pruning algorithm transitions toy+ 1
2yσ2, the second order approximation of the stochastic steady

state (see definition2.2) using nonlinear moving average policy functions. Additionally, all other

coefficients (and hence all coefficients that are not partials with respect toσ) are identical in all

three algorithms.

Proposition 4.5(Deterministic Equivalence, Risk Sensitive Nonequivalence with Section3). The

algorithms in lemmata4.3and4.4and in proposition3.4are identical in all coefficients except for

the constant term involving12gσ2 (or 1
2yσ2).

As a consequence, when all shock realizations are zero in allperiods,

• the algorithm in lemma4.4will remain aty+ 1
2gσ2

• the algorithm in lemma4.3will transition fromy+ 1
2gσ2 to y+(I −gy)

−1 1
2gσ2

• the algorithm in proposition3.4will remain aty+ 1
2yσ2

• (I −gy)
−1gσ2 = 1

2yσ2

Proof. See the Appendix.

Thus, asymptotically, Kim, Kim, Schaumburg, and Sims’s (2008) pruning algorithm and our

second order recursive nonlinear moving average (see proposition3.4) converge deterministically,

as the former converges to the latter.

4.3 Higher Order Pruning

The third order approximation (44) contains quadratic and cubic terms, both of which are sources

of potential instability. As noted by Ruge-Murcia (2012), the pruning concept proposed by Kim,

25That is, when the first order approximation is started at the deterministic steady state. It is noteworthy that Kim,
Kim, Schaumburg, and Sims’s (2008) pruning algorithm as implemented by Adjemian, Bastani, Juillard, Mihoubi,

Perendia, Ratto, and Villemot’s (2011) Dynare lets the userinitialize dy(1)t arbitrarily, whether this translates to second
order accurate initial values is relegated to future study.
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Kim, Schaumburg, and Sims (2008) at second order does not generalize straightforwardly to higher

orders. Indeed, at third order, we find discrepancies between pruning algorithms in how they prune

the cubic term. While these differences are in line with Lombardo (2012) and Den Haan and

De Wind’s (2012) critique that pruning is an ad hoc procedure, our nonlinear moving average

based recursive algorithm can be viewed as a theoretical support for pruning and guidance in terms

of choosing the way of reconstructing the potentially instable nonlinear terms consistent with the

original, unpruned nonlinear approximation.

4.3.1 Andreasen’s (2012) Algorithm26

This algorithm27 chooses to keep both the quadratic and cubic term in the unpruned third order

approximation, (44). It prunes the quadratic term by replacing it with the Kronecker product of the

first order approximation. The cubic term is replaced by the first order approximation raising to

the three-fold Kronecker power, and the Kronecker product of the pruned quadratic term and the

first order approximation.

Lemma 4.6(Andreasen’s (2012) and Third Order Pruning Algorithm).

y(3)t = y+dy(1)t +dy(2)t +dy(3)t(52)

where

dy(1)t = gzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(53)

dy(2)t = gystatedy(2)state
t−1 +

1
2

[
gσ2 +gz2dz(1)t

⊗[2]
]

(54)

dy(3)t = gystatedy(3)state
t−1 +

1
6

[
gσ3 +gz3dz(1)t

⊗[3]
]
+

1
2

gσ2zdz(1)t +gystatez

(
dy(2)state

t−1 ⊗dz(1)t−1

)
(55)

This algorithm is, we argue, the third order equivalent to Kim, Kim, Schaumburg, and Sims

(2008), because its differences to our nonlinear moving average algorithm are third order analogs

(owing to cumulative risk sensitive adjustments) to the differences between Kim, Kim, Schaum-

26Downloaded on January 11, 2013 as ForWeb NewKeynesianModel.zip
from http://ideas.repec.org/c/red/ccodes/11-84.html as linked through
http://www.economicdynamics.org/RED15.htm. The file simulate 3rd kron.m contains the the follow-
ing algorithm and is preceded by the header
% By Martin M. Andreasen, April 22 2010
% This function simulates the model when solved up to third order.
% The pruning scheme is used.

27See also Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2012), for an implementation to time series prop-
erties and further documentation of this algorithm.
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burg, and Sims’s (2008) and our algorithm at second order.

Proposition 4.7(Deterministic Equivalence, Risk Sensitive Nonequivalence with Section3). The

algorithms in lemma4.6 and in 3.6 are identical in all coefficients except for terms involvingσ,

1
2gσ2 (or 1

2yσ2), 1
6gσ3 (or 1

6yσ3), and 1
2gσ2z (or 1

2yσ2z).

As a consequence, when all shock realizations are zero in allperiods,

• the algorithm in lemma4.6will transition fromy+ 1
2gσ2+ 1

6gσ3 toy+(I −gy)
−1(1

2gσ2 + 1
6gσ3

)

• the algorithm in proposition3.4will remain aty+ 1
2yσ2 + 1

6yσ3

• (I −gy)
−1(1

2gσ2 + 1
6gσ3

)
= 1

2yσ2 + 1
6yσ3

Proof. See the Appendix.

Skewed risk adjustments deterministically accumulate along with the second order risk adjust-

ments for variance. At third order, the differences in instantaneous second order risk adjustments

for variance are interacted with the vector of states, leading to differences in the time varying

response to risk posited by the two algorithms.

4.3.2 Ferńandez-Villaverde, Guerrón-Quintana, Rubio-Raḿırez, and Uribe’s (2011) Algo-
rithm 28

This algorithm keeps both the quadratic and cubic term in theunpruned third order approximation,

(44), as well. While it again prunes the quadratic term by replacing it with the Kronecker product

of the first order approximation, this algorithm prunes the cubic term by replacing it with the

first order approximation raising to the three-fold Kronecker power only, and does not include

the Kronecker product of the pruned quadratic term and the first order approximation like the

Andreasen’s (2012) algorithm does.

Lemma 4.8(Fernández-Villaverde, Guerrón-Quintana, Rubio-Ram´ırez, and Uribe’s (2011) Third

Order Pruning Algorithm).

y(3)t = y+dy(3)t(56)

where

dy(1)t = gzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(57)

28Downloaded on January 11, 2013 as20090428 data.zip fromhttp://www.aeaweb.org/articles.php?doi=10.1257/aer.101.6
The filecode AERirf moments.m contains the the following algorithm and is dated December,2010.
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dy(3)t = gz

[
dy(3)state

t−1
εt

]
+

1
2

[
gσ2 +gz2dz(1)t−1

⊗[2]
]
+

1
6

[
gσ3 +gz3dz(1)t

⊗[3]
+3gσ2zdz(1)t

]
(58)

This algorithm, like the previous one, will transition fromy+ 1
2gσ2+ 1

6gσ3 toy+(I −gy)
−1(1

2gσ2 + 1
6gσ3

)

as the two constant risk adjustment terms,gσ2 andgσ3, are included in itsdy(3)t and therefore will

keep accumulating in iteration.

4.3.3 Michel Juillard’s Algorithm 29

This algorithm keeps both the quadratic and cubic term of theunpruned third order approxima-

tion, (44), pruning the quadratic term by replacing it with the Kronecker product of the first order

approximation just like the previous two algorithms. When pruning the cubic term, it raises the

first order approximation to the three-fold Kronecker poweras the previous two algorithms do.

However, this algorithm then multiplies (in Kronecker) itspruned second order term with the en-

dogenous state space of the first order approximation, differing from Andreasen’s (2012) algorithm

who multiplies (in Kronecker) its pruned second order term with the exogenous state space (vector

of shocksεt) as well.

Lemma 4.9(Michel Juillard’s Third Order Pruning Algorithm).

y(3)t = y+dy(1)t +dy(2)t +dy(3)t(59)

where

dy(1)t = gzdz(1)t , dz(1)t =

[
dy(1)state

t−1
εt

]
(60)

dy(2)t = gystatedy(2)state
t−1 +

1
2

[
gσ2 +gz2dz(1)t

⊗[2]
]

(61)

dy(3)t = gystatedy(3)state
t−1 +

1
6

[
gσ3 +gz3dz(1)t

⊗[3]
]
+

1
2

gσ2zdz(1)t +g
(ystate)2

(
dy(1)state

t−1 ⊗dy(2)state
t−1

)
(62)

This algorithm, like the previous two, will transition fromy+ 1
2gσ2+ 1

6gσ3 toy+(I −gy)
−1(1

2gσ2 + 1
6gσ3

)

as the two constant risk adjustment terms,gσ2 andgσ3, are included in itsdy(3)t and therefore will

keep accumulating in iteration.

29Downloaded asdynare-2013-01-10-win.exe from http://www.dynare.org/snapshot/windows/ on Jan-
uary 11, 2013. Thank you to Michel Juillard for drawing our attention to this undocumented feature in Dynare.
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4.3.4 Den Haan and De Wind’s (2012) Third Order Pruning Algorithm

This algorithm keeps both the quadratic and cubic term of theunpruned third order approxima-

tion, (44), pruning the quadratic term by replacing it with the Kronecker product of the first order

approximation just like the previous three algorithms. When pruning the cubic term, it raises the

first order approximation to the three-fold Kronecker poweras the previous three algorithms do.

However, unlike Michel Juillard’s algorithm who multiplies (in Kronecker) its pruned quadratic

term with the endogenous state space of the first order approximation, and Andreasen’s (2012)

algorithm who multiplies (in Kronecker) its pruned quadratic term with the first order approxima-

tion, this algorithm raises the pruned second order term to the second-fold Kronecker power. This

introduces terms of fourth order, which is responsible for the relative reduction in accuracy com-

pared to the other third order algorithms, as we shall document. Additionally, the time-varying risk

adjustment at third order is applied retroactively to the first order approximation, see Den Haan and

De Wind (2012, p. 1490) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2012, p. 9).

It is conceivable that a large enough risk adjustment could thus introduce instability into their first

order approximation.

Lemma 4.10(Den Haan and De Wind’s (2012) Third Order Pruning Algorithm).

y(3)t = y+
1
2

gσ2 +
1
6

gσ3 +dy(3)t(63)

where

dy(1)t =

(
gystate+

1
2

gσ2ystate

)
dy(1)state

t−1 +

(
gε +

1
2

gσ2ε

)
εt(64)

dy(2)t =

(
gystate+

1
2

gσ2ystate

)
dy(2)state

t−1 +
1
2

gz2dz(1)t
⊗[2]

, dz(1)t =

[
dy(1)state

t−1
εt

]
(65)

dy(3)t =

(
gystate+

1
2

gσ2ystate

)
dy(3)state

t−1 +

(
gε +

1
2

gσ2ε

)
εt

+
1
2

gz2dz(2)t
⊗[2]

+
1
6

gz3dz(1)t
⊗[3]

, dz(2)t =

[
dy(2)state

t−1
εt

]
(66)

Unlike the previous three algorithms, this algorithm like its second order counterpart does not

have a deterministic transition, remaining aty+ 1
2gσ2 + 1

6gσ3. Again, this point is not a third order

approximation of the stochastic steady state in definition4.2and its appropriateness as a centering

point of the algorithm is unclear.
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5 Lombardo’s (2012) Matched Perturbation Algorithm

Lombardo (2012) presents a method based on “matched perturbations,” see Holmes (1995), that

delivers higher order stable recursive state space approximations that are linearly recursive in the

order of nonlinear terms. All of these features are shared byour method based on nonlinear moving

averages as presented in section3 as well as many of the various pruning algorithms examined

in section4. In this section, we will determine whether Lombardo’s (2012) method justifies a

particular pruning method of section4 or whether it produces an independent method as did our

nonlinear moving average in section3. To match his setup, we must redefine the problem statement

above slightly30 by defining

z̃t ≡

[
ystate

t−1
σεt

]
(67)

and replacingzt in (39)

0= Et

[
f

(
g̃

(
σ,
[
g(σ, z̃t)
σεt+1

])
,g(σ, z̃t), z̃t

)]
= F̃(σ,zt)(68)

still a function with argumentsσ andzt .31 Essentially Lombardo (2012) usesσ to expand from

the deterministic steady state to the stochastic dynamic solution, whereas the formulation we have

used above following Jin and Judd (2002) and others usesσ to expand the deterministic dynamic

solution to the stochastic dynamic solution;32 whenσ = 1, however, both approaches are equiva-

lent.

To third order, the Taylor series approximation or standardperturbation of the solution to (68),

where only terms with nonzero coefficients have been included, is given by

yt = y+
1
2

gσ2 +
1
6

gσ3 +

[
gz+

1
2

gσ2z

]
(z̃t −z)+

1
2

gz2(z̃t −z)⊗[2]+
1
6

gz3(z̃t −z)⊗[3](69)

Lombardo (2012) gives the following procedure for derivingmatched perturbations or series

expansions of the foregoing: guess that the solution is of the linearly recursive (in order) form,

where we have adapted his procedure to our notation,

yt −y= σdy(1)t +σ2dy(2)t +σ3dy(3)t + . . .(70)

30Note, the following perturbation setup is widely used, see Schmitt-Grohé and Uribe (2004) and others, but iden-
tical to the statement used above forσ = 1. Unlike the other methods presented above, however, Lombardo’s (2012)
matched perturbation method cannot be readily adapted to alternative problem statements.

31Note thatεt+1 is not an argument ofF as discussed previously.
32 See also Den Haan and De Wind (2012), who state in their supplemental Appendix that Lombardo’s (2012)

method “does not describe any transition dynamics” whenσ = 0.
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insert the guess into (69)

σdy(1)t +σ2dy(2)t +σ3dy(3)t =
1
2

gσ2σ2+
1
6

gσ3σ3+

[
gz+

1
2

gσ2zσ
2
][

σdy(1)state
t−1 +σ2dy(2)state

t−1 +σ3dy(3)state
t−1 + . . .

σεt

]

+
1
2

gz2

[
σdy(1)state

t−1 +σ2dy(2)state
t−1 +σ3dy(3)state

t−1 + . . .
σεt

]⊗[2]

+
1
6

gz3

[
σdy(1)state

t−1 +σ2dy(2)state
t−1 +σ3dy(3)state

t−1 + . . .
σεt

]⊗[3]

(71)

and “equat[e] like powers” (Holmes 1995, p. 27) inσ, which gives

dy(1)t = gzz
(1)
t , dz(1)t =

[
dy(1)state

t−1 εt

]
(72)

dy(2)t = gystatedy(2)state
t−1 +

1
2

(
gσ2 +gz2dz(1)t

⊗[2]
)

(73)

dy(3)t = gystatedy(3)state
t−1 +

1
6

(
gσ3 +gz3dz(1)t

⊗[3]
)
+

1
2

gσ2zz
(1)
t +gystatez

(
dy(2)state

t−1 ⊗dz(1)t

)
(74)

and Lombardo’s (2012) second order series expansion approximation for the stochastic (σ = 1)

case is

yt = y+dy(1)t +dy(2)t(75)

and at third order

yt = y+dy(1)t +dy(2)t +σ3dy(3)t(76)

Lombardo’s (2012) method recovers Kim, Kim, Schaumburg, and Sims’s (2008) pruning al-

gorithm at second order and Andreasen’s (2012) algorithm atthird order, as we summarize in the

following

Proposition 5.1 (Equivalence of Series Expansion and Pruning). Lombardo’s (2012) method of

series expansion is identical to

• the algorithm in lemma4.3at second order

• the algorithm in lemma4.6at third order

Proof. By inspection.

While Lombardo (2012) identifies the first equivalence, the equivalence at third order is ap-

parently new. Indeed, Lombardo (2012, p. 12) seems to imply that his series expansion at third

order would yield the algorithm in lemma4.8, which does not include the cross product term

dy(2)state
t−1 ⊗ dz(1)t as in the algorithm of lemma4.6. This would be mistaken, as we have shown

above. We conclude that Lombardo’s (2012) method provides arigorous foundation for the vari-
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ants of pruning that are complete up to the order of approximation. Yet, as shown in propositions

4.5and4.7, these pruning algorithms (and hence Lombardo’s (2012) method as well) differ from

the recursive algorithms in section3 in terms that adjust for risk, centering the approximation at

the deterministic model and its lack of risk adjustment.

6 Applications to Production and Asset Pricing

In this section, we compare the numerical performance of thevarious pruning algorithms presented

in section4. A version of the stochastic neoclassical growth model and the asset pricing model in

Burnside (1998) are chosen as the benchmarks to run the horseraces, as both of the two models

possess closed-form solution and widely used in evaluatingthe numerical performance of solution

methods for DSGE models.

We employ three criteria for comparing models

E1 =
1
T

T

∑
t=1

∣∣∣∣
xapprox.

t −xtrue
t

xtrue
t

∣∣∣∣(77)

E2 =
1
T

T

∑
t=1

(
xapprox.

t −xtrue
t

)2(78)

E∞ = max

{∣∣∣∣
xapprox.

t −xtrue
t

xtrue
t

∣∣∣∣
}

(79)

measuring the distance of the various pruning algorithms, including the nonlinear moving average

based recursive algorithm, as well as the unpruned perturbations to the true solution in terms of

average, mean square and maximal error at second and third order.

6.1 The Discrete Brock and Mirman (1972) Neoclassical Growth Model

In this section, we examine a version of the stochastic neoclassical growth model, case of log

preferences in consumption and full depreciation, with a known solution to compare methods.

This model has been used in numerous studies comparing numerical techniques and is a natural

benchmark.

The model is populated by an infinitely lived representativehousehold seeking to maximize its

expected discounted lifetime utility given by

E0

[
∞

∑
t=0

βt ln(Ct)

]
(80)
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whereCt is consumption, andβ ∈ (0,1) the discount factor, subject to

Ct +Kt = eZt Kα
t−1(81)

whereKt is the capital stock accumulated today for productive purposes tomorrow,Zt a stochastic

productivity process,α ∈ [0,1] the capital share, and note that we have assumed complete depre-

ciation. Maximization delivers the following first order condition
1
Ct

= βEt

[
1

Ct+1
αeZt+1Kα−1

t

]
(82)

an intertemporal Euler condition equalizing the expected present-discounted utility value of post-

poning consumption one period to its utility value today.

In this log preferences and complete capital depreciation case, a well-known closed-form solu-

tion for the policy functions exists given by

Kt = αβeZt Kα
t−1

Ct = (1−αβ)eZt Kα
t−1(83)

Additionally, we will assume that productivity is described by

Zt = ρZZt−1+ εZ,t, εZ,t ∼ N
(

0,(χσZ)
2
)

(84)

with |ρZ|< 1 andεZ,t the innovation with standard deviationχσZ. We useχ as a scaling factor that

when equal to one, gives the standard deviation of the technology process asσZ, which we set to a

standard calibration value.

As the model is loglinear, we could redefine the variables in terms of logarithms—e.g., exp(ĉt)≡

Ct—and a first-order approximation of either the state space orinfinite moving average policy

function, see Lan and Meyer-Gohde (2012b), would deliver (83). However, to study the properties

of simulations generated by the methods compared above, we will compute perturbations in the

the level variables using our method derived in section3 and compare it with the standard state

space perturbation and the “pruned” state space perturbations of Kim, Kim, Schaumburg, and Sims

(2008) for second order and Andreasen (2012) for third ordersummarized in the previous section.

[Table 1 about here.]

In figures1, 2, and3, we plot theE1, E2, andE∞ accuracy of the different perturbation and

pruning methods out to third order forKt measured relative to (83) for values ofχ, thereby scaling

up the standard deviation of the technology process, from one to fifty. We run 100 simulations of

10,000 periods and report the average result forE1 andE2 and the maximum forE∞.
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[Figure 1 about here.]

[Table 2 about here.]

For E1 andE2, a clear patter emerges. Increasing the order of approximation increases the

accuracy of the approximation. The exceptions are providedby the second and third order per-

turbations afterχ equal to seven and forty respectively reflecting explosive simulations after these

values, as well as the third order pruning algorithm in lemma4.10that disappointingly is roughly

as accurate as the first order approximation. Tables2 and4 confirm the results in Den Haan and

De Wind (2012), regarding the accuracy of perturbation and pruning in the log preference and full

depreciation special case of the neoclassical growth model.33

[Figure 2 about here.]

[Table 3 about here.]

At second order, all three pruning algorithms deliver numerically identical simulations. This

follows directly from proposition4.5, recognizing that the model of this section is certainty equiv-

alent in its nonlinear form. Consequently at third order, our method in3.6 is numerically identical

to the method in lemma4.6.

[Figure 3 about here.]

[Table 4 about here.]

Figures4 and5 display subsets of two simulations with large differences in different algo-

rithms. Note that both the first order perturbation and the third order algorithm of Den Haan and

De Wind (2012) yield negative values for capital in these cases.34 The second order perturbation

and pruning algorithms fall above and the third order perturbation and other pruning algorithms

slightly below the exact value.

33They report in their Table 1 (Den Haan and De Wind 2012, p. 1492) that for σZ = 0.1 and otherwise identical
calibration as we have chosen hereE1 andE∞ errors for a first order of 8.00E-1 and 7.61E-1, second order perturbation
of 1.90E-2 and 3.10E-1, and second order pruning of 2.00E-2 and 4.79E-1, which corresponds to a factor ofχ = 14
and lines up roughly with the results we report. Likewise their E1 andE∞ errors withσZ = 0.2 for a first order of
8.00E-1 and 7.61E-1, second order perturbation of 1.90E-2 and 3.10E-1, and second order pruning of 2.00E-2 and
4.79E-1 are comparable to our results.

34Though, all the algorithms we compare here are capable of thesame due to their local nature.
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[Figure 4 about here.]

[Figure 5 about here.]

Figure6 shows an example explosive time path that the pruning algorithms guard against. A

shock around the 70th period pushes the third order perturbation beyond a threshold, setting it on

an unrecoverable upward explosion. This inaccuracy obviously dominates all other differences

between the varying algorithms in this simulation.

[Figure 6 about here.]

6.2 The Asset Pricing Model of Burnside (1998)

An agent maximizes her expected discounted lifetime utility from consumption

E0

[
∞

∑
t=0

βt C
1−γ
t

1− γ

]
(85)

subject to the period budget constraint

Ct +PtSt = (Dt +Pt)St−1(86)

whereSt is the end of period holding of the single asset, which is priced Pt at t and paysDt

dividends per unit held at the beginning of the period. Combining the agent’s first order condition

with market clearing delivers

vt = βEt

[
e(1−γ)xt+1 (1+vt+1)

]
(87)

wherevt ≡ Pt/Dt is the price dividend ratio andxt ≡ ln(Dt/Dt−1) is the log dividend difference.

Assuming that

xt = (1−ρ)µ−ρxt−1+ξt , ξt
i.i.d.
∼ N

(
0,σ2)(88)

Burnside (1998) derives a closed form solution given by35

vt =
∞

∑
i=1

βi exp[ai +bi (xt −µ)](90)

where

ai = αiµ+
1
2

α2 σ2

(1−ρ)2

[
i −2

ρ
1−ρ

(
1−ρi)+ρ21−ρ2i

1−ρ2

]
(91)

35To ensure convergence

βexp

[
αµ+

1
2

α2 σ2

(1−ρ)2

]
< 1(89)

27



and

bi = α
ρ

1−ρ
(
1−ρi)(92)

whereα ≡ (1− γ).

We compare the different pruning algorithms relative to this closed form solution for the dif-

ferent parameterizations used in Collard and Juillard (2001), corresponding to different levels of

patience, of persistence and volatility of the log dividenddifference process, and of curvature in

the utility function. For each parameterization, we run 100simulations of 10,000 periods each and

present the relative errors ofvt according to the three criteria—average (E1), mean square (E2),

and maximum (E∞)—in tables6 through8.

[Table 5 about here.]

As Collard and Juillard (2001) observed for the linear approximation, all algorithms tend to de-

teriorate in accuracy as the log dividend difference process becomes more highly persistent (ρ

increases) or volatile (σ increases), or risk aversion is increased (α decreases). This follows nat-

urally from the local nature of all the approximations considered here, as increasing either of the

two shock process parameters increases the cumulative variance of the process and increasing risk

aversion makes the agent’s policy functions more sensitiveto the exogenous process.

[Table 6 about here.]

In general, increasing the order of approximation increases the accuracy of approximation.

According to theE1 criterium, see table6, increasing the order of approximation (here from second

to third order) can, however, lead to a deterioration in the quality of approximation in the case of

very risk averse (α = −5 andα = −10) or very patient (β = 0.99) agents. While this result

is not robust to the choice of criteria (theE2 andE∞ criteria do not display a loss in accuracy

with an increase in order), this reiterates that there is no guarantee that a Taylor approximation

will converge monotonically to the true policy function, even if the latter is analytic such that

convergence is assured in the limit of an infinite order Taylor expansion.36

[Table 7 about here.]

36See Judd (1998) and Lombardo (2010).
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For a given order of approximation, most algorithms performidentically at each order of ap-

proximation. This is due to the lack of endogenous propagation in the fully forward looking model

of Burnside (1998), making an accumulation of risk adjustments in steady states and slope coef-

ficients impossible. The exception is again the third order algorithm of Den Haan and De Wind

(2012) in lemma4.10, which was only as accurate as the first order approximation as measured

with E∞. Indeed, when the log dividend difference process is highlypersistent (ρ = 0.9) or the

agent is highly impatient (β = 0.5), it is even less accurate than the first order approximation

according toE∞. More interesting is that the algorithm of lemma4.10 is identical to the other

third order algorithms for all three measures (E1, E2, andE∞) when either log dividend growth is

not serially correlated (ρ = 0) or the agent has an intertemporal elasticity of substitution of unity

(γ = 1→ α = 0). In both of these cases, the true policy function is a constant37 and even all second

and third order approximations coincide. This follows as the shock,ξt , was assumed normally dis-

tributed, leading toyσ3 = 0 and the second order termyσ2 is identical for all algorithms, following

proposition4.5, due to the absence of propagation (gy = 0) in this case.

[Table 8 about here.]

Both Burnside’s (1998) and Brock and Mirman’s (1972) modelsadmit known closed form

solutions, enabling a precise investigation of the properties of the different pruning algorithms.

However both lack important features of nonlinear models (internal propagation in Burnside’s

(1998) case and certainty nonequivalence in Brock and Mirman’s (1972)) that one would like

these pruning algorithms to cover. Accordingly, we will turn to our final model, a highly nonlinear

variant of the neoclassical growth model due to Caldara, Fernández-Villaverde, Rubio-Ramı́rez,

and Yao (2012), and abandon a closed form baseline solution,as none is known, for a highly

accurate global projection solution as a baseline.

37Substituting eitherρ = 0 or α = 0 into (92) deliversbi = 0, ∀i and, hence, (90) becomes

vt =
∞

∑
i=1

βi expai(93)

whereai is as given in (91).
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6.3 Caldara, Ferńandez-Villaverde, Rubio-Raḿırez, and Yao’s (2012) Model
with Recursive Preferences and Stochastic Volatility

In this section, we examine Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao’s (2012)

stochastic neoclassical growth model with recursive preferences and stochastic volatility. We do so

as the previous two models have lacked either risk sensitivity (the model of section6.1is certainty

equivalent)38 or endogenous state variables to propagate risk adjustments (the model of section6.2

is entirely forward looking in endogenous variables). As noted by Caldara, Fernández-Villaverde,

Rubio-Ramı́rez, and Yao (2012), the model incorporates more nonlinearities and therefore imposes

a challenge on different solution algorithms. Due to the absence of closed-form solution, the model

needs to be approximated. We choose the Chebyshev polynomial approximation as the true solu-

tion to run the three horse races again since it achieves a very high level of accuracy as reported by

Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao(2012).

As the first two welfare theorems hold in their model, we move right to the social planner’s

problem, in which the planner maximizes the expected discounted lifetime utility of a representa-

tive household given by the recursive preferences

Ut = max
ct ,lt

[
(1−β)

(
cν

t (1− lt)
1−ν
)1−γ

θ
+β
(

Et

[
U1−γ

t+1

])1
γ

] θ
1−γ

(95)

wherect is consumption,lt labor,β ∈ (0,1) the discount factor,ν a labor supply parameter,γ risk

aversion, and

θ =
1− γ
1− 1

ψ
(96)

whereψ is the elasticity of intertemporal substitution. The social planner faces the resource con-

straint

ct +kt = ezt kξ
t−1l1−ξ

t +(1−δ)kt−1(97)

with kt being capital,ξ its share andδ its depreciation rate, andzt a mean reverting productivity

process given by

zt = ρzzt−1+σze
σt εz

t , εz
t ∼ N (0,1)(98)

38Judd, Maliar, and Maliar (2011, p. 197) rearrange (82) as

Kt = Et

[
β

Ct

Ct+1
αeZt+1Kα

t

]
(94)

and note that theintegrandunder the conditional expectations on the left hand side is equal toKt for all values ofZt+1.
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with |ρz| < 1 a persistence parameter,σz the homoskedastic volatility ofzt , andσt a stochastic

volatility process contributing conditional heteroskedasticity tozt given by

σt = ρσσt−1+σσεσ
t , εσ

t ∼ N (0,1)(99)

with |ρσ|< 1 a persistence parameter andσσ the standard deviation of innovations to the volatility

process,σt .

The first order conditions are the intratemporal condition
1−ν

ν
ct

1− lt
= (1−ξ)ezt kξ

t−1l−ξ
t(100)

and the intertemporal condition

1= Et

[
mt+1

(
ξezt+1kξ−1

t l1−ξ
t +1−δ

)]
(101)

where the pricing kernel is given by

mt+1
.
=

∂Vt/∂ct+1

∂Vt/∂ct
= β

ct

ct+1

(
cν

t+1(1− lt+1)
1−ν
) 1−γ

θ

(
cν

t (1− lt)
1−ν
)1−γ

θ

(
U1−γ

t+1

Et [Ut+1]
1−γ

)1− 1
θ

(102)

The presence ofUt+1 in the pricing kernel necessitates the inclusion of the value function evaluated

at the optimum

Ut =

[
(1−β)

(
cν

t (1− lt)
1−ν
)1−γ

θ
+β
(

Et

[
U1−γ

t+1

]) 1
γ

] θ
1−γ

(103)

along with the first order conditions, the resource constraint (97), and the exogenous driving force

(98) and its volatility (99) to characterize an equilibrium.

Following Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012), we will also track

two asset prices, the gross return on capital

Rt = ξezt kξ−1
t−1 l1−ξ

t +1−δ(104)

and the gross risk-free rate

1= Et

[
mt+1Rf

t

]
(105)

In contrast to the first two models, Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao’s

(2012) model has no known analytic solution to serve as a baseline for comparing the different

pruning algorithms. However, they show that a projection solution with Chebyshev polynomial

basis functions consistently achieves a high degree of accuracy across different parameterizations

and for a large range in the state space. With this result, we take their Chebyshev projection as our

baseline for comparison.
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[Table 9 about here.]

We parameterize the model as in Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao

(2012) and will examine a baseline and an extreme calibration. The parameters that stay fixed

across both calibrations are in table9 and are standard values that reflect post-war US data.39 The

differences between the baseline and extreme parameterizations can be found in table10 and are

in the value of risk aversion (γ = 5 versus 40), in the homoskedastic volatility in the productivity

process (σz= 0.007 versus 0.021), and in the standard deviation of the stochastic volatility process

(η = 0.06 versus 0.1). The values for the extreme parameterization are purposely set at the edge

of credulity to introduce a very large amount of nonlinearity into the model to test the different

algorithms.

[Table 10 about here.]

For each calibration, we run 100 simulations of 10,000 periods each and present the relative

errors ofkt , ct , lt, it , yt , Rf
t , andRt , according to the three criteria—average (E1), mean square (E2),

and maximum (E∞). For the baseline calibration, the results can be found in tables11 through13

and for the extreme calibration, the results can be found in tables14 through16.

[Table 11 about here.]

Broadly speaking, increasing the order of approximation increases the accuracy of the approx-

imation. This is not, however, true for the non pruned perturbations, which frequently perform

worse at third than at second order (seelt throughRt in tables11 and12) Under the same two

E1 andE2 criteria, the pruned algorithms actually perform better than the non pruned algorithms.

This stands in contrast to the results reported in Den Haan and De Wind (2012) and is likewise a

combination of the different models and their choice of pruning algorithm; the latter is consistently

outperformed by the other pruning algorithms.

[Table 12 about here.]

39Note that the value ofν here yields a deterministic steady state value ofl = 1/3, correcting Caldara, Fernández-
Villaverde, Rubio-Ramı́rez, and Yao’s (2012, p. 197) Table1, which mistakenly reportedν equal to 0.357, the value
of θ stated on the same page.
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As the model of Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012) is risk sensitive

and has internal propagation, the three second order algorithms will differ, see proposition4.5. The

second order pruned series are more accurate than their non pruned counterparts, with Den Haan

and De Wind’s (2012) second order algorithm performing worst. At third order, time varying risk

corrections enter the algorithms, which are crucial for thedynamics under stochastic volatility and

recursive preferences, see, e.g., Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012).

[Table 13 about here.]

For the third order, all of the pruning algorithms perform comparably except for that of Den Haan

and De Wind (2012), detailed in lemma4.10, which performs markedly poorer. To blame are

the terms of fourth order introduced into their third order algorithm and the imposition of third

order risk correction on the first order transition, which comprise the major differences to the

other algorithms. The algorithm of lemma4.8—Fernández-Villaverde, Guerrón-Quintana, Rubio-

Ramı́rez, and Uribe’s (2011) algorithm, while more accurate than Den Haan and De Wind’s (2012),

is inferior according to all three criteria and for all the variables considered here.Thus, the cross

terms (products of the second and first order approximations) mentioned in Lombardo (2012) are

important contributors to the accuracy of third order pruning algorithms. The algorithm of lemma

4.9 sheds some light on which cross terms might be most important; it contains only the product

of the second order approximation of endogenous variables with the first order endogenous state

space—neglecting the cross products with the first order exogenous state space—yet is generally

only marginally worse than the two top performing third order algorithms and, for some cases, is

even the most accurate algorithm (kt in table11andct andit in table13).

[Table 14 about here.]

Our nonlinear moving average (see proposition3.6) and Andreasen’s (2012) third order pruning

algorithm (see lemma4.6) are the two top performing algorithms. Simply enumeratingthe cases

where one or the other performs better as displayed in tables11 through13, our nonlinear moving

average displays superior performance 50% more often. Interestingly, in those cases where these

two algorithms display different average mean squared deviations (the measureE2 displayed in

table12), it is always our nonlinear moving average that is on top. Indeed, as measured at full
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double precision,40 our nonlinear moving average is uniformly superior according to the mean

square criterium. This must be tempered, however, as the differences in accuracy between the two

algorithms for the model here are marginal.

[Table 15 about here.]

The results for the extreme calibration parallel those of our baseline calibration, higher order

leads to more accuracy, Den Haan and De Wind’s (2012) pruningalgorithms are generally the

least accurate second order and the least accurate third order algorithms, and the inclusion of more

cross products in third order pruning algorithms improves accuracy. For the average and maximum

criteria, tables14and16respectively, all algorithms are about one order of magnitude less accurate

than under the baseline calibration (for the mean square criterium in table15 the loss is about two

orders of magnitude). The evidence in favor of our nonlinearmoving average is now more clear

cut: it is the most accurate algorithm in 16 cases in tables14through16(compared to Andreasen’s

(2012) 3, the next most accurate) and is the most accurate forall variables according to the mean

square criterium, see table15.

[Table 16 about here.]

In sum for all three models we have examined here, there is compelling evidence that the third

order nonlinear moving average, expressed recursively in proposition3.6, is the highest performing

algorithm among the perturbation and pruning algorithms wehave examined here. Yet, the gains

are modest at best compared with the third order algorithms in lemmata4.6 and4.9 and, e.g., in

the absence of risk sensitivity or endogenous propagation,the algorithms coincide.

7 Conclusion

We have derived a recursive representation from the nonlinear moving average approximation of

Lan and Meyer-Gohde (2012b). That this recursive algorithminherits stability from first order

invites comparison with so-called pruning algorithms in the literature that purport to do the same.

We document six different pruning algorithms from the literature at second and third order and

40The full tables, along with the algorithms, are available online. We stopped at two digit accuracy here to minimize
clutter.
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show that even with its closest counterparts, at second order the algorithm of Kim, Kim, Schaum-

burg, and Sims (2008) and at third the algorithm of Andreasen(2012), differences remain in that

our algorithm centers the approximation and its coefficients at the stochastic steady state as ap-

proximated up to the order in question. Hence our algorithm gives a stable approximation taking

into account steady state risk adjustments, whereas our closest counterparts center their algorithms

at the deterministic steady state making the interpretation of the risk adjustment components more

difficult.

Numerically, we compare the six algorithms with our second and third order recursive repre-

sentations and the first through third order standard perturbations for accuracy. We choose three

models to test the algorithms in: the Brock and Mirman (1972)special case of the stochastic

neoclassical growth model, Burnside’s (1998) asset pricing model, and the model of Caldara,

Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012) with recursive preferences and stochas-

tic volatility. The first two have known closed form solutions but are not rich enough to capture the

differences from the propagation of risk adjustments—the Brock and Mirman’s (1972) is certainty

equivalent and Burnside’s (1998) lacks endogenous state variables—leading many algorithms to

be identical; the last model is highly risk sensitive and hasendogenous propagation, but does not

possess a known closed form solution forcing us to rely on another approximation as a baseline.

In general, the differences are modest, with the major difference coming with the increase of

order of approximation. The exception is the algorithm of Den Haan and De Wind (2012), which

at third order performs more comparably to a first order approximation. We do not find evidence

that much accuracy in simulations is lost by choosing a pruning algorithm to guarantee stability.

On the contrary, pruned series are often more accurate than the standard perturbation. This is not

surprising as the two most accurate algorithms are not ad-hoc pruning algorithms, but theoretically

justified nonlinear moving average perturbations (see Lan and Meyer-Gohde (2012b)) or matched

perturbations (see Lombardo (2012)).
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M. URIBE (2011): “Risk Matters: The Real Effects of Volatility Shocks,” American Economic
Review, 101(6), 2530–61.

FLEMING , W. (1971): “Stochastic Control for Small Noise Intensities,” SIAM Journal of Control,
9(3), 473517.

GASPAR, J., AND K. L. JUDD (1997): “Solving Large-Scale Rational-Expectations Models,”
Macroeconomic Dynamics, 1(01), 45–75.

HANSEN, G. D. (1985): “Indivisible Labor and the Business Cycle,”Journal of Monetary Eco-
nomics, 16(3), 309–327.

HOLMES, M. H. (1995):Introduction to Perturbation Methods. Springer, New York.

JIN , H.-H., AND K. L. JUDD (2002): “Pertubation Methods for General Dynamic Stochastic
Models,” Mimeo April.

JUDD, K. L. (1998):Numerical Methods in Economics. MIT Press, Cambridge, MA.

JUDD, K. L., AND S.-M. GUU (1997): “Asymptotic Methods for Aggregate Growth Models,”
Journal of Economic Dynamics and Control, 21(6), 1025–1042.

JUDD, K. L., L. M ALIAR , AND S. MALIAR (2011): “Numerically Stable and Accurate Stochas-
tic Simulation Approaches for Solving Dynamic Economic Models,” Quantitative Economics,
2(2), 173–210.

JUDD, K. L., AND T. M. MERTENS (2012): “Equilibrium Existence and Approximation of In-
complete Market Models with Substantial Heterogeneity,” Mimeo March.

JUILLARD , M. (2011): “Local Approximation of DSGE Models around the Risky Steady State,”
Mimeo October.

K IM , J., S. KIM , E. SCHAUMBURG, AND C. A. SIMS (2008): “Calculating and Using Second-
Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models,” Journal of Eco-
nomic Dynamics and Control, 32(11), 3397–3414.

KONING, R. H., H. NEUDECKER, AND T. WANSBEEK (1991): “Block Kronecker Products and
the vecb Operator,”Linear Algebra and Its Applications, 149, 165–184.

LAN , H., AND A. M EYER-GOHDE (2012a): “Existence and Uniqueness of Perturbation Solutions
to DSGE Models,” Mimeo August.

(2012b): “Solving DSGE Models with a Nonlinear Moving Average,” Mimeo July.

(2013): “Decomposing Risk in Dynamic Stochastic General Equilibrium,” SFB 649 Dis-
cussion Paper 2013-022 April.

LOMBARDO, G. (2010): “On Approximating DSGE Models by Series Expansions,” Working
Paper Series 1264, European Central Bank.

37



(2012): “On Approximating DSGE Models by Series Expansions,” Mimeo.

MAGNUS, J. R.,AND H. NEUDECKER (1979): “The Commutation Matrix: Some Properties and
Applications,”The Annals of Statistics, 7(9), 383–394.

MCCALLUM , B. T. (1989): “Real Business Cycle Models,” inModern Business Cycle Theory,
ed. by R. J. Barro, chap. 1, pp. 16–50. Harvard University Press.

PRIESTLY, M. B. (1988):Non-Linear and Non-Stationary Time Series Analysis. Academic Press
Ltd., London, UK.

RUGE-MURCIA, F. (2012): “Estimating Nonlinear DSGE Models by the Simulated Method of
Moments,”Journal of Economic Dynamics and Control, 36(6), 914938.
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Appendix

A Dimension Reduction Typology

We adopt Dynare’s typology of all the endogenous variables41 to minimize superfluous calcula-

tions.

Definition A.1. Typology of Endogenous Variables

• Static endogenous variables: those that appears only at period t. Their number is nstatic

• Purely forward endogenous variables: those that appear only at period t+1, possibly at

period t, but not at period t−1. Their number is n f wd

• Purely backward endogenous variables: those that appear only at period t−1, possibly at

period t, but not period t+1. Their number is nbwd

• Mixed endogenous variables: those that appear both at period t−1 and t+1, and possibly

at period t. Their number is nmix

These four types variables, abbreviated as st, f wd, bwd and mix respectively, form a partition of

the endogenous variables with the identity

nstatic+nbwd+nmix+n f wd= ny

For notational ease in derivations, we also define

• Forward endogenous variables: the union of mixed and purely forward endogenous vari-

ables. Their number therefore is n f wdendo= n f wd+nmix

• Backward endogenous variables: the union of static and purely backward endogenous vari-

ables. Their number therefore is nbwdendo= nstatic+nbwd

• Endogenous state variables: the union of the purely backward and the mixed endogenous

variables. Their number therefore is ns= nbwd+nmix

with the abbreviation f wdendo, bwdendo and state respectively.

Note that, the last two types of variables, i.e., the backward endogenous and endogenous state

variables in definition (A.1), are different from those defined by Dynare: (i) the backward endoge-

nous variables in Dynare refers to the union of the purely backward and the mixed endogenous

variables, which is the endogenous state variables in our case, (ii) the state variables in Dynare

41See again Adjemian, Bastani, Juillard, Mihoubi, Perendia,Ratto, and Villemot (2011)
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refer to the union of our endogenous state variables and the exogenous variables of the model.

Based on the definition (A.1), the entries of the vector of the endogenous variables are ordered42

such that the vector admits the partitions

yt =




ystatic
t
ybwd

t
ymix

t

yf wd
t


=




ystatic
t

ystate
t

yf wd
t


=




ystatic
t
ybwd

t

yf wdendo
t


=

[
ybwdendo

t

yf wdendo
t

]

While all the partitions inyt are superscripted with the abbreviated names of the variable type,

these superscripts can be considered as the indicator for the number of rows of that partition, for

example,ystatic
t is of dimensionnstatic×1.

The definition (A.1) and the ordering ofyt in the previous equation implies that the derivatives

of the f function with respect toy−, y andy+ have the structure

fy− =
[

0
ny×nstatic

fy−bwd fy−both 0
ny×n f wd

]

=
[

0
ny×nstatic

fy−state 0
ny×n f wd

]

fy =
[

fystatic fybwd fymix fy f wd
]

=
[

fystatic fystate fy f wd
]

=
[

fybwdendo fy f wdendo
]

fy+ =
[

0
ny×nstatic

0
ny×nbwd

fy+mix fy+ f wd
]

=
[

0
ny×nstatic

0
ny×nbwd

fy+ f wdendo
]

where the abbreviated names as subscripts can be consideredas the indictor of the number of

columns of that partition, for example,fy−bwd is of dimensionny×nbwd.

B Coefficients of Nonlinear Moving Averages Recursive in the
Minimal State Representation

Here we apply the dimension reduction to the equations of Lanand Meyer-Gohde (2012b). As

0= Et [ f (yt+1,yt ,yt−1,εt)](B-1)

can be rewritten

0= Et [ f (y
f wdendo
t+1 ,yt ,y

state
t−1 ,εt)](B-2)

42This is the decision rule order of Dynare. See again Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and
Villemot (2011).
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For notational ease in derivations, we will define the vectorxt , containing the complete set of

variables

xt =




yf wdendo
t+1

yt

ystate
t−1
εt


(B-3)

with the dimensionnx×1 with (nx= n f wdendo+ny+ns+ne). This differs from the vector of

total variables in Lan and Meyer-Gohde (2012b) by allowing for the possibility, mentioned above,

that only a subset of the variables inyt is present int+1, yf wdendo
t+1 , and only a subset int−1, ystate

t−1 .

With the policy function of the form (2), (3) and (4), we can writext as

xt = x(σ, ε̃t+1,εt ,εt−1, . . .)(B-4)

B.1 First Order Coefficients

At first order, the approximation is

yt =y+
∞

∑
i=0

yiεt−i(B-5)

where we have already removed coefficients equal to zero.43 Accordingly, the task is to pin down

yi .

As it is serially uncorrelated vector of innovations,εt can be represented by trivial infinite mov-

ing average with the first or impact coefficient the identity matrix and all other coefficients zero.

This makes the relation between endogenous variables and the underlying innovations different

upon impact than in subsequent periods after a realization from the vector of innovations. Ac-

cordingly, we split the problem in two: indices,i, greater than zero andi = 0. Accordingly, the

first-order equation of Lan and Meyer-Gohde (2012b) becomes

fy−statey
state
i−1 + fyyi + fy+ f wdendoy

f wdendo
i+1 = 0(B-6)

for positivei and

fyy0+ fy+ f wdendoy
f wdendo
1 + fε = 0(B-7)

otherwise. We summarize the solutions in the following

Proposition B.1. The solution to (B-6) and (B-7) takes the form

yi = αystate
i−1 ∀ i > 0(B-8)

43Hereyσ is zero, see Lan and Meyer-Gohde (2012b) and more generally in state space contexts, Jin and Judd
(2002), Schmitt-Grohé and Uribe (2004), and Lan and Meyer-Gohde (2012a).
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y0 = β0(B-9)

Proof. yi solves the deterministic system (B-6) as studied by Anderson (2010) for positivei, with

a unique solutionα such that all the eigenvalues ofαstateare inside the unit circle.44 Substituting

this fory1 in (B-7) yields a linear equation iny0, whose solution we callβ0. See the Appendix.

B.2 Second Order Coefficients

At second order, the approximation is

yt =y+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(B-10)

where we have already removed coefficients equal to zero.45 Accordingly, the task is to pin down

y j ,i andyσ2 and we shall proceed in that order.

The equation from Lan and Meyer-Gohde (2012b) fory j ,i is now

fy−statey
state
j−1,i−1+ fyy j ,i + fy+ f wdendoy

f wdendo
j+1,i+1 + fx2(x j ⊗xi) = 0(B-11)

From (B-8), we rewrite the derivative ofxt with respect toεt−i as the product of a constant matrix

and the vector of state variable coefficients from the first order

xi =
[
ystate

i−1
′ y′i yf wdendo

i+1
′

ε′i
]′
= γ1ystate

i−1 ∀ i > 0

whereγ1 =
[
Ins α′

(
α f wdendoαstate

)′
0

ns×ne

]′
(B-12)

This reduces (B-11) to a difference equation system with inhomogenous terms inthe first order

coefficients of the endogenous state variables and homogenous coefficients identical to (B-6), the

equation at first order. This is in line with the so-called pruning algorithm of Kim, Kim, Schaum-

burg, and Sims (2008), though they are not entirely identical as we will show in section4.

Eliminating redundant calculations,y j ,i can be split into three difference equations according

to the different values that the indicesj andi take on. The initial values (whenj and/ori are zero)

are handled separately, as in the first order case, by recognizing that the inhomogenous component

associated with the zero index is a known constant

x0 =
[

0
ne×ns

β′
0

(
α f wdendoβstate

0

)′
Ine

]′
(B-13)

We summarize the solutions in the following

44See Villemot (2011) for details on solving the first order homogenous problem with the variable typology we have
adapted here from Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot’s (2011) Dynare.

45Hereyσ,i is zero, see footnote43.
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Proposition B.2. The solution to (B-11) takes the form

y j ,i = αystate
j−1,i−1+β22(y

state
j−1 ⊗ystate

i−1 ) ∀ i& j > 0(B-14)

y j ,0 = β20(y
state
j−1 ⊗ Ine) ∀ j > 0(B-15)

y0,0 = β00(B-16)

Proof. See the Appendix.

The coefficienty0,i follows from the commutability of the matrix derivative operator and upon

application of Magnus and Neudecker’s (1979) commutation matrix, K, to reverse the order of

Kronecker tensors. Accordingly

y0,i =β02(Ine⊗ystate
j−1 ), whereβ02 ≡ β20Kns,ne(B-17)

The second order approximation also contains a constant correction for risk that is generically

nonzero, see, e.g., Collard and Juillard (2001) or Schmitt-Grohé and Uribe (2004),

Proposition B.3. yσ2 solves

yσ2 =
[

fystatic fy−bwd+ fybwd fy−mix+ fymix+ fy+mix fy f wd+ fy+ f wd
]−1

[
fy+ f wdendoβ

f wdendo
00 + f(y+ fwdendo)2β f wdendo⊗[2]

0

]
Et

(
ε⊗[2]

t+1

)
(B-18)

Proof. Direct verification of Lan and Meyer-Gohde’s (2012b) equation foryσ2

yσ2 =−( fy− + fy+ fy+)
−1[ fy+y0,0+ fy+2y

⊗[2]
0 ]Et

(
ε⊗[2]

t+1

)
(B-19)

upon application of the variable typology here yields the desired result.

This set of coefficients corrects for the risk of future shocks as captured byEt

(
ε⊗[2]

t+1

)
, the

(column vectorized) variance of next period’s shocks.

B.3 Third Order Coefficients

The third order approximation of the policy function takes the form

y(3)t =y+
1
2

yσ2 +
∞

∑
i=0

(
yi +

1
2

yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(B-20)

where again we have already removed coefficients equal to zero.46 Accordingly, the task is to pin

downyk, j ,i andyσ2,i.

46Hereyσ,i, j andyσ3 are zero, see again footnote43. The latter follows from our assumption of normality, see
Andreasen (2012) for a third order perturbation with nonnormal shocks and, consequently, nonzero third order constant
risk corrects likeyσ3
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Lan and Meyer-Gohde’s (2012b) equation foryk, j ,i with nonzerok, j, andi is now given by47

fy−statey
state
k−1, j−1,i−1+ fyyk, j ,i + fy+ f wdendoy

f wdendo
k+1, j+1,i+1+ γ333sk, j ,i = 0(B-21)

where the inhomogenous terms consists of the state spaces ofall lower orders

sk, j ,i =

[
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

ystate
k−1, j−1⊗ystate

i−1 +
(

ystate
k−1,i−1⊗ystate

j−1

)
(Ine⊗Kne,ne)+

(
ystate

j−1,i−1⊗ystate
k−1

)
Kne2,ne

]
(B-22)

mapped into (B-21) with the following constant matrix

γ333=
[

fx3γ⊗[3]
1 + fx2(γ22⊗ γ1)(Ins3 + Ins⊗Kns,ns+Kns2,ns) fx2γ⊗[2]

1

]
(B-23)

where

γ22 =

[
0

ns2×ns
β′

22

(
α f wdendoβstate

22 +β f wdendo
22 αstate⊗[2]

)′
0

ns2×ne

]′
(B-24)

and whereK again is Magnus and Neudecker’s (1979) commutation matrix.

To eliminate redundant calculations, we splityk, j ,i into four difference equations according

to the different values that the indicesk, j, and i take on and replace repeated coefficients with

their lower order predecessors. The initial values (whenk, j, and/ori are zero) are again handled

separately by recognizing that the inhomogenous componentassociated with the zero index is a

known constant.48 We summarize the solutions in the following

Proposition B.4. The solution to (B-11) takes the form

yk, j ,i = αystate
k−1, j−1,i−1+

[
β333 β22

]
sk, j ,i ∀ i, j,&k> 0(B-25)

yk, j ,0 =
[
β330 β20

][ystate
k−1 ⊗ystate

j−1 ⊗ Ine

ystate
k−1, j−1⊗ Ine

]
∀ k& j > 0(B-26)

yk,0,0 = β300
(
ystate

k−1 ⊗ Ine2

)
∀ k> 0(B-27)

y0,0,0 = β000(B-28)

Proof. See the Appendix.

The third order approximation also contains a time varying correction for risk that is generi-

cally nonzero, see, e.g., Andreasen (2012), Ruge-Murcia (2012), or Caldara, Fernández-Villaverde,

Rubio-Ramı́rez, and Yao (2012). Analogously to the first order, yσ2,i must be split into two equa-

tions to respect the nonzero value of the shocks at impact. For nonzeroi, the source equation can

47See appendixH for the problem statement with zerok’s, j ’s, and/ori’s, which reduces the underlying state space
to products of lower order state spaces.

48As the calculation are rather onerous, the reader is directed to the Appendix for details and the second order
calculations above for an example.
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be written

fy−statey
state
σ2,i−1+ fyyσ2,i + fy+ f wdendoy

f wdendo
σ2,i+1(B-29)

+

{[
fx3

(
x⊗[2]

ε̃ ⊗ γ1

)
+2 fx2

(
xε̃ ⊗

(
γ4β f wdendo

02

))(
Ine2 ⊗αstate)+ fx2

(
xε̃,ε̃ ⊗ γ1

)

+ fx
(

γ4β f wdendo
003

(
Ine2 ⊗αstate))

](
Etε

⊗[2]
t+1 ⊗ Ins

)
+ fx2(xσ2 ⊗ γ1)

}
ystate

i−1 = 0

wherexε̃, xε̃,ε̃, xσ2, γ4, xε̃,i , andxε̃2,i are constant matrices and coefficients from previous calcula-

tions. Fori = 0, the source equation is

fyyσ2,0+ fy+ f wdendoy
f wdendo
σ2,1 + fx2(xσ2 ⊗x0)

+

[
fx3

(
x⊗[2]

ε̃ ⊗x0

)
+ fx2

(
xε̃,ε̃ ⊗x0

)
+2 fx2

(
xε̃ ⊗xε̃,0

)
+ fxxε̃2,0

](
Etε

⊗[2]
t+1 ⊗ Ine

)
= 0(B-30)

wherexε̃,0 andxε̃2,0 are coefficients from previous calculation

We summarize the solutions in the following

Proposition B.5. The solution to (B-29) and (B-30) takes the form

yσ2,i = αystate
σ2,i−1+βσ21ystate

i−1 ∀ i > 0(B-31)

yσ2,0 = βσ20(B-32)

Proof. The first equation follows directly as the homogenous component is identical to that of the

first order with the first order itself being the inhomogenouscomponent. The second follows from

inserting the first into (B-30) and solving the resulting linear problem. See the Appendix.

This set of coefficients corrects (up to first order) for the time varying conditional risk of future

shocks as captured byEt

(
ε⊗[2]

t+1

)
, the (column vectorized) variance of next period’s shocks.

C First Order Recursive Approximation Appendix

We define

dy(1)t ≡ y(1)t − ȳ(C-33)

It follows that

dy(1)t =
∞

∑
i=0

yiεt−i(C-34)

Evaluating and rearrangingdy(1)t −αdy(1)state
t−1 yields

dy(1)t −αdy(1)state
t−1 =

∞

∑
i=0

yiεt−i −α
∞

∑
i=0

ystate
i εt−i−1

45



=
∞

∑
i=0

(
yi −αystate

i−1

)
εt−i

=β0εt +
∞

∑
i=1

(
yi −αystate

i−1

)
εt−i

=β0εt(C-35)

where the last line follows asyi = αystate
i−1 , ∀i > 0 from the first order solution in propositionB.1.

Therefore the state space representation of the first order approximation (11) takes the form

dy(1)t = αdy(1)state
t−1 +β0εt(C-36)

D Second Order Recursive Approximation Appendix

Inserting the first order approximation (11) into the definition of the second order increment, (18),

yields

dy(2)t = y(2)t −y(1)t −
1
2

yσ2(D-37)

It follows

dy(2)t =
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(D-38)

Evaluating and rearrangingdy(2)t −αdy(2)state
t−1 yields

dy(2)t −αdy(2)state
t−1 =

1
2

[
∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)−α
∞

∑
j=0

∞

∑
i=0

ystate
j−1,i−1(εt− j ⊗ εt−i)

]

=
1
2

[ ∞

∑
j=1

∞

∑
i=1

(
y j ,i −αystate

j−1,i−1

)
(εt− j ⊗ εt−i)+

∞

∑
i=1

y0,i(εt ⊗ εt−i)

+
∞

∑
j=1

y j ,0(εt− j ⊗ εi)+y0,0ε⊗[2]
t

]
(D-39)

applying the second order solutionsy j ,i =αystate
j−1,i−1+β22(ystate

j−1 ⊗ystate
i−1 ), ∀ j, i > 0,y0,i = β02(Ine⊗

ystate
i−1 ), ∀ j = 0, i > 0, y j ,0 = β20(ystate

j−1 ⊗ Ine), ∀ j > 0, i = 0 and notingβ00= y0,0

dy(2)t −αdy(2)state
t−1 =

1
2

[
β22

∞

∑
j=1

∞

∑
i=1

(
ystate

j−1 ⊗ystate
i−1

)
(εt− j ⊗ εt−i)+β02

∞

∑
i=0

(Ine⊗ystate
i−1 )(εt ⊗ εt−i)

+β20

∞

∑
j=0

(ystate
j−1 ⊗ Ine)(εt− j ⊗ εi)+β00ε⊗[2]

t

]
(D-40)

which, using the mixed product rule can be rewritten as

dy(2)t −αdy(2)state
t−1 =

1
2

[
β22

∞

∑
j=1

∞

∑
i=1

(
ystate

j−1 εt− j ⊗ystate
i−1 εt−i

)
+β02

∞

∑
i=0

(Ineεt ⊗ystate
i−1 εt−i)
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+β20

∞

∑
j=0

(ystate
j−1 εt− j ⊗ Ineεi)+β00ε⊗[2]

t

]

=
1
2

[
β22
(
ystate

0 εt−1+ystate
1 εt−2+ . . .

)
⊗
(
ystate

0 εt−1+ystate
1 εt−2+ . . .

)

+β02εt ⊗
(
ystate

0 εt−1+ystate
1 εt−2+ . . .

)

+β20
(
ystate

0 εt−1+ystate
1 εt−2+ . . .

)
⊗ εt +β00ε⊗[2]

t

]
(D-41)

and from (11)

dy(2)t −αdy(2)state
t−1 =

1
2

[
β22dystate⊗[2]

t−1 +β02
(
εt ⊗dystate

t−1

)
+β20

(
dystate

t−1 ⊗ εt
)
+β00ε⊗[2]

t

]
(D-42)

The previous equation (17) can be further simplified by using
(
ystate

t−1 ⊗ εt
)
= Kns,ne

(
εt ⊗ystate

t−1

)

andβ20= β02Kne,ns

dy(2)t −αdy(2)state
t−1 =

1
2

[
β22dystate⊗[2]

t−1 +2β20

(
dy(1)state

t−1 ⊗ εt

)
+β00ε⊗[2]

t

]
(D-43)

D.1 Block Kronecker Expression of Second Order Coefficients

Following Koning, Neudecker, and Wansbeek (1991), we definethe block Kronecker product,

denoted by⊠, as

A⊠B≡




A⊗B11 . . . A⊗B1t
...

...
A⊗Bs1 . . . A⊗Bst


(D-44)

for a u× v matrix B consisting of blocksBkl of sizeuk× vl , whereu = ∑s
k=1uk andv = ∑t

l=1vl .

This contrasts with the standard Kronecker product

B⊗A≡




B11⊗A . . . B1t ⊗A
...

...
Bs1⊗A . . . Bst⊗A


=




b11A . . . b1vA
...

...
bu1A . . . buvA


(D-45)

whereb is used to distinguish the individual elements ofB from the blocks defined above.

Applying the properties of the block Kronecker product, we can connectyz2 and
[
yystate2 yεystate yystateε yε2

]

through operations with Magnus and Neudecker’s (1979) commutation matrix, denoted here by

Ka,b, as follows

yz2dz(1)t
⊗[2]

= yz2




Kns,ns+ne 0

ns(ns+ne)×ne(ns+ne)

0
ne(ns+ne)×ns(ns+ne)

Kne,ns+ne





︸ ︷︷ ︸
≡G2

[
dy(1)state

t−1
εt

]
⊠

[
dy(1)state

t−1
εt

]

=
[
yystate2 yεystate yystateε yε2

]
dz(1)t

⊠[2]
(D-46)
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Accordingly,

yz2G2 =
[
yystate2 yεystate yystateε yε2

]
(D-47)

Hence, the block Kronecker product, throughG2, allows us to extract the individual block second

derivatives with respect toystate
t−1 andet from the matrix of second derivatives with respect to the

entire state vector,zt.

E Third Order Recursive Approximation Appendix

Using the second order approximation (17), the definition of the third order increment, (26), can

be written as

dy(3)t = y(3)t −y(2)t(E-48)

It follows

dy(3)t =
1
2

∞

∑
i=0

yσ2,iεt−i +
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(E-49)

Rearranging and evaluatingdy(3)t −αdy(3)state
t−1 yields

dy(3)t −αdy(3)state
t−1 =

1
2

∞

∑
i=0

(
yσ2,iσ

2−αystate
σ2,i−1σ2

)
εt−i

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
yk, j ,i −αystate

k−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)(E-50)

The first term on the right hand side of the previous equation can be written as
∞

∑
i=0

(
yσ2,iσ

2−αystate
σ2,i−1σ2

)
εt−i = βσ20εt +βσ21dy(1)state

t−1(E-51)

The second term can be written as
∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
yk, j ,i −αystate

k−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)

=
∞

∑
k=1

yk,0,0(εt−k⊗ εt ⊗ εt)+
∞

∑
j=1

y0, j ,0(εt ⊗ εt− j ⊗ εt)+
∞

∑
i=1

y0,0,i(εt ⊗ εt ⊗ εt−i)

+
∞

∑
k=1

∞

∑
j=1

yk, j ,0(εt−k⊗ εt− j ⊗ εt)+
∞

∑
k=1

∞

∑
i=1

yk,0,i(εt−k⊗ εt ⊗ εt−i)+
∞

∑
j=1

∞

∑
i=1

y0, j ,i(εt ⊗ εt− j ⊗ εt−i)

+
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

(
yk, j ,i −αystate

k−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)+y0,0,0(εt ⊗ εt ⊗ εt)

(E-52)

Each term can be converted into the corresponding state space representation. We will proceed
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one by one

y0,0,0(εt ⊗ εt ⊗ εt) = β000

(
ε⊗[3]

t

)
(E-53)

The triple sum, by commuting, can be written as
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

(
yk, j ,i −αystate

k−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)

=
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

β333sk, j ,i(εt−k⊗ εt− j ⊗ εt−i)

=
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

β333,1
[(

ystate
k−1 εt−k

)
⊗
(
ystate

j−1 εt− j
)
⊗
(
ystate

i−1 εt−i
)]

+
∞

∑
k=1

∞

∑
j=1

∞

∑
i=1

β22

[(
ystate

k−1, j−1⊗ystate
i−1

)
(εt−k⊗ εt− j ⊗ εt−i)

+
(

ystate
k−1,i−1⊗ystate

j−1

)
(Ine⊗Kne,ne)(εt−k⊗ εt− j ⊗ εt−i)

+
(
ystate

j−1,i−1⊗ystate
k−1

)
Kne2,ne(εt−k⊗ εt− j ⊗ εt−i)

]

=β333,1

(
dy(1)state

t−1

⊗[3]
)
+6β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
(E-54)

The following applies to, by commuting, all three of the single sums
∞

∑
k=1

yk,0,0(εt−k⊗ εt ⊗ εt)

=
∞

∑
k=1

β300
(
ystate

k−1 ⊗ εt−k
)
(Ine2 ⊗ εt ⊗ εt)

=β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
(E-55)

The following applies to, by commuting, all three of the double sums
∞

∑
k=1

∞

∑
j=1

yk, j ,0(εt−k⊗ εt− j ⊗ εt)

=
∞

∑
k=1

∞

∑
j=1

β330

[
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

yk−1, j−1⊗ Ine

]
(εt−k⊗ εt− j ⊗ εt)

=β330,1

(
dy(1)state

t−1

⊗[2]
⊗ εt

)
+2β20

(
dy(2)state

t−1 ⊗ εt

)
(E-56)

Combining the above
∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
yk, j ,i −αystate

k−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)

=β333,1

(
dy(1)state

t−1

⊗[3]
)
+β000

(
ε⊗[3]

t

)

+3β330,1

(
dy(1)state

t−1

⊗[2]
⊗ εt

)
+3β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
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+6β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+6β20

(
dy(2)state

t−1 ⊗ εt

)

E.1 Block Kronecker Expression of Third Order Coefficients

Similarly to the derivations at second order, we can connectyz3 and
[
yystate3 yεystate2 yystateεystate yε2ystate yystate2ε yεystateε yystateε2 yε3

]

with operations involving Magnus and Neudecker’s (1979) commutation matrix, denoted here by

Ka,b, following the definition of the block Kronecker product of Koning, Neudecker, and Wansbeek

(1991) as follows

yz3dz(1)t

⊗[3]
= yz3




Kns,(ns+ne)2 0
ns(ns+ne)2×ne(ns+ne)2

0
ne(ns+ne)2×ns(ns+ne)2

Kne,(ns+ne)2




︸ ︷︷ ︸
≡G31

(
dz(1)t

⊗[2]
)
⊠dz(1)t

= yz3G31

(
G2dz(1)t

⊠[2]
)
⊠dz(1)t

= yz3G31[G2⊠ Ins+ne]dz(1)t

⊠[3]

= yz3 (Ins+ne⊗G2)G31dz(1)t
⊠[3]

=
[
yystate3 yεystate2 yystateεystate yε2ystate yystate2ε yεystateε yystateε2 yε3

]
dz(1)t

⊠[3]
(E-57)

whereG2 was defined in the proof of the block Kronecker formulation ofthe second order approx-

imation. Accordingly

yz3 (Ins+ne⊗G2)G31 =
[
yystate3 yεystate2 yystateεystate yε2ystate yystate2ε yεystateε yystateε2 yε3

](E-58)

As in the second order case, the block Kronecker product, throughG2 andG31, allows us to extract

the individual block third derivatives with respect toystate
t−1 andet from the matrix of third derivatives

with respect to the entire state vector,zt .

E.2 Proof of Proposition4.5

Our assumption of the existence of a nonlinear moving average policy function (2)

yt = y(σ,εt ,εt−1, . . .)(E-59)

requires that the state space representation (37)

yt = g(σ,εt,y
state
t−1 )(E-60)
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can be “inverted” in the sense that recursive substitution of (37) in itself will deliver (2)

yt = g(σ,εt,g
state(σ,εt−1, . . .)︸ ︷︷ ︸

ystate
t−1

)≡ y(σ,εt ,εt−1, . . .)(E-61)

Thus, we can rewrite (37) by replacing withyt andystate
t−1 with (2), appropriately lagged and with

the subvector of states selected for the latter. This gives

y(σ,εt,εt−1, . . .) = g(σ,εt,y
state(σ,εt−1,εt−2, . . .))(E-62)

By differentiating (E-62) with respect to the arguments of the nonlinear moving average policy

function (2), we will demonstrate the equivalence or difference of the coefficients in the recursive

algorithms of section3 with those of the pruning algorithms in section4.

At first order, we differentiate with respect toσ and the sequence of shocks{εt−i}
∞
i=0. Accord-

ingly

yσ = gσ+gystateystate
σ(E-63)

which when evaluated at the deterministic steady state confirms49

gσ = 0→ yσ = gσ = 0(E-64)

and with respect to the sequence of shocks

yi =

{
gystateystate

i−1 , for i > 0

gε , for i = 0
(E-65)

comparing with (B-8), it follows by inspection thatgystate= α ≡ yystate andgε = β0 ≡ yε

At second order, we differentiate with respect toσ twice, σ and the sequence of shocks

{εt−i}
∞
i=0, and with respect to two sequences of shocks,{εt−i}

∞
i=0 and

{
εt− j

}∞
j=0.

Beginning with the derivative with respect toσ twice,

yσ2 = gσ2 +2gσystateystate
σ +gystate2ystate

σ
⊗[2]

+gystateystate
σ2(E-66)

evaluating at the deterministic steady state yields

yσ2 = gσ2 +gystateystate
σ2(E-67)

or, reexpressing the second term on the r.h.s in terms of the full vector of endogenous variables,

yσ2 = (Iny−gy)
−1gσ2(E-68)

as was claimed.
49See Schmitt-Grohé and Uribe (2004), Jin and Judd (2002), and Lan and Meyer-Gohde (2012a).
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With respect toσ and the sequence of shocks{εt−i}
∞
i=0, we obtain

yσi =

{
gσystateystate

i−1 +gystate2

(
ystate

σ ⊗ystate
i−1

)
+gystateystate

σi−1 , for i > 0

gystateεystate
σ +gσε , for i = 0

(E-69)

evaluating at the deterministic steady state,gσystate= 0 andgσε = 0 and50 recalling the results from

the first order above

yσi = 0(E-70)

With respect to two sequences of shocks

y ji =





gystateystate
j−1,i−1+gystate2

(
ystate

j−1 ⊗ystate
i−1

)
, for j, i > 0

gystateε

(
ystate

j−1 ⊗ Ine

)
, for j > 0, i = 051

gε2 , for j, i = 0

(E-71)

comparing with (B-14), it follows by inspection thatgystate2 = β22 ≡ yystate2, gystateε = β20≡ yystateε,

andgε2 = β00 ≡ yε2.

This completes the proof that all coefficients in the second order pruning algorithms and re-

cursive formulation of the nonlinear moving average are identical, except for the constant risk

adjustment termsyσ2 andgσ2. The transitions follow immediately when setting all shockrealiza-

tions to zero. For example, Kim, Kim, Schaumburg, and Sims’s(2008) algorithm in lemma4.3 in

the absence of shocks is

y(2)t = y+dy(2)t(E-72)

where

dy(2)t = gystatedy(2)state
t−1 +

1
2

gσ2(E-73)

with dy(1)0 anddy(2)0 initialized to zero.dy(2)t transitions from zero to(Iny−gy)
−1gσ2 and the same

follows for y(2)t due to its linearity.

E.3 Proof of Proposition4.7

Here we follow the proof of proposition4.5 above. At third order, we have four derivatives:σ

thrice,σ twice and a sequence of shocks,σ once and two sequences of shocks, and three sequences

of shocks. In our derivations, we will jump right to the equations evaluated in the deterministic

steady state.

50See again Schmitt-Grohé and Uribe (2004), Jin and Judd (2002), and Lan and Meyer-Gohde (2012a).
51The casei > 0, j = 0 follows symmetrically.
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With respect toσ thrice at the deterministic steady state

yσ3 = gσ3 +gystateystate
σ3(E-74)

or, reexpressing the second term on the r.h.s in terms of the full vector of endogenous variables,

yσ3 = (Iny−gy)
−1gσ3(E-75)

as was claimed.

With respect toσ twice and a sequence of shocks and evaluating at the deterministic steady

state

yσ2i =





gσ2ystateystate

i−1 +gystate2

(
ystate

σ2 ⊗ystate
i−1

)
+gystateyσ2state

i−1 , for i > 0

gσ2ε +gystateε

(
ystate

σ2 ⊗ Ine

)
, for i = 0

(E-76)

comparing with (B-31) gσ2ε+gystateε

(
ystate

σ2 ⊗ Ine

)
= βσ20≡ yσ2ε andgσ2ystate+gystate2

(
ystate

σ2 ⊗ Ins

)
=

βσ21 ≡ yσ2ystate and, clearly,gσ2ε 6= yσ2ε andgσ2ystate 6= yσ2ystate.

Derivatives with respect toσ once and two sequences of shocks are zeros in both representa-

tions,52 gσystate2 = yσystate2 = 0, gσystateε = yσystateε = 0, andgσε2 = yε2 = 0.

Finally, the terms with respect to three sequences of shocks,

yk ji =





gystate2

[
ystate

k−1, j−1⊗ystate
i−1 +

(
ystate

k−1,i−1⊗ystate
j−1

)
(Ine⊗Kne,ne)+ystate

j−1,i−1⊗ystate
k−1

]

+gystateystate
k−1, j−1,i−1+gystate3

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)
, for k, j, i > 0

gystateε

(
ystate

k−1, j−1⊗ Ine

)
+gystate2ε

(
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

)
, for k, j > 0, i = 053

gystateε2

(
ystate

k−1 ⊗ Ine2

)
, for k> 0, j, i = 054

gε3 , for k, j, i = 0

(E-77)

comparing with (B-25), gystate3 = β333≡ yystate3, gystate2ε = β330≡ yystate2ε, gystateε2 = β300≡ yystateε2,

andgε3 = β000≡ yε3.

This completes the proof that all coefficients in the third order pruning algorithm in lemma

4.6 and recursive formulation of the nonlinear moving average are identical, except for the risk

adjustment termsyσ3 andgσ3 as well asyσ2ystate andgσ2ystate. The transitions follow immediately

when setting all shock realizations to zero, see the second order case.

52See Andreasen (2012), Jin and Judd (2002), and Lan and Meyer-Gohde (2012a).
54The casesk, i > 0, j = 0 andi, j > 0,k= 0 follow symmetrically.
54The casesi > 0,k, j = 0 and j > 0,k, i = 0 follow symmetrically.
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Online Appendix

F First Order Coefficients Appendix

We divide the problem into two cases, as the exogenous shocksare nonzero only upon impact.

F.0.1 Case 1:i > 0

Inserting (B-8) into (B-6), noting thatεi = 0 for all positivei. The coefficient matrixα solves

a matrix quadratic problem and as our typology of variables follows that of Dynare, we refer to

Villemot (2011) for details on how this problem can be solvedefficiently.

α is partitioned as

α
ny×ns

=




αst

αbwd

αmix

α f wd


=




αst

αstate

α f wd


=




αst

αbwd

α f wdendo


=

[
αbwdendo

α f wdendo

]

=




αst
bwd αst

mix

αbwd
bwd αbwd

mix

αmix
bwd αmix

mix

α f wd
bwd α f wd

mix




=




αbwdendo
bwd αbwdendo

mix

α f wdendo
bwd α f wdendo

mix




For stability, we assume that the square partitionαstatehas eigenvalues all inside the unit circle.

F.0.2 Case 2:i = 0

The impact effect of shocks onyt is β0 which can be partitioned as

β0 =




βst
0

βstate
0

β f wd
0


(F-1)

Wheni = 0, the source equation reduces to

fyy0+ fy+ f wdendoy
f wdendo
1 + fε = 0(F-2)

inserting (B-8) in the previous equation and collecting terms yields

[
fyst fystate+ fy+ f wdendoα f wdendo fy f wd

]
︸ ︷︷ ︸

Ã




βst
0

βstate
0

β f wd
0


=− fε(F-3)
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Solving forβ0 therefore is a standard linear problem

β0 =−Ã−1 fε(F-4)

G Second Order Coefficients Appendix

G.1 Solving the Unknown Coefficienty j,i

To avoid unnecessary repetitive calculation, we split the derivation ofy j ,i into three parts according

to the different values that the indicesj andi take on. This enables us to use smaller state spaces

to construct the solutions.

G.1.1 Case 1:j > 0 and i > 0

Note that the derivative ofxt with respect toεt−i can be written as the product of a constant matrix

and the vector of state variables

xi = γ1ystate
i−1(G-5)

wherexi =




ystate
i−1
yi

yf wdendo
i+1

εi


 , γ1 =




Ins

α
α f wdendoαstate

0
ne×ns


(G-6)

Using the previous equation, the source equation takes the form

fy−statey
state
j−1,i−1+ fyy j ,i + fy+ f wdendoy

f wdendo
j+1,i+1 + fx2γ⊗[2]

1 (ystate
j−1 ⊗ystate

i−1 ) = 0(G-7)

The solution takes the form

y j ,i = αystate
j−1,i−1+β22(y

state
j−1 ⊗ystate

i−1 )(G-8)

whereβ22 can be partitioned as

β22=




βst
22

βbwd
22

βmix
22

β f wd
22


(G-9)

With this partition, the recursion ofyf wdendo
j+1,i+1 takes the form

yf wdendo
j+1,i+1 = α f wdendoαstateystate

j−1,i−1+
[
α f wdendoβstate

22 +β f wdendo
22 αstate⊗[2]

]
(ystate

j−1 ⊗ystate
i−1 )(G-10)

Inserting the solution (G-8) and (G-10) in the source equation and matching coefficients yields

the following

fyβ22+ fy+ f wdendo

[
α f wdendoβstate

22 +β f wdendo
22 αstate⊗[2]

]
+ fx2γ⊗[2]

1 = 0(G-11)
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Again using the partition ofβ22 and collecting terms yields the following equation in two

unknowns
[

fyst fybwd+ fy+ f wdendoα
f wdendo
bwd

]

︸ ︷︷ ︸
A

βbwdendo
22 +

[
fymix+ fy+ f wdendoα

f wdendo
mix fy f wd

]

︸ ︷︷ ︸
B

β f wdendo
22

+
[

fy+mix fy+ f wd
]

︸ ︷︷ ︸
C

β f wdendo
22 αstate⊗[2]+ fx2γ⊗[2]

1 = 0

(G-12)

UsingAO to denote the null space ofA and pre-multiplying the previous equation byAO yields

the following Sylvester equation inβ f wdendo
22

(AOB)β f wdendo
22 +(AOC)β f wdendo

22 αstate⊗[2]+AO fx2γ⊗[2]
1 = 0(G-13)

With β f wdendo
22 in hand, solvingβbwdendo

22 is a standard linear problem

βbwdendo
22 =−pinv(A)

[
Bβ f wdendo

22 +Cβ f wdendo
22 αstate⊗[2]+ fx2γ⊗[2]

1

]
(G-14)

wherepinv(A) represents the Moore-Penrose inverse ofA.

G.1.2 Case 2:j > 0 and i = 0

Notice that

x0 =




0
ns×ne
β0

yf wdendo
1

Ine


=




0
ns×ne

β0

α f wdendoβstate
0

Ine


(G-15)

which is a known constant matrix given the results from the first order results,55 and the source

equation takes the form

fyy j ,0+ fy+ f wdendoy
f wdendo
j+1,1 + fx2(x j ⊗x0) = 0(G-16)

The solution (G-8) impliesyf wdendo
1,i+1 takes the form

yf wdendo
j+1,1 = α f wdendoystate

j ,0 +β f wdendo
22 (ystate

j ⊗βstate
0 )(G-17)

Inserting the previous equation in the source equation (G-16) and collecting terms yields

[
fyst fystate+ fy+ f wdendoα f wdendo fy f wd

]
︸ ︷︷ ︸

Ã




yst
j ,0

ystate
j ,0

yf wd
j ,0




︸ ︷︷ ︸
y j,0

55 While the first zero block should be removed fromx0 in order to further reduce the size of the state space in
this case, we choose to keep it as otherwise the dimension ofx0 is different from that ofxi . This difference requires
additional efforts in indexing the variables when coding the method.
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+
[

fy+ f wdendoβ
f wdendo
22 (αstate⊗βstate

0 )+ fx2(γ1⊗x0)
]
(ystate

j−1 ⊗ Ine) = 0(G-18)

The solution ofy0,i takes the form

y j ,0 = β20
ny×(ne∗ns)

(ystate
j−1 ⊗ Ine)(G-19)

Inserting the previous equation in the source equation (G-18) and matching coefficient yields

Ãβ20=−
[

fy+ f wdendoβ
f wdendo
22 (αstate⊗βstate

0 )+ fx2(γ1⊗x0)
]

(G-20)

which is a standard linear equation in the unknown coefficient β20

β20 =−Ã−1
[

fy+ f wdendoβ
f wdendo
22 (αstate⊗βstate

0 )+ fx2(γ1⊗x0)
]

(G-21)

The coefficient,y0,i , can be computed by exploiting the commutability of the matrix derivative

operator

y0,i =y j ,0Kne,ne= β20(y
state
j−1 ⊗ Ine)Kne,ne

=β20Kns,ne(Ine⊗ystate
j−1 )Kne,neKne,ne

=β02(Ine⊗ystate
j−1 )(G-22)

with

β02= β20Kns,ne(G-23)

G.1.3 Case 3:j = 0 and i = 0

In this case the source equation (B-11) takes the form

fyy0,0+ fy+ f wdendoy
f wdendo
1,1 + fx2x

⊗[2]
0 = 0(G-24)

The solution (G-8) impliesyf wdendo
1,1 takes the form

yf wdendo
1,1 = α f wdendoystate

0,0 +β f wdendo
22 βstate⊗[2]

0(G-25)

Inserting the previous equation in the source equation (G-24) and collecting terms yields

[
fyst fystate+ fy+ f wdendoα f wdendo fy f wd

]
︸ ︷︷ ︸

Ã




yst
0,0

ystate
0,0

yf wd
0,0




︸ ︷︷ ︸
y0,0

+ fy+ f wdendoβ
f wdendo
22 βstate⊗[2]

0 + fx2x⊗[2]
0 = 0

(G-26)

Solvingy0,0 therefore is a standard linear problem

y0,0 =−Ã−1
[

fy+ f wdendoβ
f wdendo
22 βstate⊗[2]

0 + fx2x
⊗[2]
0

]
(G-27)

For the consistency of notation between the moving average and state space representations of
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the second order approximation of the policy function, we let

β00 = y0,0(G-28)

G.2 Solving the Unknown Coefficientyσ2

The source equation takes the form

yσ2 =−( fy− + fy+ fy+)
−1[ fy+y0,0+ fy+2y

⊗[2]
0 ]Et

(
ε⊗[2]

t+1

)
(G-29)

Making use of the special structure offy− , fy and fy+ and collecting terms yields

yσ2 =
[

fyst fy−bwd+ fybwd fy−mix+ fymix+ fy+mix fy f wd+ fy+ f wd
]−1

[
fy+ f wdendoβ

f wdendo
00 + f(y+ fwdendo)2β f wdendo⊗[2]

0

]
Et

(
ε⊗[2]

t+1

)
(G-30)

H Third Order Coefficients Appendix

Given the results from lower orders, including that terms linear in the perturbation parameter are

zero, the third order approximation of the policy function takes the form

y(3)t =y+
1
2

yσ2 +
∞

∑
i=0

(
yi +

1
2

yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(H-31)

The task at hand is to pin down some third derivatives of the policy function, includingyk, j ,i ,

yσ2,i .

H.1 Solving the Unknown Coefficientyk, j,i

As in the second order case, to avoid redundant calculations, we split the derivation ofyk, j ,i into

four parts according to the different values that the indicesk, j andi take on.

H.1.1 Case 1:k> 0, j > 0 and i > 0

Note the second derivative ofxt vector,x j ,i can be written as the product of a constant matrix and

the second order state spaceSj ,i

x j ,i = γ2Sj ,i(H-32)

58



wherex j ,i =




ystate
j−1,i−1
y j ,i

yf wdendo
j+1,i+1

0
ne×ne2


 , Sj ,i =

[
ystate

j−1,i−1
ystate

j−1 ⊗ystate
i−1

]

γ2 =




Ins 0
ns×ns2

α β22

α f wdendoαstate α f wdendoβstate
22 +β f wdendo

22 αstate⊗[2]

0
ne×ns

0
ne×ns2




(H-33)

In particular, let

γ22 =




0
ns×ns2

β22

α f wdendoβstate
22 +β f wdendo

22 αstate⊗[2]

0
ne×ns2




(H-34)

thenγ2 can be written as

γ2 =
[
γ1 γ22

]
(H-35)

which implies

γ2⊗ γ1 =
[
γ⊗[2]
1 γ22⊗ γ1

]
(H-36)

This is a very useful property for avoiding redundant computations in solving for the coefficients

of the third order approximation. The third order state space consists of the state spaces of all lower

orders

Sk, j ,i =




ystate
k−1 ⊗ystate

j−1 ⊗ystate
i−1

Sk, j ⊗ystate
i−1(

ystate
j−1 ⊗Sk,i

)
(Kne,ne⊗ Ine)

ystate
k−1 ⊗Sj ,i


(H-37)

By constructing the following constant matrix

γ3 =




γ⊗[3]
1 0 0 0
0 γ2⊗ γ1 0 0
0 0 γ1⊗ γ2 0
0 0 0 γ1⊗ γ2


(H-38)

the source equation can be written as

fy−statey
state
k−1, j−1,i−1+ fyyk, j ,i + fy+ f wdendoy

f wdendo
k+1, j+1,i+1+

[
fx3 fx2 fx2 fx2

]
γ3Sk, j ,i = 0(H-39)

The state space for the third order approximation,Sk, j ,i, can be further reduced using (H-36),
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the partition ofγ2. Multiplying out the last term of the previous equation yields56

[
fx3 fx2 fx2 fx2

]
γ3Sk, j ,i = fx3γ⊗[3]

1

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)
+ fx2(γ2⊗ γ1)(Sk, j ⊗ystate

i−1 )

+ fx2(γ1⊗ γ2)
[(

ystate
j−1 ⊗Sk,i

)
Kne,ne2(Ine⊗Kne,ne)

]

+ fx2(γ1⊗ γ2)
(
ystate

k−1 ⊗Sj ,i
)

(H-40)

Using (H-35) and (H-36), terms on the right hand side of the previous equation can bewritten

as

fx2(γ2⊗ γ1)(Sk, j ⊗ystate
i−1 )

(H-41)

= fx2

[
γ⊗[2]
1

(
ystate

k−1, j−1⊗ystate
i−1

)
+(γ22⊗ γ1)

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)]

fx2(γ1⊗ γ2)
[(

ystate
j−1 ⊗Sk,i

)
Kne,ne2(Ine⊗Kne,ne)

](H-42)

= fx2

[
γ⊗[2]
1

(
ystate

k−1,i−1⊗ystate
j−1

)
(Ine⊗Kne,ne)+(γ22⊗ γ1)(Ins⊗Kns,ns)

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)]

fx2(γ1⊗ γ2)
(
ystate

k−1 ⊗Sj ,i
)(H-43)

= fx2

[
γ⊗[2]
1

(
ystate

j−1,i−1⊗ystate
k−1

)
Kne2,ne+(γ22⊗ γ1)Kns2,ns

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)]

therefore
[

fx3 fx2 fx2 fx2

]
γ3Sk, j ,i

=
[

fx3γ⊗[3]
1 + fx2(γ22⊗ γ1)+ fx2(γ22⊗ γ1)(Ins⊗Kns,ns)+ fx2(γ22⊗ γ1)Kns2,ns

](
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)

+ fx2γ⊗[2]
1

[
ystate

k−1, j−1⊗ystate
i−1 +

(
ystate

k−1,i−1⊗ystate
j−1

)
(Ine⊗Kne,ne)+

(
ystate

j−1,i−1⊗ystate
k−1

)
Kne2,ne

]

=γ333sk, j ,i

(H-44)

with

γ333=
[

fx3γ⊗[3]
1 + fx2(γ22⊗ γ1)(Ins3 + Ins⊗Kns,ns+Kns2,ns) fx2γ⊗[2]

1

]
(H-45)

wheresk, j ,i is the state space for the third order approximation defined in (B-22) that replaces the

largerSk, j ,i , and the source equation (H-39) can therefore be written as

fy−statey
state
k−1, j−1,i−1+ fyyk, j ,i + fy+ f wdendoy

f wdendo
k+1, j+1,i+1+ γ333sk, j ,i = 0(H-46)

The solution takes the form

yk, j ,i = αystate
k−1, j−1,i−1+β333sk, j ,i(H-47)

56We will make repeated use of the fact thatKne,ne⊗ Ine= (Kne,ne⊗ Ine)(Ine⊗Kne,ne)(Ine⊗Kne,ne) = Kne,ne2(Ine⊗
Kne,ne), see Lan and Meyer-Gohde (2012b), as this last representation will prove better suited to our needs.
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which implies

yf wdendo
k+1, j+1,i+1 = α f wdendoαstateystate

k−1, j−1,i−1+
(

α f wdendoβstate
333

)
sk, j ,i +β f wdendo

333 sk+1, j+1,i+1(H-48)

where

sk+1, j+1,i+1 =




αstate⊗[3]
(

ystate
k−1 ⊗ystate

j−1 ⊗ystate
i−1

)

αstate⊗[2]
[
ystate

k−1, j−1⊗ystate
i−1 +

(
ystate

k−1,i−1⊗ystate
j−1

)
(Ine⊗Kne,ne)+

(
ystate

j−1,i−1⊗ystate
k−1

)
Kne2,ne

]

+
(
βstate

22 ⊗αstate
)
(Ins3 + Ins⊗Kns,ns+Kns2,ns)

(
ystate

k−1 ⊗ystate
j−1 ⊗ystate

i−1

)




(H-49)

With β333 conformably partitioned, the last term in (H-48) takes the form

β f wdendo
333 sk+1, j+1,i+1(H-50)

=

[
β f wdendo

333,1 αstate⊗[3]

+β f wdendo
333,2

(
βstate

22 ⊗αstate
)
(Ins3 + Ins⊗Kns,ns+Kns2,ns) β f wdendo

333,2 αstate⊗[2]

]
sk, j ,i

therefore (H-48) can be written as

yf wdendo
k+1, j+1,i+1

(H-51)

=α f wdendoαstateystate
k−1, j−1,i−1

+

[
α f wdendoβstate

333,1+β f wdendo
333,1 αstate⊗[3]

+β f wdendo
333,2

(
βstate

22 ⊗αstate
)
(Ins3 + Ins⊗Kns,ns+Kns2,ns)

α f wdendoβstate
333,2

+β f wdendo
333,2 αstate⊗[2]

]
sk, j ,i

Inserting the solution (H-47) and (H-51) in the source equation (B-21) and matching coeffi-

cients yields

[
fyβ333,1 fyβ333,2

]
(H-52)

+ fy+ f wdendo

[
α f wdendoβstate

333,1+β f wdendo
333,1 αstate⊗[3]

+β f wdendo
333,2

(
βstate

22 ⊗αstate
)
(Ins3 + Ins⊗Kns,ns+Kns2,ns)

α f wdendoβstate
333,2

+β f wdendo
333,2 αstate⊗[2]

]

+ γ333= 0

which consists of two blocks. The second block takes the form

fyβ333,2+ fy+ f wdendo

(
α f wdendoβstate

333,2+β f wdendo
333,2 αstate⊗[2]

)
+ fx2γ⊗[2]

1 = 0(H-53)

Partitioningβ333,2 conformably (in rows) and collecting terms yields the following equation in

two unknowns

[
fyst fybwd+ fy+ f wdendoα

f wdendo
bwd

]

︸ ︷︷ ︸
A

βbwdendo
333,2 +

[
fymix+ fy+ f wdendoα

f wdendo
mix fy f wd

]

︸ ︷︷ ︸
B

β f wdendo
333,2

(H-54)
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+
[

fy+mix fy+ f wd
]

︸ ︷︷ ︸
C

β f wdendo
333,2 αstate⊗[2]+ fx2γ⊗[2]

1 = 0

noting that the coefficients in (H-54) are identical to those in (G-12). As in sectionG.1.1, we

pre-multiply the null spaceAO through the previous equation to obtain the Sylvester equation in

β f wdendo
333,2

(AOB)β f wdendo
333,2 +(AOC)β f wdendo

333,2 αstate⊗[2]+AO fx2γ⊗[2]
1 = 0(H-55)

As the coefficients in the previous Sylvester equation are identical to those in (G-13), it follows

immediately that

β f wdendo
333,2 = β f wdendo

22(H-56)

Givenβ f wdendo
333,2 , solvingβbwdendo

333,2 is a standard linear problem

βbwdendo
333,2 =−pinv(A)

[
Bβ f wdendo

333,2 +Cβ f wdendo
333,2 αstate⊗[2]+ fx2γ⊗[2]

1

]
(H-57)

It follows

βbwdendo
333,2 = βbwdendo

22(H-58)

Hence

β333,2 = β22(H-59)

Givenβ333,2, the first block of (H-52) takes the form

fyβ333,1+ fy+ f wdendo

[
α f wdendoβstate

333,1+β f wdendo
333,1 αstate⊗[3]

]
+D3 = 0(H-60)

where

D3 = fx3γ⊗[3]
1 +

[
fx2(γ22⊗ γ1)+ fy+ f wdendoβ

f wdendo
22

(
βstate

22 ⊗αstate)] (Ins3 + Ins⊗Kns,ns+Kns2,ns)

(H-61)

Partitioningβ333,1 conformably (in rows) and collecting terms yields the following equation in

two unknowns
[

fyst fybwd+ fy+ f wdendoα
f wdendo
bwd

]

︸ ︷︷ ︸
A

βbwdendo
333,1 +

[
fymix+ fy+ f wdendoα

f wdendo
mix fy f wd

]

︸ ︷︷ ︸
B

β f wdendo
333,1

+
[

fy+mix fy+ f wd
]

︸ ︷︷ ︸
C

β f wdendo
333,1 αstate⊗[3]+D3 = 0

(H-62)

Pre-multiplying the null spaceAO through the previous equation yields a Sylvester equation in

β f wdendo
333,1

(AOB)β f wdendo
333,1 +(AOC)β f wdendo

333,1 αstate⊗[3]+AOD3 = 0(H-63)
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Givenβ f wdendo
333,1 , solvingβbwdendo

333,1 is a standard linear problem

βbwdendo
333,1 =−pinv(A)

[
Bβ f wdendo

333,1 +Cβ f wdendo
333,1 αstate⊗[3]+D3

]
(H-64)

H.1.2 Case 2:k= 0, j = 0 and i = 0

Note that

x0,0 =




0
ns×ne2

y0,0

yf wdendo
1,1

0
ne×ne2




(H-65)

which is a known constant matrix given the lower order results. The source equation takes the form

fyy0,0,0+ fy+ f wdendoy
f wdendo
1,1,1 + fx3x

⊗[3]
0 + fx2 (x0,0⊗x0)

+ fx2 (x0⊗x0,0)(Kne,ne⊗ Ine)+ fx2 (x0⊗x0,0) = 0(H-66)

Note that rolling the solution (H-47) one period forward and taking only the forward endoge-

nous variables part yields

yf wdendo
1,1,1 = α f wdendoystate

0,0,0+β f wdendo
333 s1,1,1(H-67)

wheres1,1,1 can be obtained by settingk= j = i = 1 in (B-22)

s1,1,1 =

[
ystate⊗[3]

0(
ystate

0,0 ⊗ystate
0

)(
Ine3 + Ine⊗Kne,ne+Kne2,ne

)
]

(H-68)

As all the terms on the right hand side of the previous equation are known,s1,1,1 is a known

constant matrix. Inserting (H-67) in the source equation (H-66) and collecting terms yields
[

fyst fystate+ fy+ f wdendoα f wdendo fy f wd
]

︸ ︷︷ ︸
Ã

y0,0,0(H-69)

=−
[

fy+ f wdendoβ
f wdendo
333 s1,1,1+ fx3x

⊗[3]
0 + fx2 (x0,0⊗x0)

(
Ine3 + Ine⊗Kne,ne+Kne2,ne

)]

Solvingy0,0,0 is therefore a standard linear problem

y0,0,0 =−Ã−1
[

fy+ f wdendoβ
f wdendo
333 s1,1,1+ fx3x

⊗[3]
0 + fx2 (x0,0⊗x0)

(
Ine3 + Ine⊗Kne,ne+Kne2,ne

)]
(H-70)

For notational consistency, we let

β000= y0,0,0(H-71)
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H.1.3 Case 3:k> 0, j = 0 and i = 0

Note that

x j ,0 =




0
ns×ne2

y j ,0

yf wdendo
j+1,1

0
ne×ne2




(H-72)

and from the solution (G-10) and (B-17)

yf wdendo
j+1,1 =

[
α f wdendoβstate

20 +β f wdendo
22

(
αstate⊗βstate

0

)](
ystate

j−1 ⊗ Ine
)

(H-73)

x j ,0 can be written as the product of a constant matrix and a particular first order state space

x j ,0 = γ20
(
ystate

j−1 ⊗ Ine
)

(H-74)

whereγ20 =




0
ns×(ns∗ne)

β20

α f wdendoβstate
20 +β f wdendo

22

(
αstate⊗βstate

0

)

0
ne×(ns∗ne)




(H-75)

The source equation takes the form

fyyk,0,0+ fy+ f wdendoy
f wdendo
k+1,1,1 +

[
fx3 fx2 fx2 fx2

]



xk⊗x⊗[2]
0

xk,0⊗x0(
x0⊗xk,0

)
(Kne,ne⊗ Ine)

xk⊗x0,0


= 0(H-76)

Using the constant matrices we defined and rearranging, the previous equation can be rewritten

fyyk,0,0+ fy+ f wdendoy
f wdendo
k+1,1,1 +

[
fx3 fx2 fx2 fx2

]




(
γ1⊗x⊗[2]

0

)(
ystate

k−1 ⊗ Ine2

)

(γ20⊗x0)
(
ystate

k−1 ⊗ Ine2

)

Knx,nx(γ20⊗x0)(Ins⊗Kne,ne)
(
ystate

k−1 ⊗ Ine2

)

(γ1⊗x0,0)
(
ystate

k−1 ⊗ Ine2

)


= 0

(H-77)

collecting terms and notingfx2 = fx2Knx,nx yields

fyyk,0,0+ fy+ f wdendoy
f wdendo
k+1,1,1

+
[

fx3

(
γ1⊗x⊗[2]

0

)
+ fx2(γ20⊗x0)(Ins∗ne2 + Ins⊗Kne,ne)+ fx2(γ1⊗x0,0)

](
ystate

k−1 ⊗ Ine2

)

= 0(H-78)

Note that, from the solution (H-47)

yf wdendo
k+1,1,1 = α f wdendoystate

k,0,0+β f wdendo
333 sk+1,1,1(H-79)
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where

sk+1,1,1 =




αstate⊗βstate⊗[2]
0

(
βstate

20 ⊗βstate
0

)
(Ins∗ne2 + Ins⊗Kne,ne)

+
(
βstate

00 ⊗αstate
)

Kne2,ns



(
ystate

k−1 ⊗ Ine2

)
(H-80)

The solution (H-79) therefore can be written as

yf wdendo
k+1,1,1 =α f wdendoystate

k,0,0(H-81)

+β f wdendo
333




αstate⊗βstate⊗[2]
0

(
βstate

20 ⊗βstate
0

)
(Ins∗ne2 + Ins⊗Kne,ne)

+
(
βstate

00 ⊗αstate
)

Kne2,ns



(
ystate

k−1 ⊗ Ine2

)

Inserting the previous equation in the source equation (H-78) and collecting terms yields
[

fyst fystate+ fy+ f wdendoα f wdendo fy f wd
]

︸ ︷︷ ︸
Ã

yk,0,0(H-82)

=−

{
fx3

(
γ1⊗x⊗[2]

0

)
+ fx2(γ20⊗x0)(Ins∗ne2 + Ins⊗Kne,ne)+ fx2(γ1⊗x0,0)

+ fy+ f wdendoβ
f wdendo
333




αstate⊗βstate⊗[2]
0

(
βstate

20 ⊗βstate
0

)
(Ins∗ne2 + Ins⊗Kne,ne)

+
(
βstate

00 ⊗αstate
)

Kne2,ns




}
(
ystate

k−1 ⊗ Ine2

)

Solvingyk,0,0 is then a standard linear problem, and it is obvious thatyk,0,0 takes the form

yk,0,0 = β300
(
ystate

k−1 ⊗ Ine2

)
(H-83)

where

β300=−Ã−1

{
fx3

(
γ1⊗x⊗[2]

0

)
+ fx2(γ20⊗x0)(Ins∗ne2 + Ins⊗Kne,ne)+ fx2(γ1⊗x0,0)(H-84)

+ fy+ f wdendoβ
f wdendo
333




αstate⊗βstate⊗[2]
0

(
βstate

20 ⊗βstate
0

)
(Ins∗ne2 + Ins⊗Kne,ne)

+
(
βstate

00 ⊗αstate
)

Kne2,ns




}

The two associated coefficients, i.e.,y0, j ,0 andy0,0,i can be obtained by commutingyk,0,0

y0, j ,0 =yk,0,0(Kne,ne⊗ Ine) = β300
(
ystate

k−1 ⊗ Ine2

)
(Kne,ne⊗ Ine)(H-85)

=β300(Kns,ne⊗ Ine)
(
Ine⊗ystate

k−1 ⊗ Ine
)

y0,0,i =yk,0,0Kne,ne2 = β300
(
ystate

k−1 ⊗ Ine2

)
Kne,ne2(H-86)

=β300Kns,ne2

(
Ine2 ⊗ystate

k−1

)
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therefore

y0, j ,0 = β030
(
Ine⊗ystate

j−1 ⊗ Ine
)

(H-87)

y0,0,i = β003
(
Ine2 ⊗ystate

i−1

)
(H-88)

where

β030= β300(Kns,ne⊗ Ine)(H-89)

β003= β300Kns,ne2(H-90)

H.1.4 Case 4:k> 0, j > 0 and i = 0

The source equation takes the form

fyyk, j ,0+ fy+ f wdendoy
f wdendo
k+1, j+1,1+

[
fx3 fx2 fx2 fx2

]



xk⊗x j ⊗x0

xk, j ⊗x0(
x j ⊗xk,0

)
(Kne,ne⊗ Ine)

xk⊗x j ,0


= 0(H-91)

Using the constant matrices we defined and rearranging, the previous equation can be written

as

fyyk, j ,0+ fy+ f wdendoy
f wdendo
k+1, j+1,1+

[
fx3 fx2 fx2 fx2

]




(
γ⊗[2]
1 ⊗x0

)(
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

)

(γ2⊗x0)
(
Sk, j ⊗ Ine

)

(γ1⊗ γ20)(Kns,ns⊗ Ine)
(

ystate
k−1 ⊗ystate

j−1 ⊗ Ine

)

(γ1⊗ γ20)
(

ystate
k−1 ⊗ystate

j−1 ⊗ Ine

)



= 0

(H-92)

collecting terms yields

fyyk,0,0+ fy+ f wdendoy
f wdendo
k+1,1,1(H-93)

+

[
fx3

(
γ⊗[2]
1 ⊗x0

)

+ fx2 (γ1⊗ γ20)(Ins2∗ne+Kns,ns⊗ Ine) fx2 (γ2⊗x0)

][
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

Sk, j ⊗ Ine

]

= 0

Using (H-36), the partition ofγ2, the previous equation can be further reduced to

fyyk,0,0+ fy+ f wdendoy
f wdendo
k+1,1,1(H-94)

+




fx3

(
γ⊗[2]
1 ⊗x0

)

+ fx2 (γ1⊗ γ20)(Ins2∗ne+Kns,ns⊗ Ine)
+ fx2(γ22⊗x0) fx2 (γ1⊗x0)



[
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

yk−1, j−1⊗ Ine

]

= 0
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Note that, from the solution (H-47)

yf wdendo
k+1, j+1,1 = α f wdendoystate

k, j ,0+β f wdendo
333 sk+1, j+1,1(H-95)

where

sk+1, j+1,1

=




(
αstate⊗[2]⊗βstate

0

)(
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

)

[
βstate

22 ⊗βstate
0 +

(
βstate

20 ⊗αstate
)
(Ins⊗Kne,ns+Kns∗ne,ns)

](
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

)

+
(
αstate⊗βstate

0

)(
ystate

k−1, j−1⊗ Ine

)




(H-96)

With β333 conformably partitioned, the last term in the solution (H-95) takes the form

β f wdendo
333 sk+1, j+1,1

(H-97)

=

[
β f wdendo

333,1

(
αstate⊗[2]⊗βstate

0

)

+β f wdendo
22

[
βstate

22 ⊗βstate
0 +

(
βstate

20 ⊗αstate
)
(Ins⊗Kne,ns+Kns∗ne,ns)

]
β f wdendo

22

(
αstate⊗βstate

0

)

]

[
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

ystate
k−1, j−1⊗ Ine

]

Inserting the previous equation in the source equation (H-94) and collecting terms yields

[
fyst fystate+ fy+ f wdendoα f wdendo fy f wd

]
︸ ︷︷ ︸

Ã

yk, j ,0

(H-98)

=−

{


fx3

(
γ⊗[2]
1 ⊗x0

)

+ fx2 (γ1⊗ γ20)(Ins2∗ne+Kns,ns⊗ Ine)
+ fx2(γ22⊗x0) fx2 (γ1⊗x0)




+




fy+ f wdendo
[
β f wdendo

333,1

(
αstate⊗[2]⊗βstate

0

)

+β f wdendo
22

(
βstate

22 ⊗βstate
0

)

+β f wdendo
22

(
βstate

20 ⊗αstate
)
(Ins⊗Kne,ns+Kns∗ne,ns)

]
fy+ f wdendoβ

f wdendo
22

(
αstate⊗βstate

0

)



}

[
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

ystate
k−1, j−1⊗ Ine

]

Solvingyk, j ,0 therefore is a standard linear problem andyk, j ,0 takes the form

yk, j ,0 = β330

[
ystate

k−1 ⊗ystate
j−1 ⊗ Ine

ystate
k−1, j−1⊗ Ine

]
(H-99)
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where

β330=− Ã−1

{


fx3

(
γ⊗[2]
1 ⊗x0

)

+ fx2 (γ1⊗ γ20)(Ins2∗ne+Kns,ns⊗ Ine)
+ fx2(γ22⊗x0) fx2 (γ1⊗x0)




(H-100)

+




fy+ f wdendo
[
β f wdendo

333,1

(
αstate⊗[2]⊗βstate

0

)

+β f wdendo
22

(
βstate

22 ⊗βstate
0

)

+β f wdendo
22

(
βstate

20 ⊗αstate
)
(Ins⊗Kne,ns+Kns∗ne,ns)

]
fy+ f wdendoβ

f wdendo
22

(
αstate⊗βstate

0

)



}

With β330 conformably partitioned

β330,1 =− Ã−1
[

fx3

(
γ⊗[2]
1 ⊗x0

)
+ fx2 (γ1⊗ γ20)(Ins2∗ne+Kns,ns⊗ Ine)+ fx2(γ22⊗x0)(H-101)

+ fy+ f wdendoβ
f wdendo
333,1

(
αstate⊗[2]⊗βstate

0

)

+ fy+ f wdendoβ
f wdendo
22

(
βstate

22 ⊗βstate
0

)

+ fy+ f wdendoβ
f wdendo
22

(
βstate

20 ⊗αstate)(Ins⊗Kne,ns+Kns∗ne,ns)

]

β330,2 =− Ã−1
[

fx2(γ1⊗x0)+ fy+ f wdendoβ
f wdendo
22

(
αstate⊗βstate

0

)]
(H-102)

noting that as the right hand side of (H-102) is identical to that of (G-21), we therefore have

β330,2 = β20(H-103)

so that onlyβ330,1 needs to be calculated. The two associated coefficients, i.e., yk,0,i andy0, j ,i can

be obtained by commutingyk, j ,0.

H.2 Solving the Unknown Coefficientyσ2,i

Wheni > 0, the source equation takes the form

fy−statey
state
σ2,i−1+ fyyσ2,i + fy+ f wdendoy

f wdendo
σ2,i+1

+ fx2(xσ2 ⊗xi)(H-104)

+
[

fx3

(
x⊗[2]

ε̃ ⊗xi

)
+2 fx2

(
xε̃ ⊗xε̃,i

)
+ fx2

(
xε̃,ε̃ ⊗xi

)
+ fxxε̃2,i

](
Etε

⊗[2]
t+1 ⊗ Ine

)
= 0

With the following group of shifting matrices

xε̃ =




0
ns×ne

0
ny×ne

β f wdendo
0

0
ne×ne



, xε̃,ε̃ =




0
ns×ne2

0
ny×ne2

β f wdendo
00

0
ne×ne2



, xσ2 =




ystate
σ2

yσ2

yf wdendo
σ2

0
ne×1


 , γ4 =




0
ns×n f wdendo

0
ny×n f wdendo

In f wdendo

0
ne×n f wdendo



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xε̃,i =




0
ns×ne2

0
ny×ne2

β f wdendo
02 (Ine⊗ystate

i )
0

ne×ne2



= γ4β f wdendo

02

(
Ine⊗αstate)(Ine⊗ystate

i−1

)

xε̃2,i =




0
ns×ne3

0
ny×ne3

β f wdendo
003 (Ine2 ⊗ystate

i )
0

ne×ne3



= γ4β f wdendo

003

(
Ine2 ⊗αstate)(Ine2 ⊗ystate

i−1

)

the source equation (H-104) can be written as (B-29)

The solution takes the form

yσ2,i = αystate
σ2,i−1+βσ21ystate

i−1(H-105)

which implies

yf wdendo
σ2,i+1

= α f wdendoαstateystate
σ2,i−1+

(
α f wdendoβstate

σ21 +β f wdendo
σ21

αstate
)

ystate
i−1(H-106)

Inserting the previous equation in the source equation (B-29) and collecting terms yields
[

fyst fybwd+ fy+ f wdendoα
f wdendo
bwd

]

︸ ︷︷ ︸
A

βbwdendo
σ21 +

[
fymix+ fy+ f wdendoα

f wdendo
both fy f wd

]

︸ ︷︷ ︸
B

β f wdendo
σ21

+
[

fy+mix f f wd
y+

]

︸ ︷︷ ︸
C

β f wdendo
σ21

αstate+Dσi = 0

(H-107)

whereDσi is a constant

Dσi = fx2(xσ2 ⊗ γ1)+

[
fx3

(
x⊗[2]

ε̃ ⊗ γ1

)
+2 fx2

(
xε̃ ⊗

(
γ4β f wdendo

02

))(
Ine2 ⊗αstate)

+ fx2

(
xε̃,ε̃ ⊗ γ1

)
+ fx

(
γ4β f wdendo

003

(
Ine2 ⊗αstate))

](
Etε

⊗[2]
t+1 ⊗ Ins

)
(H-108)

Pre-multiplying the previous equation by the null spaceAO yields the following Sylvester equa-

tion in β f wdendo
σ21

(AOB)β f wdendo
σ21 +(AOC)β f wdendo

σ21 αstate+(AODσi) = 0(H-109)

With β f wdendo
σ21 in hand, solvingβbwdendo

σ21 is a standard linear problem

βbwdendo
σ21 =−pinv(A)

[
Bβ f wdendo

σ21 +Cβ f wdendo
σ21 αstate+Dσi

]
(H-110)

We now move to the casei = 0. The source equation in this case takes the form

fyyσ2,0+ fy+ f wdendoy
f wdendo
σ2,1

+ fx2(xσ2 ⊗x0)
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+

[
fx3

(
x⊗[2]

ε̃ ⊗x0

)
+ fx2

(
xε̃,ε̃ ⊗x0

)
+2 fx2

(
xε̃ ⊗xε̃,0

)
+ fxxε̃2,0

](
Etε

⊗[2]
t+1 ⊗ Ine

)
= 0(H-111)

where

xε̃,0 =




0
ns×ne2

0
ny×ne2

β f wdendo
02

(
Ine⊗βstate

0

)

0
ne×ne2



, xε̃2,0 =




0
ns×ne3

0
ny×ne3

β f wdendo
003

(
Ine2 ⊗βstate

0

)

0
ne×ne3




For notational consistency, we let

yσ2,0 = βσ20(H-112)

and from the solution (H-105)

yf wdendo
σ2,1

= α f wdendoβstate
σ20 +β f wdendo

σ21
βstate

0(H-113)

inserting the last two equations in the source equation and collecting terms yields
[

fyst fystate+ fy+ f wdendoα f wdendo fy f wd
]

βσ20 =−Dσ0(H-114)

whereDσ0 is a constant

Dσ0 =

[
fx3

(
x⊗[2]

ε̃ ⊗x0

)
+ fx2

(
xε̃,ε̃ ⊗x0

)
+2 fx2

(
xε̃ ⊗xε̃,0

)
+ fxxε̃2,0

](
Etε

⊗[2]
t+1 ⊗ Ine

)

+ fy+ f wdendoβ
f wdendo
σ21 βstate

0(H-115)

Solving forβσ20 therefore is a standard linear problem

βσ20 =−
[

fyst fystate+ fy+ f wdendoα f wdendo fy f wd
]−1

Dσ0(H-116)

H.3 Solving for yσ3

The source equation takes the form

yσ3 =−( fy− + fy+ fy+)
−1[ fy+3y

⊗[3]
0 +3 fy+2(y0,0⊗y0)+ fy+y0,0,0]Et

(
ε⊗[3]

t+1

)
(H-117)

Making use of the special structure offy− , fy and fy+ and collecting terms yields

yσ3 =
[

fyst fy−bwd+ fybwd fy−mix+ fymix+ fy+mix fy f wd+ fy+ f wd
]−1

[ fy+3y
⊗[3]
0 +3 fy+2(y0,0⊗y0)+ fy+y0,0,0]Et

(
ε⊗[3]

t+1

)
(H-118)
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Table 1: Stochastic Growth Model
Section6.1

Baseline Parameter Values

Parameter β α ρ σ
Value 0.99 0.36 0.95 0.712%

See Hansen (1985).

Table 2:E1 Performance of the Different Algorithms
Model of Section6.1

Baseline χ = 3 χ = 10 χ = 25 χ = 50

First 5.90E-04 5.02E-03 4.55E-02 1.73E-01 2.50E-01
Second-Perturbation 1.13E-05 2.86E-04 8.07E-03 6.36E-02NaN
Second-Kim et al 1.09E-05 2.76E-04 8.11E-03 7.28E-02 1.82E-01
Second-Den Haan and De Wind 1.09E-05 2.76E-04 8.11E-03 7.28E-02 1.82E-01
Second-NLMA 1.09E-05 2.76E-04 8.11E-03 7.28E-02 1.82E-01
Third-Perturbation 5.72E-08 4.99E-06 NaN NaN NaN
Third-Andreasen 1.79E-07 1.35E-05 1.29E-03 2.79E-02 1.26E-01
Third-Den Haan and De Wind 5.80E-04 4.88E-03 4.74E-02 2.43E-01 5.39E-01
Third-Fernandez-Villaverde et al 1.62E-06 4.35E-05 1.85E-03 3.18E-02 1.34E-01
Third-Juillard 1.33E-06 3.58E-05 1.60E-03 2.93E-02 1.27E-01
Third-NLMA 1.79E-07 1.35E-05 1.29E-03 2.79E-02 1.26E-01

Table 3:E2 Performance of the Different Algorithms
Model of Section6.1

Baseline χ = 3 χ = 10 χ = 25 χ = 50

First 4.43E-08 3.64E-06 5.24E-04 4.90E-02 2.68E+01
Second-Perturbation 3.02E-11 2.26E-08 3.94E-05 2.25E-02NaN
Second-Kim et al 3.04E-11 2.24E-08 3.52E-05 1.83E-02 2.48E+01
Second-Den Haan and De Wind 3.04E-11 2.24E-08 3.52E-05 1.83E-02 2.48E+01
Second-NLMA 3.04E-11 2.24E-08 3.52E-05 1.83E-02 2.48E+01
Third-Perturbation 1.40E-15 2.27E-11 NaN NaN NaN
Third-Andreasen 1.66E-14 1.11E-10 1.92E-06 5.77E-03 2.19E+01
Third-Den Haan and De Wind 4.77E-08 3.54E-06 5.21E-04 5.58E-02 2.94E+01
Third-Fernandez-Villaverde et al 5.06E-13 4.70E-10 2.46E-06 6.00E-03 2.19E+01
Third-Juillard 3.54E-13 3.67E-10 2.41E-06 6.12E-03 2.20E+01
Third-NLMA 1.66E-14 1.11E-10 1.92E-06 5.77E-03 2.19E+01
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Table 4:E∞ Performance of the Different Algorithms
Model of Section6.1

Baseline χ = 3 χ = 10 χ = 25 χ = 50

First 1.50E-02 1.06E-01 7.59E-01 2.34E+00 2.32E+00
Second-Perturbation 8.96E-04 1.99E-02 3.30E-01 1.14E+00Inf
Second-Kim et al 9.07E-04 1.87E-02 4.55E-01 3.55E+00 7.63E+00
Second-Den Haan and De Wind 9.07E-04 1.87E-02 4.55E-01 3.55E+00 7.63E+00
Second-NLMA 9.07E-04 1.87E-02 4.55E-01 3.55E+00 7.63E+00
Third-Perturbation 1.60E-05 2.45E-03 Inf Inf Inf
Third-Andreasen 4.14E-05 2.50E-03 1.96E-01 3.94E+00 1.70E+01
Third-Den Haan and De Wind 2.98E-02 1.19E-01 1.63E+00 1.66E+01 7.00E+01
Third-Fernandez-Villaverde et al 1.29E-04 4.14E-03 1.83E-01 3.69E+00 1.57E+01
Third-Juillard 1.28E-04 4.12E-03 1.64E-01 3.56E+00 1.53E+01
Third-NLMA 4.14E-05 2.50E-03 1.96E-01 3.94E+00 1.70E+01

Table 5: Asset Pricing Model
Section6.2

Baseline Parameter Values

Parameter α β µ ρ σ
Value -1.5 0.95 0.0179 -0.139 0.0348

See Burnside (1998) and Collard and Juillard (2001).
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Table 6:E1 Performance of the Different Algorithms
Model of Section6.2

Baseline σ = 1E−04 σ = 0.1 ρ = 0 ρ = 0.5 ρ = 0.9

First 1.42E-02 1.18E-07 1.16E-01 1.85E-02 4.94E-02 1.91E-01
Second-Perturbation 1.92E-04 9.74E-11 1.29E-02 3.29E-042.96E-03 6.74E-02
Second-Kim et al 1.92E-04 9.74E-11 1.29E-02 3.29E-04 2.96E-03 6.74E-02
Second-Den Haan and De Wind 1.92E-04 9.74E-11 1.29E-02 3.29E-04 2.96E-03 6.74E-02
Second-NLMA 1.92E-04 9.74E-11 1.29E-02 3.29E-04 2.96E-036.74E-02
Third-Perturbation 1.91E-04 9.74E-11 1.29E-02 3.29E-04 2.62E-03 5.82E-02
Third-Andreasen 1.91E-04 9.74E-11 1.29E-02 3.29E-04 2.62E-03 5.82E-02
Third-Den Haan and De Wind 1.92E-04 1.93E-09 1.29E-02 3.29E-04 2.91E-03 8.29E-02
Third-Fernandez-Villaverde et al 1.91E-04 9.74E-11 1.29E-02 3.29E-04 2.62E-03 5.82E-02
Third-Juillard 1.91E-04 9.74E-11 1.29E-02 3.29E-04 2.62E-03 5.82E-02
Third-NLMA 1.91E-04 9.74E-11 1.29E-02 3.29E-04 2.62E-03 5.82E-02

β = 0.5 β = 0.99 α =−10 α =−5 α = 0 α = 0.5

First 2.36E-03 2.92E-02 2.28E-01 9.06E-02 9.95E-11 2.85E-03
Second-Perturbation 1.28E-05 8.30E-04 4.65E-02 7.52E-039.95E-11 8.41E-06
Second-Kim et al 1.28E-05 8.30E-04 4.65E-02 7.52E-03 9.95E-11 8.41E-06
Second-Den Haan and De Wind 1.28E-05 8.30E-04 4.65E-02 7.52E-03 9.95E-11 8.41E-06
Second-NLMA 1.28E-05 8.30E-04 4.65E-02 7.52E-03 9.95E-118.41E-06
Third-Perturbation 3.78E-06 8.31E-04 4.66E-02 7.54E-03 9.95E-11 7.84E-06
Third-Andreasen 3.78E-06 8.31E-04 4.66E-02 7.54E-03 9.95E-11 7.84E-06
Third-Den Haan and De Wind 6.49E-06 8.32E-04 4.67E-02 7.54E-03 9.95E-11 8.10E-06
Third-Fernandez-Villaverde et al 3.78E-06 8.31E-04 4.66E-02 7.54E-03 9.95E-11 7.84E-06
Third-Juillard 3.78E-06 8.31E-04 4.66E-02 7.54E-03 9.95E-11 7.84E-06
Third-NLMA 3.78E-06 8.31E-04 4.66E-02 7.54E-03 9.95E-11 7.84E-06

See Burnside (1998) and Collard and Juillard (2001).
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Table 7:E2 Performance of the Different Algorithms
Model of Section6.2

Baseline σ = 1E−04 σ = 0.1 ρ = 0 ρ = 0.5 ρ = 0.9

First 3.17E-02 2.10E-12 2.66E+00 5.36E-02 4.29E-01 1.73E+01
Second-Perturbation 7.05E-06 1.44E-18 3.37E-02 1.70E-052.38E-03 4.00E+00
Second-Kim et al 7.05E-06 1.44E-18 3.37E-02 1.70E-05 2.38E-03 4.00E+00
Second-Den Haan and De Wind 7.05E-06 1.44E-18 3.37E-02 1.70E-05 2.38E-03 4.00E+00
Second-NLMA 7.05E-06 1.44E-18 3.37E-02 1.70E-05 2.38E-034.00E+00
Third-Perturbation 5.74E-06 1.44E-18 3.29E-02 1.70E-05 1.21E-03 1.75E+00
Third-Andreasen 5.74E-06 1.44E-18 3.29E-02 1.70E-05 1.21E-03 1.75E+00
Third-Den Haan and De Wind 6.50E-06 5.92E-12 3.29E-02 1.70E-05 1.75E-03 4.58E+00
Third-Fernandez-Villaverde et al 5.74E-06 1.44E-18 3.29E-02 1.70E-05 1.21E-03 1.75E+00
Third-Juillard 5.74E-06 1.44E-18 3.29E-02 1.70E-05 1.21E-03 1.75E+00
Third-NLMA 5.74E-06 1.44E-18 3.29E-02 1.70E-05 1.21E-03 1.75E+00

β = 0.5 β = 0.99 α =−10 α =−5 α = 0 α = 0.5

First 5.04E-06 6.43E-01 1.37E+00 4.43E-01 3.58E-18 4.36E-03
Second-Perturbation 2.38E-10 5.48E-04 5.95E-02 3.27E-033.58E-18 5.33E-08
Second-Kim et al 2.38E-10 5.48E-04 5.95E-02 3.27E-03 3.58E-18 5.33E-08
Second-Den Haan and De Wind 2.38E-10 5.48E-04 5.95E-02 3.27E-03 3.58E-18 5.33E-08
Second-NLMA 2.38E-10 5.48E-04 5.95E-02 3.27E-03 3.58E-185.33E-08
Third-Perturbation 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18 3.31E-08
Third-Andreasen 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18 3.31E-08
Third-Den Haan and De Wind 4.84E-09 5.25E-04 5.72E-02 3.07E-03 3.58E-18 3.15E-07
Third-Fernandez-Villaverde et al 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18 3.31E-08
Third-Juillard 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18 3.31E-08
Third-NLMA 1.30E-11 5.21E-04 5.71E-02 3.07E-03 3.58E-18 3.31E-08

See Burnside (1998) and Collard and Juillard (2001).
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Table 8:E∞ Performance of the Different Algorithms
Model of Section6.2

Baseline σ = 1E−04 σ = 0.1 ρ = 0 ρ = 0.5 ρ = 0.9

First 1.48E-02 1.22E-07 1.21E-01 1.85E-02 7.10E-02 6.61E-01
Second-Perturbation 6.63E-04 1.09E-10 2.27E-02 3.29E-041.43E-02 5.15E-01
Second-Kim et al 6.63E-04 1.09E-10 2.27E-02 3.29E-04 1.43E-02 5.15E-01
Second-Den Haan and De Wind 6.63E-04 1.09E-10 2.27E-02 3.29E-04 1.43E-02 5.15E-01
Second-NLMA 6.63E-04 1.09E-10 2.27E-02 3.29E-04 1.43E-025.15E-01
Third-Perturbation 1.99E-04 9.74E-11 1.34E-02 3.29E-04 3.90E-03 3.89E-01
Third-Andreasen 1.99E-04 9.74E-11 1.34E-02 3.29E-04 3.90E-03 3.89E-01
Third-Den Haan and De Wind 1.96E-02 5.68E-05 5.40E-02 3.29E-04 1.18E-01 1.36E+00
Third-Fernandez-Villaverde et al 1.99E-04 9.74E-11 1.34E-02 3.29E-04 3.90E-03 3.89E-01
Third-Juillard 1.99E-04 9.74E-11 1.34E-02 3.29E-04 3.90E-03 3.89E-01
Third-NLMA 1.99E-04 9.74E-11 1.34E-02 3.29E-04 3.90E-03 3.89E-01

β = 0.5 β = 0.99 α =−10 α =−5 α = 0 α = 0.5

First 2.97E-03 2.98E-02 2.48E-01 9.65E-02 9.95E-11 2.91E-03
Second-Perturbation 9.13E-05 1.78E-03 8.55E-02 1.67E-029.95E-11 3.94E-05
Second-Kim et al 9.13E-05 1.78E-03 8.55E-02 1.67E-02 9.95E-11 3.94E-05
Second-Den Haan and De Wind 9.13E-05 1.78E-03 8.55E-02 1.67E-02 9.95E-11 3.94E-05
Second-NLMA 9.13E-05 1.78E-03 8.55E-02 1.67E-02 9.95E-113.94E-05
Third-Perturbation 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9.95E-11 8.02E-06
Third-Andreasen 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9.95E-11 8.02E-06
Third-Den Haan and De Wind 2.09E-02 1.88E-02 1.36E-01 5.85E-02 9.95E-11 6.53E-03
Third-Fernandez-Villaverde et al 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9.95E-11 8.02E-06
Third-Juillard 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9.95E-11 8.02E-06
Third-NLMA 5.19E-06 8.48E-04 5.12E-02 8.07E-03 9.95E-11 8.02E-06

See Burnside (1998) and Collard and Juillard (2001).
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Table 9: Recursive Utility and Stochastic Volatility
Section6.3

Constant Parameter Values

Parameter β ν ξ δ λ ρ
Value 0.99 0.36218 0.3 0.0196 0.95 0.9

See Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and
Yao (2012).

Table 10: Recursive Utility and
Stochastic Volatility

Section6.3
Values for Different
Parameterizations

Parameter γ σz η
Baseline Value 5 0.007 0.06
Extreme Value 40 0.021 0.1

See Caldara, Fernández-Villaverde,
Rubio-Ramı́rez, and Yao (2012).
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Table 11:E1 Performance of the Different Algorithms
Model of Section6.3

Baseline Parameterization

kt ct lt it yt Rf
t Rt

First 6.25E-03 3.81E-03 1.61E-03 1.32E-02 5.31E-03 1.10E-04 1.20E-04
Second-Perturbation 1.79E-03 3.06E-03 3.57E-03 2.78E-028.16E-03 2.20E-04 2.44E-04
Second-Kim et al 1.12E-03 6.16E-04 3.83E-04 2.64E-03 7.94E-04 2.21E-05 2.22E-05
Second-Den Haan and De Wind 1.18E-03 6.38E-04 3.90E-04 2.67E-03 7.95E-04 2.40E-05 2.43E-05
Second-NLMA 1.12E-03 6.16E-04 3.83E-04 2.64E-03 7.94E-042.21E-05 2.23E-05
Third-Perturbation 1.56E-03 3.01E-03 3.58E-03 2.79E-02 8.11E-03 2.21E-04 2.46E-04
Third-Andreasen 7.19E-04 3.42E-04 3.27E-04 2.03E-03 3.60E-04 1.63E-05 1.50E-05
Third-Den Haan and De Wind 5.58E-03 3.40E-03 1.47E-03 1.20E-02 4.74E-03 9.91E-05 1.08E-04
Third-Fernandez-Villaverde et al 7.37E-04 3.53E-04 3.29E-04 2.10E-03 3.83E-04 1.65E-05 1.52E-05
Third-Juillard 7.19E-04 3.42E-04 3.27E-04 2.04E-03 3.62E-04 1.64E-05 1.50E-05
Third-NLMA 7.20E-04 3.42E-04 3.27E-04 2.03E-03 3.60E-04 1.63E-05 1.50E-05
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Table 12:E2 Performance of the Different Algorithms
Model of Section6.3

Baseline Parameterization

kt ct lt it yt Rf
t Rt

First 6.68E-03 1.39E-05 6.28E-07 1.48E-05 4.65E-05 2.15E-08 2.60E-08
Second-Perturbation 5.57E-04 8.14E-06 2.45E-06 5.08E-059.78E-05 8.24E-08 1.02E-07
Second-Kim et al 3.02E-04 4.49E-07 4.94E-08 9.33E-07 1.54E-06 1.06E-09 1.10E-09
Second-Den Haan and De Wind 3.27E-04 4.75E-07 4.99E-08 9.33E-07 1.55E-06 1.16E-09 1.20E-09
Second-NLMA 3.02E-04 4.49E-07 4.94E-08 9.33E-07 1.54E-061.06E-09 1.10E-09
Third-Perturbation 3.97E-04 7.97E-06 2.47E-06 5.13E-05 9.83E-05 8.29E-08 1.03E-07
Third-Andreasen 1.12E-04 1.29E-07 3.21E-08 4.76E-07 3.10E-07 5.92E-10 4.76E-10
Third-Den Haan and De Wind 5.19E-03 1.09E-05 5.02E-07 1.17E-05 3.64E-05 1.72E-08 2.08E-08
Third-Fernandez-Villaverde et al 1.34E-04 1.47E-07 3.25E-08 5.35E-07 4.25E-07 5.85E-10 4.78E-10
Third-Juillard 1.12E-04 1.29E-07 3.21E-08 4.79E-07 3.15E-07 5.93E-10 4.76E-10
Third-NLMA 1.12E-04 1.29E-07 3.21E-08 4.75E-07 3.09E-07 5.91E-10 4.75E-10
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Table 13:E∞ Performance of the Different Algorithms
Model of Section6.3

Baseline Parameterization

kt ct lt it yt Rf
t Rt

First 5.61E-02 3.49E-02 2.80E-02 1.79E-01 5.66E-02 1.19E-03 1.40E-03
Second-Perturbation 1.87E-02 2.45E-02 3.42E-02 2.40E-017.36E-02 1.91E-03 2.26E-03
Second-Kim et al 2.00E-02 1.05E-02 1.08E-02 6.29E-02 1.84E-02 3.42E-04 4.15E-04
Second-Den Haan and De Wind 2.03E-02 1.07E-02 1.09E-02 6.27E-02 1.85E-02 3.33E-04 4.06E-04
Second-NLMA 2.00E-02 1.05E-02 1.08E-02 6.29E-02 1.84E-023.42E-04 4.15E-04
Third-Perturbation 1.43E-02 2.39E-02 3.39E-02 2.38E-01 7.17E-02 1.86E-03 2.20E-03
Third-Andreasen 1.09E-02 5.10E-03 7.07E-03 3.86E-02 8.49E-03 2.52E-04 2.30E-04
Third-Den Haan and De Wind 5.01E-02 3.25E-02 2.31E-02 1.45E-01 5.01E-02 9.07E-04 1.15E-03
Third-Fernandez-Villaverde et al 1.38E-02 6.03E-03 7.58E-03 4.63E-02 1.22E-02 2.56E-04 2.36E-04
Third-Juillard 1.10E-02 5.07E-03 7.11E-03 3.86E-02 8.65E-03 2.56E-04 2.29E-04
Third-NLMA 1.08E-02 5.12E-03 7.08E-03 3.88E-02 8.46E-03 2.52E-04 2.31E-04

7
9



Table 14:E1 Performance of the Different Algorithms
Model of Section6.3

Extreme Parameterization

kt ct lt it yt Rf
t Rt

First 4.88E-02 2.19E-02 8.81E-03 6.93E-02 3.06E-02 8.55E-04 8.52E-04
Second-Perturbation 1.08E-02 1.05E-02 1.16E-02 8.11E-022.58E-02 7.28E-04 8.05E-04
Second-Kim et al 1.10E-02 5.06E-03 2.62E-03 1.93E-02 7.11E-03 1.66E-04 1.71E-04
Second-Den Haan and De Wind 3.41E-02 1.46E-02 5.33E-03 2.79E-02 9.83E-03 7.74E-04 7.91E-04
Second-NLMA 1.10E-02 5.08E-03 2.63E-03 1.94E-02 7.11E-031.67E-04 1.72E-04
Third-Perturbation 7.24E-03 9.37E-03 1.15E-02 8.15E-02 2.52E-02 6.94E-04 7.70E-04
Third-Andreasen 8.06E-03 2.66E-03 1.97E-03 1.24E-02 3.58E-03 1.22E-04 1.14E-04
Third-Den Haan and De Wind 4.58E-02 2.30E-02 8.99E-03 5.86E-02 2.55E-02 8.95E-04 9.30E-04
Third-Fernandez-Villaverde et al 8.78E-03 3.13E-03 2.01E-03 1.40E-02 4.38E-03 1.60E-04 1.53E-04
Third-Juillard 8.01E-03 2.63E-03 1.97E-03 1.25E-02 3.57E-03 1.23E-04 1.15E-04
Third-NLMA 8.15E-03 2.60E-03 1.84E-03 1.25E-02 3.59E-03 1.19E-04 1.10E-04
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Table 15:E2 Performance of the Different Algorithms
Model of Section6.3

Extreme Parameterization

kt ct lt it yt Rf
t Rt

First 4.66E-01 5.24E-04 1.90E-05 6.21E-04 1.91E-03 1.10E-06 1.14E-06
Second-Perturbation 3.22E-02 1.11E-04 2.80E-05 6.24E-041.18E-03 9.40E-07 1.16E-06
Second-Kim et al 4.27E-02 3.89E-05 2.41E-06 9.62E-05 1.86E-04 5.04E-08 5.72E-08
Second-Den Haan and De Wind 1.69E-01 1.61E-04 4.75E-06 1.00E-04 2.46E-04 6.50E-07 6.81E-07
Second-NLMA 4.28E-02 3.90E-05 2.42E-06 9.63E-05 1.86E-045.09E-08 5.78E-08
Third-Perturbation 1.09E-02 8.62E-05 2.77E-05 6.16E-04 1.13E-03 8.63E-07 1.08E-06
Third-Andreasen 1.74E-02 9.63E-06 1.13E-06 3.57E-05 4.50E-05 2.66E-08 2.28E-08
Third-Den Haan and De Wind 3.52E-01 4.91E-04 1.68E-05 3.90E-04 1.25E-03 1.15E-06 1.26E-06
Third-Fernandez-Villaverde et al 2.56E-02 1.47E-05 1.27E-06 5.63E-05 8.22E-05 4.42E-08 4.20E-08
Third-Juillard 1.74E-02 9.51E-06 1.14E-06 3.68E-05 4.64E-05 2.73E-08 2.35E-08
Third-NLMA 1.52E-02 8.57E-06 1.04E-06 3.07E-05 4.02E-05 2.29E-08 1.95E-08
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Table 16:E∞ Performance of the Different Algorithms
Model of Section6.3

Extreme Parameterization

kt ct lt it yt Rf
t Rt

First 3.31E-01 1.94E-01 1.44E-01 6.58E-01 3.26E-01 8.18E-03 1.15E-02
Second-Perturbation 1.49E-01 1.01E-01 1.47E-01 1.01E+002.48E-01 9.84E-03 1.04E-02
Second-Kim et al 1.93E-01 8.81E-02 6.92E-02 3.36E-01 1.83E-01 3.00E-03 5.48E-03
Second-Den Haan and De Wind 2.08E-01 9.68E-02 7.42E-02 3.53E-01 1.86E-01 2.33E-03 4.79E-03
Second-NLMA 1.93E-01 8.81E-02 6.92E-02 3.36E-01 1.83E-013.00E-03 5.48E-03
Third-Perturbation 8.53E-02 8.92E-02 1.47E-01 1.11E+00 3.03E-01 9.32E-03 9.96E-03
Third-Andreasen 1.25E-01 4.67E-02 3.93E-02 2.18E-01 1.06E-01 1.89E-03 2.50E-03
Third-Den Haan and De Wind 2.71E-01 1.83E-01 1.19E-01 8.03E-01 2.97E-01 5.90E-03 6.99E-03
Third-Fernandez-Villaverde et al 1.59E-01 5.74E-02 4.30E-02 2.80E-01 1.41E-01 1.90E-03 3.07E-03
Third-Juillard 1.26E-01 4.52E-02 3.99E-02 2.25E-01 1.10E-01 1.97E-03 2.67E-03
Third-NLMA 1.19E-01 4.42E-02 4.17E-02 2.21E-01 1.04E-01 1.82E-03 2.42E-03
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Figure 1:E1 Performance of the Different Algorithms, Model of Section6.1
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Figure 2:E2 Performance of the Different Algorithms, Model of Section6.1
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Figure 3:E∞ Performance of the Different Algorithms, Model of Section6.1
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Figure 4: Simulation, Model of Section6.1, χ = 10
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Figure 5: Simulation, Model of Section6.1, χ = 10
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Figure 6: Simulation, Model of Section6.1, χ = 31.2294
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