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Abstract

We develop analysis of deviance tools for generalized partial linear models based on

local polynomial fitting. Assuming a canonical link, we propose expressions for both

local and global analysis of deviance, which admit an additivity property that reduces

to ANOVA decompositions in the Gaussian case. Chi-square tests based on integrated

likelihood functions are proposed to formally test whether the nonparametric term is

significant. Simulation results are shown to illustrate the proposed chi-square tests.

The methodology is applied to German Bundesbank Federal Reserve data.
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1 Introduction

Generalized linear models (GLMs) (McCullagh and Nelder, 1989) are a large class of sta-

tistical models for relating a response variable to linear combinations of predictor variables.

The models allow the data to follow some probability distributions other than the Gaus-

sian distribution in linear models, such as the Binomial and Poisson, etc. For example,

logistic regression under the Binomial assumption is a subclass of GLMs and is commonly

used to model the probability of events given a linear function of the explanatory variables.

An example that we address in this paper is the probability of default (PD) for corporate

bankruptcy prediction, known as rating or scoring, to estimate the financial situation of a

company and the probability that a company defaults on its obligations within a certain pe-

riod. A major disadvantage of this approach is that the prespecified linear form of predictors

is too restrictive. Companies that grow too fast or too slow tend to have a higher probability

of default and hence models allowing for nonlinear effects may be more appropriate.

Generalized partial linear models (GPLMs) (Green and Silverman, 1994; Carroll et al.,

1997; Härdle et al., 2004) allow for a nonparametric component for a continuous covariate

while retaining the ease of linear relationships for the remaining variables. It is more flexible

than parametric GLMs and simpler than generalized additive models (GAMs) (Hastie and

Tibshirani, 1990) which include multiple nonparametric components. In applying GPLMs

to, e.g. PD data, inference tools to examine whether the nonparametric term is significant

are of interest. Though Hastie and Tibshirani (1990) briefly discussed Analysis of Deviance

(ANODev) for GPLMs, they note that “the distribution theory, however, is undeveloped”

and “informal deviance tests with some heuristic justification” are adopted. Härdle et al.

(1998) introduced a test statistic for testing linearity in GPLMs with an asymptotically

normal distribution. Li and Liang (2008) address assessing significance of the nonparametric

term for the GPLMs in the local polynomial settings by extending generalized likelihood

ratio tests (Fan et al., 2001), which have asymptotic chi-square distributions. We note that

testing in the GPLMs is relatively less developed as compared to the special case of partial

linear models (PLMs) under Gaussian distributions (Härdle et al., 2004). Hence, there is a

need for developing inference tools for applications of GPLMs, such as the PD data.

Based on the local polynomial approach (Fan and Gijbels, 1996) and assuming a canonical

2



link in GPLMs, we propose local and global expressions for ANODev, with the latter obtained

by integrating the corresponding local likelihood quantities. This mimics the “integrated

likelihood” approach discussed by Severini (2007) and Lehmann (2006). Though the idea

of local likelihood for GLMs has been around for some time (Hastie and Tibshirani, 1987;

Loader, 1999), to our knowledge, we are not aware of using the integrated likelihood approach

to combine the information of local likelihood in the smoothing literature. In the case of the

Gaussian distribution with an identity link, the proposed local and global ANODev becomes

local and global analysis of variance (ANOVA) (Huang and Davidson, 2010) for PLMs and

F -tests were justified between nested models, similar to classical ANOVA in linear models.

Based on the proposed global ANODev, integrated likelihood ratio tests with asymptotic chi-

square distributions are proposed for checking whether the nonparametric term is significant.

Our work extends the classical ANODev for GLMs to GPLMs with theoretical justifications.

The organization of this paper is as follows. In Section 2, utilizing the ANODev for nested

hypotheses in parametric GLMs by Simon (1973), we propose local and global ANODev for

nonparametric GLMs in Theorem 1 for the simpler case with the nonparametric term as

the only predictor. By combining local likelihood through integration, as a by-product,

new estimators for the canonical parameter and response mean are given in equation (11),

and Theorem 2 shows that the integrated likelihood quantities are asymptotically global

likelihood quantities with the new estimator. Theorem 3 proposes a chi-square test based

on integrated likelihood functions for testing whether the nonparametric term is significant.

Section 3 presents an extension of Theorems 1-3 to Theorems 4 and 5 for GPLMs. In Section

4, we illustrate the potential usefulness of the new tests with simulation data and Section 5

applies the methodology to 2002 German Bundesbank Federal Reserve data.

2 Nonparametric Analysis of Deviance

Let (x1, y1), . . . , (xn, yn) be independent data pairs with the conditional density of Y given

X = x from a one-parameter exponential family:

L(y; θ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
, (1)
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where θ is the canonical parameter, a(·) > 0, b(·) and c(·) are known functions, and φ is

known or a nuisance parameter. We first briefly review parametric GLMs from McCullagh

and Nelder (1989), in which a transformation G(·) of µ(x) = E(Y |X = x) is modeled

parametrically via, e.g., a linear function, G{µ(x)} = b0 + b1x, and G(·) is called the “link”

function. If G(·) = (b′)−1(·), then G is the canonical link function that links θ to the linear

predictor since b′{θ(·)} = µ(·). Without loss of generality, we assume that G is the canonical

link function throughout the paper.

Let `(y, θ) = logL(y, θ), θ̂ denote the fitted value of θ with corresponding ŷ, and θ̃ when

the fitted value equals to the observed y. The deviance D for a fitted parametric GLM is

defined as

D(y, ŷ) = 2
∑
i

{yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)}, (2)

where y = (y1, . . . , yn)> and ŷ = (ŷ1, . . . , ŷn)>. In the Gaussian case, G is the identity link

and D =
∑

i(yi− ŷi)2. Hence the deviance quantity (2) in GLMs is analogous to the sum of

squares (SS) of residuals in linear models. Let θ = (θ1, . . . , θn)>. Let us now turn to testing

hypotheses about θ. Assume that D1 = infθ∈Ω1
D and D2 the deviance for θ ∈ Ω2 with

Ω2 ⊆ Ω1. In GLMs, ANODev usually refers to comparing two nested models and inference

may be based on the difference D2 − D1, which is simply the log likelihood ratio statistic

with an asymptotic χ2 distribution. In the Gaussian case, ANODev becomes a comparison

of two residual SS. Note that the conventional ANODev is generally not parallel to ANOVA

in linear models, in the sense that ANODev does not have a complete set of SS quantities

(SS total = SS regression+ SS residuals).

An attempt to mimic ANOVA can be based on the Kullback-Leibler (KL) divergence of

two probability distributions with means µ1 and µ2:

KL(µ1,µ2) = 2Eµ1

[
`{y, G−1(µ1)} − `{y, G−1(µ2)}

]
, (3)

where µ1 and µ2 are treated as fixed values and Eµ1
is expectation with respect to y when

µ = µ1. For GLMs, Simon (1973) showed that for nested hypotheses Ω2 ⊂ Ω1 ⊂ Rn with

Rn corresponding to the parameter space with an exact fit of θ̃i and θ parameterized linearly

in Ω1 and Ω2,

KL(y,µ2) = KL(y,µ1) +KL(µ1,µ2) (4)
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when plugging in the values of maximum likelihood (ML) estimates for µ1 and µ2. It is

easy to see that (4) reduces to the ANOVA decomposition in linear models when µ1 and µ2

correspond to the linear or polynomial fit and the intercept-only model respectively, and the

terms in (4) becomes SS total, SS residual, and SS regression respectively.

A linear or polynomial function of x may be restrictive and one may replace the linear

dependence by a nonparametric function:

G{µ(x)} = m(x). (5)

Fan et al. (1995) discussed estimating m(·) by maximizing a locally weighted likelihood

with a local polynomial approximation. Based on a Taylor’s expansion at x, θi ≈ β0 +

β1(xi − x) + · · · + βp(xi − x)p
def
= θi(x). This local polynomial approximation is plugged

in the locally weighted log-likelihood `x(y,θx)
def
=
∑

i `{yi, θi(x)}Kh(xi − x), where θx =

(θ1(x), . . . , θn(x))>, and β̂ = (β̂0, . . . , β̂p)
> maximizing `x(y,θx) is solved. From the Taylor’s

expansion, j!β̂j estimates m(j)(x), j = 0, . . . , p, which is θ(j)(x) with the canonical link.

Fan et al. (1995) derived asymptotic properties of β̂j(x)’s and adopted G−1{β̂0(x)} as an

estimate for µ(x).

We will derive a local ANODev by adapting (4) for locally weighted likelihood. Define

θ̂i(x) = β̂0 + · · · + β̂p(xi − x)p, an estimate of θi at x, θ̂x = (θ̂1(x), . . . , θ̂n(x))>, µ̂x(xi) =

G−1{θ̂i(x)}, and µ̂x = (µ̂x(x1), . . . , µ̂x(xn))>. As the β̂j’s maximize `x(y,θx), the following

equations hold:∑
i

yi(xi − x)jKh(xi − x) =
∑
i

µ̂x(xi)(xi − x)jKh(xi − x), j = 0, . . . , p,∑
i

yiθ̂i(x)Kh(xi − x) =
∑
i

µ̂x(xi)θ̂i(x)Kh(xi − x). (6)

The last equation indicates that (y − µ̂x) is orthogonal to θ̂x in the locally weighted inner

product space with weights Kh(xi − x). Hence the fact of residuals being orthogonal to

fitted values in ordinary linear models now becomes the fact of local residuals (y− µ̂x) being

orthogonal to locally fitted canonical parameters θ̂x. For `x(y, θ̂x), an expression mimicking

(2) for local deviance at x is therefore:

dx(y, µ̂x) = 2{`x(y, θ̃)− `x(y, θ̂x)} = 2
∑
i

[yi{θ̃i − θ̂i(x)} − b(θ̃i) + b(θ̂i(x))]Kh(xi − x). (7)

5



Though (7) is a natural definition from local likelihood, we are not aware of a similar quantity

to (7) in the literature. Published works focused on global deviance by taking (2) with

G−1{β̂0(xi)} as estimates. In comparison, the local deviance (7) makes use of all coefficients

β̂0, . . . , β̂p and may be more sensible. Then (4) is adapted to form a local ANODev, and a

global ANODev may be obtained by integrating local counterparts, as given in the following

Theorem.

Theorem 1 (a) A local ANODev is

dx(y, ȳ) = dx(y, µ̂x) + dx(µ̂x, ȳ), (8)

where ȳ is the sample mean of y, dx(y, ȳ) is (7) with µ̂x and θ̂x replaced by ȳ and G(ȳ)

respectively, and

dx(µ̂x, ȳ) ≡ 2Eµ̂x

[
`x(y, θ̂x)− `x{y, G−1(ȳ)}

]
= 2

[
`x(y, θ̂x)− `x{y, G−1(ȳ)}

]
, (9)

with the last expression holds based on (6).

(b) A global ANODev is obtained by integrating the counterparts in (8):∫
dx(y, ȳ)dx =

∫
dx(y, µ̂x)dx+

∫
dx(µ̂x, ȳ)dx, (10)

and
∫
dx(y, ȳ)dx = KL(y, ȳ) = D(y, ȳ) under a boundary condition that the weights∫

Kh(xi − x)dx = 1 for all xi’s.

It is easy to show (8) due to (9) and hence the proof is omitted. Alternatively the proof

in Simon (1973) for (4) can be adapted with kernel weights to show (8). Note that the

local ANODev (8) holds in finite-sample cases for local polynomial estimates, similar to (4).

For the Normal distribution with an identity link, (8) and (10) become the local and global

ANOVA decompositions respectively in Huang and Chen (2008). They demonstrate that it

is necessary to utilize all coefficients β̂j, j = 0, . . . , p, for the ANOVA decompositions to hold.

Similarly, (8) and (10) hold with θ̂i(x) and µ̂x(xi) based on the whole polynomial estimate,

while most work in the literature focused only on β̂0.

As a by-product, the above derivations give rise to new estimators for θi’s and µi’s:

θ∗i =

∫
θ̂i(x)Kh(xi − x)dx and µ∗i = G−1(θ∗i ). (11)
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They are different from local estimates at xi: β̂0(xi) and G−1{β̂0(xi)}. The asymptotic

properties of θ∗i and µ∗i for interior points xi with p = 1 and 3 are discussed in the following

Remark.

Remark 1: Suppose that conditions (A1)-(A4) in the Appendix hold. Assume that h→ 0

and nh3 →∞ as n→∞. We first define the “interior” and “boundary” points. For a kernel

function defined on [−1, 1], if the support of xi’s is [a, b], then define the interior region as

[a + 2h, b − 2h]. See Huang and Chan (2013) for discussion on why the interior is not the

conventional [a+ h, b− h]. Then for interior points xi with p = 1 and 3, (a) the order of the

asymptotic bias of θ∗i is smaller than the conventional order h(p+1); i.e., the h(p+1) term of

the bias of θ∗i is zero; (b) the asymptotic variance of θ∗i is of order n−1h−1; (c) the asymptotic

behavior of µ∗i is analogous to θ∗i : the order of the bias is smaller than the conventional

order h(p+1) and the asymptotic variance of µ∗i is of order n−1h−1. See the Appendix for an

outline of proofs. In the Gaussian case with an identity link, Huang and Chan (2013) show

that the bias of θ∗i for interior points is of order h2(p+1) for p = 0, 1, 2, 3, which is consistent

with intuition that the higher the p, the smaller the order of the bias. Since the second-order

expansions of the bias of β̂j(x) for GLMs have not been addressed in the literature, we choose

not to derive explicit bias expressions of θ∗i in this paper. We thus focus on ANODev, while

the issue of estimation may be studied in a future paper.

The following theorem concerns the asymptotic properties of integrated local likelihood∫
`x(y, θ̂x)dx.

Theorem 2 Suppose that conditions (A1)-(A4) in the Appendix hold. Assume that h → 0

and nh3 →∞ as n→∞. For p = 1 and 3,

(a) the integrated likelihood function is asymptotically∫
`x(y, θ̂x)dx = `(y,θ∗) +O(h(p+1)), (12)

where θ∗ = (θ∗1, . . . , θ
∗
n)> with elements defined in (11);

(b) the integrated deviance quantities are asymptotically∫
dx(y, µ̂x)dx = KL(y,µ∗) +O(h(p+1)) and

∫
dx(µ̂x, ȳ)dx = KL(µ∗, ȳ) +O(h(p+1)),

(13)

where µ∗ = (µ∗1, . . . , µ
∗
n)> with elements defined in (11).
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The proof for Theorem 2 is given in the Appendix. The term
∫
`x(y, θ̂x)dx in (12) is a

weighted integral of local likelihood with fitted local polynomials. In the literature, the idea

of integrated likelihood was mentioned in Lehmann (2006), and Severini (2007) discussed

integrated likelihood functions to eliminate nuisance parameters in parametric settings. To

our knowledge, (12) has never been raised in the nonparametric regression literature, since

the convention was to plug in β̂0(xi) in (1) for θi as an estimated likelihood function which

ignores β̂1, . . . , β̂p. Theorem 2(b) together with Theorem 1(b) implies that

KL(y, ȳ) = KL(y,µ∗) +KL(µ∗, ȳ) +O(h(p+1)),

which shows that the classical ANODev holds asymptotically in the local polynomial settings

with µ∗, and hence (10) is more suitable for a global ANODev as it holds in finite-sample

cases. Based on integrated local likelihood, we next develop a chi-square test for examining

significance of a nonparametric fit.

Theorem 3 Under the conditions of Theorem 2, for testing H0 : m(x) = a0 with a0 a

constant, versus Ha : m(x) is nonlinear and estimated by p-th order local polynomials with

p ≥ 0, the test statistic

2

{∫
`x(y, θ̂x)dx− `(y, â0)

}
(14)

is asymptotically distributed according to a χ2-distribution with a degree of freedom tr(H∗p )−1,

where â0 is the ML estimate under H0 and H∗p is the smoothing matrix for local p-th order

polynomial regression defined in Huang and Chen (2008).

More explicitly, H∗p depending only on xi’s, bandwidth h, and the kernel function K(·), is

H∗p =

∫
WXp(X

>
p WXp)

−1X>p Wdx, (15)

where W is an n-dimensional diagonal matrix with Kh(xi− x) as its diagonal elements, and

Xp is the n× (p + 1) design matrix with the (j + 1)-th column ((x1 − x)j, . . . , (xn − x)j)>,

j = 0, . . . , p. The dependence of W and Xp on x is suppressed and the integration in (15)

is performed element by element in the resulting matrix product. Huang and Chan (2013)

discuss various properties of H∗p , including being symmetric and shrinking.
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3 Analysis of Deviance for Partial Linear Models

We extend the nonparametric ANODev in Section 2 to GPLMs by allowing

G(µ) = z>α +m(x), (16)

where z is a K-dimensional covariate vector. Without loss of generality, the intercept is

embedded in m(·). When y is Gaussian, PLMs are a popular class of semiparametric models,

combining advantages of both linear and nonparametric regression. Huang and Davidson

(2010) discussed ANOVA for PLMs and provided explicit expressions of the ANOVA SS

quantities based on local polynomial regression. They showed that the SS residuals under

PLMs can be decomposed into non- and parametric parts and subsequently developed F -

tests using the differences in SS, similar to classical F -tests.

For GPLMs (16), if α is known or given, then the ANODev inference in Section 2 can

be extended straightforwardly. A local and a global ANODev can be constructed as (8)

and (10) with ˆ̂µx(xi) = G−1{ ˆ̂θi(x)}, where
ˆ̂
θi(x) = z>i α +

ˆ̂
β0 + · · · + ˆ̂

βp(xi − x)p with local

estimates
ˆ̂
βj’s under (16). To avoid confusion with the notation in Section 2, from now on

ˆ̂µx(xi),
ˆ̂
θi(x),

ˆ̂
θx, ˆ̂µx, µ∗∗, and θ∗∗ denote the estimates under GPLMs (16). When α is

unknown, estimation of α can be done via a two-step ML procedure that updates the linear

and nonparametric estimates iteratively, as discussed in Carroll et al. (1997). Since
ˆ̂
βj’s

maximize the local likelihood, the equations in (6) continue to hold with
ˆ̂
θx and ˆ̂µx under

(16). The interpretation that (y − ˆ̂µx) is orthogonal to
ˆ̂
θx in the locally weighted inner

product space with weights Kh(xi − x) continues to hold under GPLMs. For estimating α,

ML yields ∑
i

yizik =
∑
i

zik

∫
ˆ̂µx(xi)Kh(xi − x)dx, k = 1, . . . , K, (17)

where zik denotes the value of the k-th covariate for the i-th observation.

Theorems 1 and 2 are extended to GPLMs in the following as Theorem 4(a) and 4(b)

respectively with ˆ̂µx and µ∗∗ when α is estimated by ML.

Theorem 4 (a) The local and global ANODev (8) and (10) respectively hold for GPLMs

with ˆ̂µx(xi) and ˆ̂µx when α is estimated by ML.

(b) Under the conditions in Theorem 2 and Condition (A5) in the Appendix, assume that

α is estimated with a root-n rate by ML. For p = 1 or 3, the expression in (12) holds
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with
ˆ̂
θx and θ∗∗ except the O(hp+1) term replaced by O(hp+1 + n−1/2). Similarly, (13) holds

for GPLM with ˆ̂µx and µ∗∗ and the O(hp+1) terms replaced by O(hp+1 + n−1/2). Moreover∫
ˆ̂µx(xi)Kh(xi− x)dx = µ∗∗i +O(hp+1 +n−1/2) and (y−µ∗∗) is asymptotically orthogonal to

the column space spanned by z from (17).

(c) When the same kernel function and bandwidth are used in (5) and (16), the nonparametric

model (5) is nested in (16). Then the local residual deviance from fitting (16) when p ≥ 0

can be expressed as

dx(y, ˆ̂µx) = dx(y, µ̂x)− dx(ˆ̂µx, µ̂x). (18)

The proof of Theorem 4(b) is analogous to Theorem 2 and is thus omitted. We briefly outline

the proof for Theorem 4(c). Based on (6) under GPLMs, we have
∑

i yi(xi−x)jKh(xi−x) =∑
i
ˆ̂µx(xi)(xi − x)jKh(xi − x), j = 0, . . . , p. Then multiplying the j-th equation by β̂j and

summing them up,
∑

i{yi − ˆ̂µx(Xi))}θ̂i(x)Kh(Xi − x) = 0 is obtained and (18) is proved.

Theorem 4(c) implies that the local residual deviance for a GPLM is the deviance for

fitting the nonparametric (5) minus a term due to the parametric component. That is, the

reduction of local deviance after adding the parametric component can be expressed explic-

itly. A similar interpretation holds at a global scale after integrating the local counterparts

of (18): ∫
dx(y, ˆ̂µx)dx =

∫
dx(y, µ̂x)dx−

∫
dx(ˆ̂µx, µ̂x)dx. (19)

Analogous to Theorem 3, testing whether m(·) is significantly different from a constant

may be based on the ratio of integrated local likelihoods.

Theorem 5 Under model (16), assume that Conditions (A) in the Appendix hold and the

data matrix Z for covariates z is orthogonal to x = (x1, . . . , xn)> and the intercept column.

For testing H0 : m(x) = a0 with a0 a constant, versus Ha : m(x) is nonlinear and estimated

by p-th order local polynomials with p ≥ 0, the test statistic

2

{∫
`x(y,

ˆ̂
θx)dx− `(y, α̂0)

}
(20)

is asymptotically distributed according to a χ2-distribution with degrees of freedom tr(H∗p )−1,

where α̂0 = (â0, α̂
>)> with â0 and α̂ the ML estimates under H0.

The assumption that Z is orthogonal to x in Theorem 5 is required, in the sense that

the corresponding off-digonal elements of the local Fisher information is 0, for convenience
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of deriving the asymptotic χ2-distribution of the test statistic (20). The proposed tests in

Theorems 3 and 5 will depend on the bandwidth h, like the other nonparametric tests. We

remark that the proposed tests are different from those in Hastie and Tibshirani (1990).

The proposed test statistics utilize integrated likelihood that combines all maximized local

likelihoods with fitted local polynomials, while the existing methods use only G−1(β̂0)’s and

the resulting expression is not based on maximized likelihood as β̂1, . . . , β̂p are ignored.

Some work in the literature, e.g. Härdle et al. (1998), has considered testing whether the

estimate of m in (16) is significantly different from a linear trend, G(µ) = z>α + a0 + a1x.

However, the extension of Theorem 5 to testing a linear trend is non-trivial due to the fact

that the variance function of y is allowed to be a function of the mean of y in GPLMs, which

complicates the integrated likelihood term in (20). When the variance function of y is a

constant, such as in classical linear models with the Gaussian assumption, an ANOVA-based

F -type test is derived in Huang and Su (2009).

4 Simulation Results

We examine the empirical type-I error and power for the integrated likelihood ratio tests

in Theorems 3 and 5. The simulation study focuses on logistic regression as we want to

evaluate the proposed methods in order to analyze the German Bundesbank data. The

sample size is n = 200 and 500 simulated data sets are generated. Local linear smoothing

with the Epanechnikov kernel is used throughout this section. Critical values are taken from

the χ2-distribution with 5% significance level.

Example 1:

logit(p) = −1.0 + ax2,

where a =0, -1, -1.5, -2, and x ∼ U(0, 1). The values of bandwidth h =0.1, 0.15, 0.2,

and 0.25 are used, which results in an average degrees of freedom 11.08, 7.69, 6.00, and 4.99

respectively. The proportion of rejection is given in Table 1. The type-I errors when a = 0

are below 0.05, indicating a reasonable approximation of the χ2 distribution. When a > 0,

we observe that the proportion of rejections increases as the value of the bandwidth increases

Example 2:

logit(p) = −1.0 + a cos(2πx),
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where a = 0.5, 0.75, 1.0, x ∼ U(0, 1). The degrees of freedom in this example are similar to

Example 1, as the same values of the bandwidth are used and the distribution of the design

points is identical to Example 1. This alternative family contains weak to strong nonlinear

components and the proportion of rejections is given in Table 2. The behavior that the

proportion of rejections increases as the value of the bandwidth increases under alternatives

is observed again here.

Next we examine the performance of (20) under GPLMs.

Example 3:

logit(p) = b1z1 + b2z2 + a exp(−16x2),

where z1 is first generated as binary taking values -1 and 1 with equal probabilities, z2 ∼

N(0, 0.52), and x ∼ U(−0.5, 1). To satisfy the conditions in Theorem 5, z1 and z2 are then

made orthogonal to x and the intercept vector by multiplying (I − P1) where P1 is the

projection matrix for x and intercept. After the orthogonized z1 and z2 are obtained, b1 = 1,

b2 = −1, and a = 0, 1, 2, 3. The average degrees of freedom corresponding to the values of

h = 0.15, 0.2, and 0.25 are 11.17, 8.61, and 7.07 respectively. The proportion of rejections is

given in Table 3. We observe that when a = 0 the type-I errors are below 5%, same as in

Example 1. Table 3 shows satisfactory behavior of the proposed test for GPLMs.

Example 4:

logit(p) = b1z1 + b2z2 + a cos(2πx),

where the data generation of z1, z2, and x is identical to Example 3, b1 and b2 are the same as

Example 3, and a = 1, 1.5, 2. The results in Table 4 confirms with previous examples that the

integrated likelihood ratio test perform reasonably well and the asymptotic χ2-distribution

approximates well in finite-sample cases.

5 German Bundesbank Data

We apply the methodology in Section 3 to the German Bundesbank Data in year 2002, which

was provided by CRC 649, Humboldt University, Berlin. The data contains 6123 firms in

which 186 were insolvent. Each firm is described by a set of financial statement variables

and those of insolvent firms are collected two years prior to insolvency. In accordance with

literature, 28 ratios, x1, . . . , x28 have been selected for the bankruptcy analysis. To ensure
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the value of some variables as the denominator when calculating the ratios should not be

zero, 2079 firms were retained with 92 insolvent. See Chen et al. (2011) for detail descrip-

tions about the data. Based on support vector machines, Chen et al. (2011) selected x24

(account payable turnover) as the best predictor, and subsequently selected x3 (OI/TA),

x15 (CASH/TA), x12 (TL/TA), x26 (percentage of incremental inventories), x22 (inventory

turnover), x5 (EBIT/TA), and x2 (net profit margin). We found x3 and x5 have a large

sample correlation coefficient 0.95 and thus x5 is removed in our analysis and we further

include x25 (firm size) as it is shown to be an important variable on the probability of

bankruptcy in the literature. Among the 8 predictors, there are two activity ratios (x24 and

x22), 2 profitability ratios (x3 and x2), one liquidity ratio (x15), one leverage ratio (x12),

one percentage of change ratio (x26), and one size variable (x25).

Since x24 was selected as the most important predictor by Chen et al. (2011), we model

its effects nonparametrically, while retaining linear trends for the remaining predictors in

a logit model. Further examinations of x24 indicates that most values lie in [0, 0.5] with

only 15 observations in (0.5, 20.52). In the region where data are sparse, smoothing methods

will not be applicable. Thus we remove those 15 observations and the final sample size is

2064, in which 91 are insolvent. Local linear smoothing with the Epanechnikov kernel is

used with h = 0.125, 0.1, and 0.075 corresponding to degrees of freedom 4.94, 5.92, and

7.59 respectively. The curves shown in Figure 1 clearly demonstrate a nonlinear trend of

x24. When x24 < 0.3 approximately, the default probability increases as x24 increases.

Then the probability decreases for 0.03 < x24 < 0.04, and increases again for x24 > 0.4.

The proposed integrated likelihood ratio test gives p-values of 0.0045, 0.0072, and 0.015

respectively, indicating significance of this variable. Thus an interpretation in Chen et al.

(2011) that a German firm is likely to go bankrupt when it has high turn over is not entirely

correct; in our analysis, the effects of x24 on bankrupt probability is nonlinear.

In technical terms, accounts payable turnover ratio is an accounting liquidity metric that

evaluates how fast a company pays off its creditors (suppliers). A high ratio means there

is a relatively short time between purchase of goods and services and payment for them.

Conversely, a lower accounts payable turnover ratio usually signifies that a company is slow

in paying its suppliers. Since the y-axis in Figure 1 is in the negative range, it indicates that

including x24 in the model has a protective effect. Taking the curve with h = 0.1 in Figure
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1, when x24 increases from 0.1 to 0.3, the nonlinear estimate increases about 1.895, which

means the odds ratio for a firm with x24 = 0.3 to become insolvent is exp(1.895) = 6.653

times relative to that for a firm with x24 = 0.1. On the other hand, between x24 = 0.3 and

0.4, the nonlinear estimate decreases by an amount of −0.607, implying that the odds ratio

for a firm with x24 = 0.4 to become insolvent is exp(−0.607) = 0.545 times relative to that

for a firm with x24 = 0.3. Thus our analysis gives new insight that a German firm is likely

to go bankrupt when it has higher turnover for roughly 97.5% of firms (0.3 is approximately

97.5-percentile of x24), but for those firms with 0.3 < x24 < 0.4 (approximately 97.5- to

99-percentile), the default probability decreases as x24 increases.

Appendix

The following conditions are similar to those in Fan et al. (1995).

Conditions (A).

(A1). The kernel K(·) is a Lipschitz continuous, bounded and symmetric probability density

function, having a support on a compact interval, say [−1, 1].

(A2). The function (∂2/∂x2)`{y, θ(x)} < 0 for x ∈ R and y in the range of the response

variable.

(A3). The functions L′, θ(p+1), b′′(θ(·)) ≡ V (·), V ′′, and G(3) are continuous.

(A4). For each x in the support of {xi, i = 1, . . . , n}, V (x) and G′(µ(x)) are nonzero.

(A5). For model (16), the covariate vector z is assumed to have a bounded support.

Proof of Remark 1: When p = 1, the bias of θ∗i is expressed as follows:

E

{∫
(β̂0(x) + (xi − x)β̂1(x))Kh(xi − x)dx

}
− θi =

E
[∫
{(β̂0(x)− β0(x)) + (xi − x)(β̂1(x)− β1(x))}Kh(xi − x)dx−∫

{β2(x)(xi − x)2 + r(x, xi)}Kh(xi − x)dx
]
, (21)

where r(x, xi) denotes the remainder terms. Plugging the first-order term of the asymptotic

bias of β̂0(x) (Fan et al. (1995) and Aerts and Claeskens (1997)) in (21), leads to cancellation
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with the β2(x)-term in (21). The remaining term
∫

(xi−x)(β̂1(x)−β1(x))Kh(xi−x)dx is of

order h4. Thus the h2-order term in (21) is zero. Similar arguments can be shown for p = 3.

Fan et al. (1995) and Aerts and Claeskens (1997) showed that the variance of β̂j(x) is

of order n−1h−2j−1 when p is odd. Then the variance of {β̂0(x) + (xi − x)β̂1(x)} is of order

n−1h−1 and hence the variance of θ∗i is of order n−1h−1. Finally, it is straightforward to show

(c) based on (a) and (b) since µ∗i = G−1(θ∗i ).

Proof of Theorem 2: We only need to show Theorem 2(a) while Theorem 2(b) follows

directly from Theorem 2(a). For the left-hand side of (12), ignoring the c(y, φ) and a(φ)

terms in (1) which is unrelated to x, the integrated likelihood is∫
`x(y, θ̂x)dx =

∑
i

{
yi

∫
θ̂i(x)Kh(xi − x)dx−

∫
b(θ̂i(x))Kh(xi − x)dx

}
.

By a Taylor’s expansion,

b(θ̂i(x)) = b(θ∗i ) + b′(θ∗i ){θ̂i(x)− θ∗i }+ b′′(θ∗i ){θ̂i(x)− θ∗i }2/2 + ri(x),

where ri(x) denotes the remainder terms. Note that for the linear term,∫
b′(θ∗i )(θ̂i(x)− θ∗i )Kh(xi − x)dx = b′(θ∗i )(θ

∗
i − θ∗i ) = 0.

The quadratic term
∫

(θ̂i(x) − θ∗i )
2Kh(xi − x)dx =

∫
θ̂i(x){θ̂i(x) − θ∗i }Kh(xi − x)dx. For

θ̂i(x) − θ∗i = (θ̂i(x) − θi) − (θ∗i − θi), the first term θ̂i(x) − θi = (β̂0 − β0) + (β̂1 − β1)(xi −

x) + · · · + (β̂p − βp)(xi − x)p + r′i(x) by a Taylor’s expansion of θi, where r′i(x) denotes the

remainder terms. Then based on Theorem 1(a) of Fan et al. (1995), θ̂i(x) − θi is of order

O(hp+1). For the second term θ∗i − θi, it is of order O(h(p+1)) based on Remark 1. Thus∫
b(θ̂i(x))Kh(xi − x)dx = b(θ∗i ) +O(h(p+1)) and (12) is proved.

Proof of Theorem 3: Let `(yi, a0) be the likelihood corresponding to yi with θi = a0.

Define `x(y, a0) =
∑

i `(yi, a0)Kh(xi−x), and it is clear that
∫
`x(y, a0)dx = `(y, a0). Recall

β̂ = (β̂0, . . . , β̂p)
> maximizes local likelihood at x with local polynomial approximation. Ex-

panding `x(y, θ̂x), which is a function of β̂, around a (p+1)-length vector a0 = (a0, 0, . . . , 0)>,

`x(y, θ̂x)−`x(y, a0) =

{
∂`x
∂β

(y, a0)

}>
(β̂−a0)+

1

2
(β̂−a0)>

∂2`x

∂β2 (y, a0)(β̂−a0)+Op(
√
n−1h−1).

(22)
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Substituting the expansion

β̂ − a0 = ix(a0)−1∂`x
∂β

(y, a0) +Op(
√
n−1h−1),

where ix(a0) = E
{
−∂2`x

∂β2 (y,θ)
}

(a0), we have for (22),

{
∂`x
∂β

(y, a0)

}>
ix(a0)−1∂`x

∂β
(y, a0) +

1

2

{
∂`x
∂β

(y, a0)

}>
ix(a0)−1∂

2`x

∂β2 (y, a0)ix(a0)−1∂`x
∂β

(y, a0)

+Op(
√
n−1h−1).

Since ∂2`x
∂β2 (y, a0) = −ix(a0) +Op(

√
nh), it follows that

∫
2{`x(y, θ̂x)− `x(y, a0)}dx is

∫ {
∂`x
∂β

(y, a0)

}>
ix(a0)−1∂`x

∂β
(y, a0)dx =

{
i(a0)−1/2 ∂`

∂θ
(y, a0)

}>
H∗p

{
i(a0)−1/2 ∂`

∂θ
(y, a0)

}
,

where the last expression is obtained by plugging in the explicit expressions of ∂`x
∂β

(y, a0) and

ix(a0)−1, and i(a0) is the information matrix under H0.

By standard ML theory, 2{`(y, â0)− `(y, a0)} is asymptotically distributed according to

a χ2 distribution with 1 degree of freedom. Hence the test statistic (14) becomes{
i(a0)−1/2 ∂`

∂θ
(y, a0)

}>
{H∗p − P0}

{
i(a0)−1/2 ∂`

∂θ
(y, a0)

}
,

where P0 is an n× n matrix with 1/n in all entries, i.e. the projection matrix from fitting a

constant. From Huang and Chen (2008), H∗p is a symmetric and asymptotically idempotent

matrix. Note that
{
i(a0)−1/2 ∂`

∂θ
(y, a0)

}
is asymptotically normally distributed with mean

vector 0 and identity covariance matrix. Since Huang and Chen (2008) have shown that

H∗p−P0 is symmetric and asymptotically idempotent, the test statistic (14) has an asymptotic

χ2-distribution with degrees of freedom tr{(H∗p )− 1}.

Proof of Theorem 5:

The proof is an extension from that of Theorem 3. Let α0 = (a0, α
>)> denote the param-

eter vector under H0 when θi = a0 + α>zi and `(y,α0) be the corresponding likelihood.

Define local likelihood at x under H0 by `x(y,α0) =
∑

i `(yi,α0)Kh(xi − x) and hence∫
`x(y,α0)dx = `(y,α0). We consider

{∫
`x(y,

ˆ̂
θx)dx− `(y,α0)

}
and {`(y, α̂0)− `(y,α0)}

separately, whose difference becomes (14).
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Let b = (β>, α>)> be the parameter vector under H1. Expanding `x(y,
ˆ̂
θx), which is a

function of
ˆ̂
b = (

ˆ̂
β>, ˆ̂α>)>, around a (p+K + 1)-length vector a0 = (a0, 0, . . . , 0, α

>)>,

`x(y,
ˆ̂
θx)−`x(y, a0) =

{
∂`x
∂b

(y, a0)

}>
(
ˆ̂
b−a0)+

1

2
(
ˆ̂
b−a0)>

∂2`x

∂b2 (y, a0)(
ˆ̂
b−a0)+Op(

√
n−1h−1).

(23)

Substituting the expansion under H0

ˆ̂
β − a0 = ix(a0)−1∂`x

∂b
(y, a0) +Op(

√
n−1h−1),

where ix(a0) = E
{
−∂2`x

∂b2 (y,θ)
}

(a0), we have for (23),{
∂`x
∂b

(y, a0)

}>
ix(a0)−1∂`x

∂b
(y, a0) +

1

2

{
∂`x
∂b

(y, a0)

}>
ix(a0)−1∂

2`x

∂b2 (y, a0)ix(a0)−1∂`x
∂b

(y, a0)

+Op(
√
n−1h−1).

Since ∂2`x

∂b2 (y, a0) = −ix(a0)+Op(
√
nh) under H0, it follows that

∫
2{`x(y,

ˆ̂
θx)−`x(y,α0)}dx

is asymptotically ∫ {
∂`x
∂b

(y, a0)

}>
ix(a0)−1∂`x

∂b
(y, a0)dx

=

{
i(α0)−1/2 ∂`

∂θ
(y,α0)

}>
{H∗p + Pz}

{
i(α0)−1/2 ∂`

∂θ
(y,α0)

}
,

where Pz is the projection matrix for Z and i(α0) is the information matrix under H0. The

last expression is obtained by plugging in the explicit expressions of ∂`x
∂b

(y, a0) and ix(a0)−1

and using the assumption that x and Z are orthogonal. From Huang and Davidson (2010),

{H∗p + Pz} is a symmetric and asymptotically idempotent matrix.

For the other term, 2{`(y, α̂0) − `(y,α0)} is asymptotically distributed according to a

χ2-distribution with (K+ 1) degree of freedom under H0 by standard ML theory. Hence the

test statistic (14) becomes{
i(α0)−1/2 ∂`

∂θ
(y,α0)

}>
{H∗p − P0}

{
i(α0)−1/2 ∂`

∂θ
(y,α0)

}
,

where P0 is the same as in the proof of Theorem 3. Note that
{
i(α0)−1/2 ∂`

∂θ
(y,α0)

}
is

asymptotically normally distributed with mean vector 0 and identity covariance matrix.

Hence the test statistic (14) has an asymptotic chi-square distribution with degrees of free-

dom tr{(H∗p )− 1}.
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Härdle, W. K., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and

Semiparametric Models, Berlin: Springer.

Hastie, T. J., and Tibshirani, R. J. (1990). Generalized Additive Models, London: Chapman

and Hall.

Hastie, T. J., and Tibshirani, R. J. (1987). Local likelihood estimation. J. Amer. Statist.

Assoc., 82, 559-567.

Huang, L.-S., and Chan, K.-S. (2013). Local polynomial and penalized trigonometric series

regression. Manuscript, submitted.

18



Huang, L.-S., and Chen, J. (2008). Analysis of Variance, Coefficient of Determination, and

F-test for Local Polynomial Regression. Ann. Statist., 36, 2085-2109.

Huang, L.-S., and Davidson, P. W. (2010). Analysis of variance and F -tests for partial linear

models with applications to environmental health data. J. Amer. Statist. Assoc., 105,

991-1004.

Huang, L.-S., and Su, H. (2009). Nonparametric F -tests for nested global and local poly-

nomial models. J. Statist. Plann. Inference, 139, 1372-1380.

Lehmann, E. L. (2006). On likelihood ratio tests. Lecture Notes-Monograph Series Vol. 49,

Optimality: The Second Erich L. Lehmann Symposium, 1-8. Institute of Mathematical

Statistics.

Li, R., and Liang, H. (2008). Variable selection in semiparametric regression modeling.

Ann. Statist., 36, 261-286.

McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models, 2nd Edition. London:

Chapman and Hall.

Severini, T. A. (2007). Integrated likelihood functions for non-Bayesian inference.

Biometrika, 94, 529-542.

Simon, G. (1973). Additivity of information in exponential family probability laws. J.

Amer. Statist. Assoc., 68, 478-482.

19



Table 1: Proportion of rejections for Example 1

Proportion of rejection h = 0.1 h = 0.15 h = 0.2 h = 0.25

a = 0 0.048 0.040 0.036 0.030

a = −1 0.244 0.282 0.320 0.334

a = −1.5 0.558 0.602 0.640 0.674

a = −2 0.800 0.858 0.906 0.932

Table 2: Proportion of rejections for Example 2

Proportion of rejection h = 0.1 h = 0.15 h = 0.2 h = 0.25

a = 0.5 0.286 0.348 0.370 0.384

a = 0.75 0.588 0.600 0.738 0.742

a = 1.0 0.892 0.926 0.946 0.946
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Table 3: Proportion of rejections for Example 3

Proportion of rejection h = 0.15 h = 0.2 h = 0.25

a = 0 0.034 0.026 0.022

a = 1 0.132 0.150 0.150

a = 2 0.620 0.654 0.682

a = 3 0.926 0.946 0.952

Table 4: Proportion of rejections for Example 4

Proportion of rejection h = 0.15 h = 0.2 h = 0.25

a = 1 0.306 0.332 0.360

a = 1.5 0.685 0.732 0.752

a = 2 0.921 0.946 0.950
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Figure 1: Plot of the nonlinear trends of x24 in predicting bankrupt probabilities with

bandwidth h = 0.125 (solid line), h = 0.1 (dotdash line), and h = 0.075 (dashed line) for

the 2002 German Bundesbank Data.
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