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Abstract

This paper studies the robust estimation and inference of threshold models with integrated regres-

sors. We derive the asymptotic distribution of the pro�led least squares (LS) estimator under the

diminishing threshold e¤ect assumption that the size of the threshold e¤ect converges to zero. Depend-

ing on how rapidly this sequence converges, the model may be identi�ed or only weakly identi�ed and

asymptotic theorems are developed for both cases. As the convergence rate is unknown in practice, a

model-selection procedure is applied to determine the model identi�cation strength and to construct

robust con�dence intervals, which have the correct asymptotic size irrespective of the magnitude of

the threshold e¤ect. The model is then generalized to incorporate endogeneity and serial correlation

in error terms, under which, we design a Cochrane-Orcutt feasible generalized least squares (FGLS)

estimator which enjoys e¢ ciency gains and robustness against di¤erent error speci�cations, including

both I(0) and I(1) errors. Based on this FGLS estimator, we further develop a sup-Wald statistic to

test for the existence of the threshold e¤ect. Monte Carlo simulations show that our estimators and

test statistics perform well.
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1 Introduction

Threshold models, in which the model parameters switch when the value of a certain variable crosses

a threshold, have received much attention over the past two decades. Given their ability to capture a

very rich set of stylized facts of modern economics, such as multiple states, asymmetries and cyclical

e¤ects, the use of threshold models has been advocated in many empirical applications. Examples

include the analysis of asymmetries in persistence in US output growth (Potter, 1995), nonlinearities in

unemployment rates (Hansen, 1997), and multiple states in cross-country growth regressions (Durlauf

and Johnson, 1995, Hansen, 2000), among numerous others. The estimation and asymptotics for

variants of threshold models have been well established by Chan (1993), Hansen (1996, 2000), Tsay

(1998), Gonzalo and Pitarakis (2002), and Seo and Linton (2007) etc.. More recently, Yu (2012)

studies likelihood-based estimation and inference for a parametric discontinuous threshold regression

model while Li and Ling (2012) study the least squares (LS) estimator of the multiple-regime threshold

autoregressive (TAR) model.

However, most of the aforementioned studies maintain a restrictive assumption that the data should

be either i.i.d. or stationary processes. Two exceptions are Caner and Hansen (2001) who study

a threshold autoregressive model with a unit root and Gonzalo and Pitarakis (2006) who design a

Wald statistic to test the threshold e¤ect in a cointegrating regression. To the best of our knowledge,

the asymptotic properties of threshold estimators, when all or some of the regressors are integrated

processes, have not been established. In this paper, we investigate the robust estimation of threshold

models with integrated regressors and establish its asymptotic properties allowing for di¤erent model

identi�cation strengths, endogenous regressors and serially correlated error terms, including both I(0)

and I(1) errors.

Speci�cally, we consider a threshold model of the following form:

yt =

(
�01xt + ut; if qt � 0
�02xt + ut; if qt > 0

, (1)

where xt is a d1-dimensional vector of integrated process of order 1 (I(1)) and yt is the dependent

variable.1 The error term, which will be speci�ed more precisely later, is denoted by ut; and qt is the

threshold variable. The threshold value 0 2 [; ] is an unknown parameter pending estimation. If
ut is a stationary process, Equation (1) can be regarded as a special case of nonlinear cointegration

models,2 see Karlsen et al. (2007), Wang and Phillips (2009), Gao et al. (2009a, 2009b), Bierens and

Martins (2010) and Choi and Saikkonen (2010).

Equation (1) can be rewritten as

yt = �
0xt + �

0xtI(qt � 0) + ut; (2)

1The model could be to extended to include an intercept term and stationary regressors.
2Loosely speaking, if the response variable yt is generated by a nonlinear transformation of integrated regressors xt

plus a stationary error term, then there exists a nonlinear cointegrating relationship between yt and xt:
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where � = �2 and � = �1 � �2: Here I(qt � 0) is an indicator function taking the value one if

qt � 0 and zero otherwise. The vector (1;��) can be regarded as a benchmark long-run relationship
between yt and xt and the term �xtI(qt � 0) captures the deviation from the linear equilibrium. In

the literature, � is often assumed to be a deterministic sequence converging to zero at some rate as the

sample size n increases. This assumption is not only convenient for deriving the asymptotic distribution

of threshold estimators as in Hansen (2000), but is also relevant in many empirical applications. For

example, an important issue in the empirical �nance literature is to investigate whether fundamental

variables, such as the dividend-price ratio and the earning-price ratio, can predict asset returns. Linear

prediction models have been extensively studied, but have failed to generate any unanimous conclusion

(for more detail, refer to Campbell and Yogo, 2006).3 Recently, Gonzalo and Pitarakis (2012) document

a regime-speci�c predictability of S&P 500 index returns from the dividend ratio based on a threshold

model. However, as is well known, stock returns commonly behave as martingale di¤erences, while

fundamental variables are highly persistent (integrated or nearly integrated processes). This imbalance

on the order of integration implies that such predictive relationship should be very weak, which happens

if and only if � = 0 and � is around zero in Equation (2).

In this paper, we follow the literature by assuming the size of threshold e¤ect converges to zero.

Depending on how rapidly this sequence converges, the threshold value 0 may be identi�ed or only

weakly identi�ed and we develop asymptotic theorems for both cases.4 In the �rst case, we show that the

pro�led LS estimator is consistent and that its con�dence intervals (CIs) can be constructed through

inversion of certain standard test statistics; whereas in the second case, the pro�led LS estimator

is inconsistent and its limiting distribution depends on some inestimable nuisance parameters. The

standard method to construct CIs does not control the coverage probability. We take the supremum

of quantiles for all possible values of nuisance parameters and then construct the least favorable CIs.

These CIs have the correct asymptotic size under the weak identi�cation case, but can be unnecessarily

long when the model is identi�ed. Motivated by Cheng (2008) and Shi and Phillips (2012), we then

propose a model-selection procedure to choose the CIs. It can be shown that the CIs chosen by this

method have approximately correct coverage probability irrespective of the magnitude of the threshold

e¤ect.

Furthermore, in a generalized model, we consider endogeneity and serial correlation, which are

common in empirical studies with integrated regressors. Following Saikkonen (1991), we assume the

error term to be an autoregressive (AR) process, and use leads and lags of innovations as extra re-

gressors to deal with endogeneity. We then design a Cochrane-Orcutt feasible generalized least squares

(FGLS) estimator to estimate the model. It is well known that, in linear cointegration models, the

FGLS estimator cannot improve the estimation e¢ ciency, as Phillips and Park (1988) demonstrate by

establishing their asymptotic equivalence. However, this equivalence does not hold when there exists

3Marmer (2008) shows that linear regression techniques actually may lead to spurious forecasts if there exist small
departures from the linear structure, but improvements of the forecast accuracy are possible if the nonlinear components
are properly considered.

4See Elliott and Müller (2007) and Caner (2007) for weak identi�cation in break-point models; Cheng (2008) and Shi
and Phillips (2012) for weak identi�cation in general nonlinear models.
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a threshold e¤ect and we analytically and numerically show that the FGLS estimation achieves more

e¢ ciency compared to the pro�led LS estimation. The method to construct the robust CIs of the LS

estimator can also be generalized for the FGLS estimator.

Another attraction of the FGLS estimator is its robustness with respect to di¤erent error speci�ca-

tions, including both I(0) and I(1) errors. This robustness allows us to design a sup-Wald statistic to

test for the existence of threshold e¤ects without any requirement on the stationarity of the regression

error term and thus avoid the so-called joint hypothesis test problem in such models (see Balke and

Fomby, 1997). The idea is similar to Perron and Yabu (2009), who consider testing for structural

changes in the trend function of a time series using a quasi-FGLS procedure, without any requirement

on whether the noise component is stationary or integrated. In our case, we use the sup-Wald test

statistic based on the FGLS estimator to test for the existence of a threshold e¤ect and the critical

values are generated from a bootstrap method. Monte Carlo simulations show that the FGLS estimator

and the test statistic perform very well, even the error is an I(1) process.

The remainder of the paper is organized as follows. Section 2 presents the basic model. Section 3

considers the estimator and its asymptotics for the basic model. Section 4 generalizes the basic model

to allow for serially correlated errors and model endogeneity. Monte Carlo simulations are discussed in

Section 5. Section 6 concludes the paper. All proofs are in the appendices.

Throughout the paper, [ns] denotes the integer part of ns: The symbol �
p!�represents convergence

in probability, �=)� represents weak convergence, and a:s:! represents almost sure convergence. All

limits are de�ned as the sample size n!1 unless otherwise stated. For a vector x; jj � jj signi�es the
Euclidean norm, i.e., jjxjj =

P
x2i : For a matrix A; jAj = (tr(A0A))1=2 denotes the Euclidean norm and

A0 denotes its transpose.
R
denotes integration from 0 to 1.

2 The Basic Model

The basic model we consider in the paper is given by

yt =

(
�01xt + ut; if qt � 0
�02xt + ut; if qt > 0

,

where xt is a d1-dimensional vector of unit root processes whose generating mechanism is given by

xt = xt�1 + vt; t = 1; 2; :::n

and we set x0 = 0 for convenience, although x0 = oa:s:(
p
n) is su¢ cient for the asymptotic results.

For the component time series ut and vt; we de�ne the following partial sums as

Un(s) �
1p
n

[ns]X
t=1

ut; and Vn(s) �
1p
n

[ns]X
t=1

vt: (3)

Before going further, we make the following assumptions.
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(A1) sups2[0;1] jj(Un(s); Vn(s)) � (Bu(s);Bv(s))jj
a:s:! 0 as n ! 1; where (Bu(s);Bv(s)) is a vector

of Brownian motions with a positive de�nite long-run covariance matrix.

(A2) The error term ut satis�es: i) E(ut) = 0; Ejutj4 < 1; ii) For each n; there exists a �ltration
zn;t; t = 1; :::; n; such that f(ut;zn;t) : t � 1g is a stationary and ergodic martingale di¤erence sequence
with E(u2t jzn;t�1) = �2u < 1 almost surely for all t = 1; :::; n; iii) The term (qt; xt) is adapted to the

�ltration zn;t�1; t = 1; :::; n:
(A3) i) The threshold parameter 0 2 [; ]; ii) The threshold variable qt is strictly stationary,

ergodic and ��mixing with mixing coe¢ cients �m satisfying
P1
m=1 �

1
2
� 1
r

m < 1 for r > 2; iii) qt has a

continuous distribution F (�) and f(�) is the corresponding density function satisfying 0 < f() � f <1
for all  2 [; ]:

(A4) The d1 dimensional I(1) vector xt is not cointegrated.

Assumption (A1) considers a strong approximation for (Un(s); Vn(s)); which is needed to derive the

convergence rate of the threshold estimator. This assumption is stronger than the weak convergence

result established by the multivariate invariance principle, but it is quite common in the literature,

see Park and Phillips (2001), Kasparis (2008), Wang and Phillips (2009a, 2009b) and Shi and Phillips

(2012), among others. Su¢ cient conditions to derive the strong approximation are also well developed

in the literature. For example, Park and Hahn (1999) establish conditions of strong approximations

for general linear processes. Shao and Lu (1987) and Cai et al. (2009) provide conditions of strong

approximations for an ��mixing process.
Assumption (A2) supposes f(ut;zn;t) : t � 1g to be a martingale di¤erence sequence and (qt; xt) is

adapted to the �ltration zn;t�1; t = 1; :::; n. Under this assumption, qt and xt become predetermined
given the �ltration zn;t�1: One natural example of zt is the ���eld generated by the information
set f(ui; qi+1; xi+1) : 1 � i � tg. This assumption might be restrictive in linear cointegration models,
but it is common in fully speci�ed cointegrating regression models. It allows for arguments based on

the martingale central limit theory to establish a weak convergence result for the empirical processP[ns]
t=1 It(qt � )ut as in Caner and Hansen (2001).5 Assumption (A2) does not allow for serially

correlated errors and model endogeneity. However, in Section 4, we relax this assumption by adopting

the so-called �leads and lags�approach or dynamic OLS estimator proposed by Saikkonen (1991).

(A3) is very conventional in the literature of threshold models. The threshold variable qt is assumed

to be strictly stationary and strong mixing for asymptotic purposes. The assumption excludes the

case where qt is a unit root process, under which one may need to use another technique such as

the triangular array asymptotics proposed by Andrews and McDermott (1995). Assumption (A4) is

standard in the literature of regressions with integrated processes.

Following Caner and Hansen (2001), we de�ne W (s; �) as a two-parameter Brownian motion on

5The assumption (A2) can be relaxed under certain circumstances. For instance, ut could be generalized to follow a
linear moving average process of �nite order l: However, fully generalizing the model to allow for serially correlated errors
would involve substantial added complexity (see Gonzalo and Pitarakis, 2006).
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(s; �) 2 [0; 1]2, which is a zero-mean Gaussian process with covariance given by

E(W (s1; �1)W (s2; �2)) = (s1 ^ s2)(�1 ^ �2):

The two-parameter Brownian motion is a special tool to derive the limiting distribution in threshold

models with integrated processes. Note that when � = 1; we haveW (s; 1) �W (s), which is a Brownian
motion on s 2 [0; 1].

Moreover, we can de�ne the following stochastic integration with respect to W (s; �) on the �rst

argument (s) while holding the second argument (�) constant as

J1(�) =

Z
Bv(s)dW (s; �) = lim

n!1

nX
t=1

(Bv(
t� 1
n
)

�
W (

t

n
; �)�W ( t� 1

n
; �)

�
; (4)

where J1(�) is a Gaussian process with an almost surely continuous sample path and the covariance

kernel

E(J1(�1)J1(�2)) = (�1 ^ �2)
Z
Bv(s)B

0
v(s)ds:

3 Main Results

3.1 Pro�led LS Estimation and Asymptotics

For ease of manipulation, we rewrite Equation (2) in a more compacted form:

yt = �
0At(0) + ut; (5)

where At(0) = (x
0
t; x

0
t(0))

0; xt(0) = xtI(qt � 0); and � = (�0; �0)0.
For any �xed  2 [; ]; the following model is estimated:

yt = b�()0At() + but();
where b�() is given by

b�() = " nX
t=1

At()At()
0

#�1 " nX
t=1

At()yt

#
:

The sum of squared residuals is de�ned as

SSRn() =

nX
t=1

but()2 = nX
t=1

�
yt � b�()0At()�2 ; (6)

and we de�ne the pro�led LS estimator of 0 as the value that minimizes SSRn(); i.e.,

bn = arg min
2[;]

SSRn () :
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The term SSRn () is not di¤erentiable due to the presence of the indicator functions; thus, we

can not write bn in closed form from �rst-order conditions: Following Hansen (2000), we adopt a

grid-searching method. Speci�cally, we divide [; ] into N quantiles and let �N = fq1; q2; :::qNg:
The estimator bN = argmin2�N SSRn () is a good approximation to bn when N is large enough.

The other parameters are then estimated by using the point estimate bn via b� = b� (bn) and b�2u =
1
n

Pn
t=1 but(bn)2.
In what follows, we set � = �n = n�1=2���0; where �1=2 < � � 1=2 and �0 2 R is a �xed parameter.

Under this assumption, the size of the threshold e¤ect converges to zero with the rate n�1=2�� ; where

the value of � determines the identi�cation strength of the threshold value 0: We exclude the case

with � > 1=2 since the nonlinear term is negligible asymptotically. In addition, when � < �1=2; the
nonlinear term is explosive and is also excluded. We also exclude the case of � = �1=2 to focus on the
limiting behavior of bn when �n ! 0:

The following theorem states the limiting results for bn according to the value of � :
Theorem 3.1 Under Assumptions (A1)�(A4) and �n = n�1=2���0; the following limiting results hold:

Case 1: if �1=2 < � < 1=2; then

n1�2� jbn � 0j = Op(1):
Furthermore,

n1�2��(b � 0) = r� ) arg max
r2(�1;1)

(�(r)� 1
2
jrj);

where

� =
�00
�R
Bv(s)B

0
v(s)ds

�
�0f0

�2u
;

with f0 = f(0) and �(r) is a two-sided Brownian motion on the real line de�ned as:

�(r) =

8><>:
�1(r) if r > 0

0 if r = 0

�2(�r) if r < 0
: (7)

The processes �1(r) and �2(r) are two independent standard Brownian motions on [0;1):
Case 2: if � = 1=2; then bn ) (0; �0) and (0; �0) is a random variable that maximizes

Q(; 0; �0); where

Q(; 0; �0) =
1

F ()(1� F ())�
0
1()

�Z
Bv(s)B

0
v(s)ds

��1
�1(); (8)

with

�1() = �() + [F ( ^ 0)� F ()F (0)]
�Z

Bv(s)B
0
v(s)ds

�
�0; (9)
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and

�() = �u

Z
Bv(s)d [W (s; F ())� F ()W (s)] : (10)

Theorem 3.1 shows that the convergence results for bn depend critically on the value of � ; which
characterizes the convergence speed of �n:6

If �1=2 < � < 1=2; the threshold e¤ect is identi�able and bn is a consistent estimator. The rate of
convergence is n1�2� ; which is decreasing in � : The limiting distribution of bn has the same form as

that found for the stationary threshold model in Hansen (2000), but the scale factor � is di¤erent. Note

that f0 is the density of qt at 0: Intuitively, a larger f0 implies more data points around 0; making b
more accurate.

To generate the con�dence interval of ; we invert the following likelihood ratio statistic for the null

hypothesis  = 0; given by

LRn(0) = n
SSRn (0)� SSRn (bn)

SSRn (bn) ; (11)

where bn is the pro�led LS estimator. Following Hansen (2000), it can be shown that LRn(0) )
supr2(�1;1)(2�(r)�jrj). Denote qI;1�a as the 1�a quantile of the random variable supr2(�1;1)(2�(r)�
jrj) and qI;1�a can be calculated by the formula qI;1�a = �2 ln(1�

p
1� a): Thus, the a�level con�dence

interval of  in the case of identi�cation can be expressed as

CII;n(�) = f : LRn() � qI;1�ag: (12)

If � = 1=2; the threshold e¤ect is only weakly identi�ed. The pro�led LS estimator bn converges to
a random variable (0; �0), re�ecting the lack of information. Since 0 and �0 are not estimable, any

statistical inference based on them is impossible. Following Cheng (2008) and Shi and Phillips (2012),

we de�ne the least favorable CI which is large enough for all possible 0 and �0. Denote q
W
;1�a(0; �0)

as the 1� a quantile of j(0; �0)� 0j for each 0 2 [; ] and �0 2 R: The a-level CI, given 0 and �0;
is then de�ned as

CIW;n(1� a; 0; �0) = f : jbn � j � qW;1�a(0; �0)g: (13)

Since 0 and �0 are two unknown variables, we de�ne a robust quantile by taking the supremum of all

possible 0 and �0: Let

qW;1�a = sup
02[;]

sup
�02R

qW;1�a(0; �0): (14)

The a�level least favorable CI in the case of weak identi�cation is then de�ned as

CIW;n(a) = f : jbn � j � qW;1�ag: (15)

6 In an early version of this paper, we have also established the limiting distribution of the coe¢ cient estimators b� (bn).
We show that, if �1=2 < � < 1=2; the limiting distribution of the coe¢ cients estimators is mixed normal, which makes
conventional t-test and chi-square tests applicable, whereas if � = 1=2; the limiting result contains a bias term �(bn; 0; �0)
due to the inconsistency of bn.
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3.2 Robust Con�dence Interval

In empirical studies, � is unknown, raising the question of which CI should be used. In this subsection,

based on a model selection procedure, we construct a robust CI which has approximately correct

coverage probability irrespective of the value of � :

For a �xed  2 [; ]; let X() = (x1(); x2(); :::; xn())0 and X = (x1; x2; :::; xn)
0: The Wald test

statistic for testing H0 : �n = 0 can be de�ned as

Tn() = b�n()0(X()(I � Pn)X())b�n()=b�2u; (16)

where Pn is the projection matrix of X, given by Pn = X(X 0X)�1X 0: Following Hansen (1996), we

de�ne the sup-Wald test statistic as

Tn = sup
2[;]

Tn():

The following theorem explores the limiting behaviors of the sup-Wald statistic under di¤erent

model identi�cation strengths.

Theorem 3.2 Under Assumptions (A1) � (A4) and �n = n�1=2���0; where �0 is a nonzero constant,
the following limiting results hold:

i) if �1=2 < � < 1=2; then Tn
p!1:

ii) if � = 1=2; then

Tn ) T1 = sup
2[;]

T1() = sup
2[;]

1

�2u(F ()(1� F ())
�1()

0
�Z

Bv(s)B
0
v(s)ds

��1
�1(); (17)

where �1() is de�ned by Equation (9).

Theorem 3.2 shows that Tn
p!1 if �1=2 < � < 1=2 and Tn <1 if � = 1=2: This result enables us

to develop the following model selection procedure. We de�ne f�n : n � 1g as a sequence of constants
that diverge to in�nity as n ! 1: The parameter �n is referred to as a tuning parameter and we
require the sequence �n to diverge to in�nity at a rate slower than n� for any � > 0, i.e.,

n���1=2n ! 0: (18)

Suitable choices of �n include d (ln(n))
2 where d is a positive constant, in accordance with BIC. The

model selection procedure is designed to choose the model with the identi�ed threshold e¤ect if Tn > �n
and to choose the model with the weakly identi�ed threshold e¤ect otherwise. We use the CI chosen

through this procedure as the �nal CI.

Speci�cally, for each con�dence level a; de�ne

CI;n(a) =

(
CII;n(a); if Tn > �n
CIW;n(a); if Tn � �n

)
:

9



We focus on the smallest �nite sample coverage probability of CI;n(a) over the whole parameter

space, which can be approximated by the following asymptotic size

AsySZ(a) = lim inf
n!1

inf
�02R

inf
2[;]

Pr( 2 CI;n(a)): (19)

The following theorem shows that the robust CI has the correct asymptotic size.

Theorem 3.3 Under Assumptions (A1)� (A4), for any a 2 (0; 1); we have AsySZ(a) = a:

4 The Generalized Model

In many economic applications of cointegration, error terms are serially correlated and correlated with

regressors. Under these conditions, it is well known that the ordinary least squares (OLS) estima-

tor contains a second-order bias in linear cointegration models. Several e¢ cient estimators have been

proposed, such as the fully modi�ed (FM) OLS estimator of Phillips and Hansen (1990), the canoni-

cal cointegrating regressions (CCR) estimator of Park (1992) and the dynamic ordinary least squares

(DOLS) estimator proposed by Saikkonen (1991) and Stock and Watson (1993). In the following, we

generalize the basic model in Section 2 to allow for serial correlation and model endogeneity.

More formally, we introduce Assumptions (A10) and (A20) to replace Assumptions (A1) and (A2).

Assumptions (A3) and (A4) are applicable to the generalized model.

(A10) In Equation (1), ut can be decomposed as

ut =

d1X
i=1

KX
j=�K

�ijvi;t�j + �t = �
0zt + �t; (20)

�t = ��t�1 + "t; with � 2 (�1; 1];

where zt = (v1;t�K ; :::; vd1;t+K) and � = (�1;�K ; :::; �d1;K): The error term "t satis�es i) E("t) = 0;

Ej"tj4 < 1; ii) For each n; there exists a �ltration zn;t; t = 1; :::; n; such that f("t;zn;t) : t � 1g is a
stationary and ergodic martingale di¤erence sequence with E("2t jzn;t�1) = �2 < 1 almost surely for

all t = 1; :::; n; iii) The term (qt; xt) is adapted to the �ltration zn;t�1; t = 1; :::; n:
(A20) Let �n(s) � 1p

n

P[ns]
t=1 "t and sups2[0;1] jj(�n(s); Vn(s))� (B"(s);Bv(s))jj

a:s:! 0 as n!1; where
(B"(s);Bv(s)) is a vector of Brownian motions with a positive de�nite long-run covariance matrix.

Under Assumption (A10), the model endogeneity can be fully captured by �0zt, where zt is a vector

of leads and lags of �xt: The parameter K can diverge to in�nity as the sample size increases. The idea

of using leads and lags to deal with endogeneity in cointegration models was proposed by Saikkonen

(1991). We assume � remains constant to focus on the threshold e¤ect occurring in the cointegrating

relationship. The extension allowing � to be regime-sensitive would be interesting and is left to future

study. The term �t is assumed to be AR(1) and � controls the stationarity of �t: If � = 1; �t is a
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unit root process and the model describes a structural spurious relationship,7 while if � < 1, �t is a

stationary process and the model is a cointegrating relationship.

To estimate a regression with serial correlation, the Cochrane-Orcutt FGLS procedure is usually

adopted. In linear cointegration models, as shown in Phillips and Park (1988), the FGLS estimator

and the OLS estimator are equivalent in asymptotics. The Cochrane-Orcutt FGLS estimator also

works for spurious regressions, as Phillips and Hodgson (1994) demonstrate by proving the asymptotic

equivalence of the FGLS estimator to the OLS estimator when the error is an I(1) process. However, in

the presence of threshold e¤ects, there is no asymptotic equivalence between FGLS and OLS estimators.

The following simple sketch may help to illustrate this di¤erence.

For a linear cointegrating regression after transformation,

yt � �yt�1 = �0(xt � �xt�1) + (�t � ��t�1);

and it follows that

n (b�FGLS � �) =

 
nX
t=1

(xt � �xt�1)(xt � �xt�1)0
!�1 nX

t=1

(xt � �xt�1)(�t � ��t�1)
!

)
�
(1� �)2

Z
Bv(s)B

0
v(s)ds

��1
(1� �)2

Z
Bv(s)dB�(s)

=

�Z
Bv(s)B

0
v(s)ds

��1 Z
Bv(s)dB�(s);

which is the same as the limiting result of the OLS estimator.

However, for a cointegrating regression with a threshold e¤ect after transformation,

yt � �yt�1 = �0(xt � �xt�1) + �0n(xt()� �xt�1()) + (�t � ��t�1)

= �0ext + �0next() + (�t � ��t�1);
where � can not be canceled in the limiting result because

nX
t=1

ext()ext()0 ) �
(1 + �2)F ()� 2�F1(; )

� Z
Bv(s)B

0
v(s)ds;

which depends on �, the marginal distribution function F () � Pr(qt � ) and the joint distribution
F1(; ) � Pr(qt � ; qt�1 � ); whereas

nX
t=1

ext()(�t � ��t�1)) (1� �2)
Z
Bv(s)dB�(s):

7Structural spurious regressions can be due to integrated measurement errors and missing integrated regressors. See
Choi et al. (2008).
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4.1 FGLS Estimator

To obtain a feasible GLS estimator, we �rst estimate the threshold value 0 through the pro�led

LS estimator without considering serial correlation and endogeneity. Then we estimate b� from the

estimated error terms. Finally, we construct the Cochrane-Orcutt FGLS estimator based on b�.
Speci�cally, we estimate 0 using

bn = arg min
2[;]

SSRn () ;

where SSRn() is the sum of squared residuals for the regression

yt = b�0xt + b�0nxtI(qt � ) + b�0zt + b�t:
By estimating the AR model b�t(bn) = b�b�t�1(bn) + b"t;
the OLS estimator b� is estimated, where b�t(bn) = yt � b�0(bn)xt � b�0n(bn)xtI(qt � bn)� b�0(bn)zt:

The following theorem establishes the consistency and the convergence rate of b�.
Theorem 4.1 Under Assumptions (A10), (A20); (A3) and (A4); b� ! � as n ! 1. Furthermore,
jb�� �j = Op(n�1=2) if � < 1; and jb�� 1j = Op(n�1) if � = 1:

Theorem 4.1 shows that b� is consistent even when � = 1; i.e., the regression is a spurious relationship.
The convergence rates are di¤erent due to the di¤erent convergence speeds of integrated and stationary

processes. Moreover, we �nd that the limiting behavior of b� is not a¤ected by the identi�cation strength
of the threshold e¤ect. The intuition is as follows. If � < 1=2; 0 can be consistently estimated by bn.
In each regime, if � < 1; the coe¢ cients can be consistently estimated as well and thus it is obvious

that b� p! �: If � = 1; the coe¢ cient estimators are not consistent; however, this inconsistency implies

that the residual term b�t(bn) is a unit root and that b� p! � = 1: If � = 1=2; bn is not consistent as
shown in Theorem 3.1; however, the nonlinear term b�0nxtI(qt � ) decays to zero so fast that it has no
impact on the estimation of � asymptotically. Following Choi et al. (2008), the consistency of b� can
also be obtained.

Based on the consistent estimator b�; we construct the following Cochrane-Orcutt FGLS estimators.
We �rst de�ne eyt = yt � b�yt�1; and ezt; ext; e�t in the same way. For each  2 [; ]; de�ne

ext() = xtI(qt � )� b�xt�1I(qt�1 � ):
Let eA1t() = (ex0t; ext()0; ez0t)0 and stack ext; eyt; ezt; ext() and eA1t() to get the matrices: eX; eY ; eZ; eX()
and eA1().

After the transformation,

eyt = �0ext + �0next() + �0ezt + e�t = e�0 eA1t() + e�t; (21)
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where e� = (�0; �0n; �0)0:
Using Equation (21), for each ; we can de�ne

be�() = " nX
t=2

eA1t() eA1t()0#�1 " nX
t=2

eA1t()eyt# ; (22)

and the FGLS threshold estimator can be de�ned as

en = arg min
2[;]

(]SSRn());

where ]SSRn() is the sum of squared residuals given by

]SSRn() =
nX
t=2

�eyt()� be�()0 eA1t()�2 : (23)

The following theorem establishes the limiting results of the FGLS estimator.

Theorem 4.2 Under Assumptions (A10); (A20); (A3) and (A4); the following results hold:

Case 1: if �1=2 < � < 1=2; then n1�2� jen � 0j = Op(1). Furthermore,
n1�2�e�(en � 0) = r� ) arg max

r2(�1;1)
(�(r)� 1

2
jrj);

where e� = �1 + �2� ��00 R Bv(s)B0v(s)ds�0� f0
�2

; (24)

and �(r) is de�ned by Equation (7).

Case 2: if � = 1=2; then en ) e(0; �0) and e(0; �0) is a random variable that maximizeseQ(; 0; �0) where
eQ(; 0; �0) = e�01()

0@eG22()� eG21()eG23()
!0 eG11; eG13eG31; eG33

!�1 eG12()eG32()
!1A�1 e�1();

with

e�1() = e�() +
0@eG22()� eG21()eG23()

!0 eG11; eG13eG31; eG33
!�1 eG12()eG32()

!1A �0;
and e�() = e�2()�

 eG21()eG23()
!0 eG11; eG13eG31; eG33

!�1 e�1()e�3()
!
; (25)
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where the random matrix eG() =
0B@ eG11(); eG12(); eG13()eG21(); eG22(); eG23()eG31(); eG32(); eG33()

1CA and the random vector e�() =
0B@ e�1()e�2()e�3()

1CA
are speci�ed in Lemma B.4 of the appendix.

Theorem 4.2 establishes the convergence results for the FGLS estimator en: If �1=2 < � < 1=2, the
threshold value can be consistently estimated and its limiting distribution depends on the persistence

parameter �: Note that e� = �1 + �2��; implying that the FGLS estimator is more e¢ cient than the
pro�led LS estimator when � 6= 0. The simulations in Section 5 demonstrate this result.

4.2 Generalized Sup-Wald Statistics

Testing for the existence of the threshold e¤ect in a cointegration regression is challenging since it is a

joint hypothesis problem (see Balke and Fomby, 1997). For example, when testing for the existence of

threshold e¤ects, the statistics based on error correction models (ECM) need to assume the model is

a cointegrating regression. Therefore, the rejection of the null hypothesis does not necessarily indicate

that there is a threshold e¤ect. It may mean that the regression is a spurious relationship. Thanks to

the robustness of the FGLS estimator, we can design a generalized sup-Wald test statistic based on this

estimator to test for the existence of threshold e¤ects, without any requirement on the stationarity of

the error term.

The null hypothesis is

H0 : �n = 0;

and the alternative is

H1 : �n 6= 0:

Under the null, after transformation, the model is

eyt = �0ext + �0ezt + e�t; (26)

while under the alternative, the transformed model is

eyt = �0ext + �0next(0) + �0ezt + e�t
= e�0 eA1t(0) + e�t: (27)

Let fV1 = ( eX; eZ), then a generalized Wald statistic can be de�ned as
eTn() = e�n()0( eX()(I � eP ()) eX())e�n()=e�2;

where eP () is the projection matrix for eV1 and e�2 = ]SSRn()=n:
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The generalized sup-Wald statistic is de�ned as

eTn = sup
2[;]

eTn():
Theorem 4.3 Under Assumptions (A10); (A20); (A3), (A4) and H0 : �n = 0; the following limiting

result holds:

eTn ) eT = sup
2[;]

eT ()
= sup

2[;]

1

�2
e�0()

0@eG22()� eG21()eG23()
!0 eG11; eG13eG31; eG33

!�1 eG12()eG32()
!1A�1 e�();

where e�() is de�ned by Equation (25).
Theorem 4.3 establishes the limiting distribution of the generalized sup-Wald test statistic, which is

nonstandard and we generate the critical values using a parametric bootstrap method. We �rst estimatebe�R using Equation (26) under the null. Then, we obtain the residual terms fbe�t(en)gnt=2 using Equation
(27) under the alternative. We draw a random variable e�bt from the sample fbe�t(en)gnt=2 for all t = 2; :::; n;
and generate a new sequence feybtgnt=1 by eybt = b�0Rext + b�0Rezt + e�bt : De�ne yb1 = y1 and ybt = eybt + b�ybt�1
for all t = 2; :::; n: Let eT bn be the sup-Wald test calculated from the new data set fybt ; xt; zt; qtgnt=2.
Under the null, the distribution of eT bn approximates the distribution of eTn: The bootstrap p-value is
obtained by calculating the frequency of simulated eT bn that exceeds eTn when the number of simulations
is su¢ ciently large. Following Hansen (1996), one can show that the generated p-value converges to

the true size.

One can use the generalized sup-Wald statistic eTn to construct robust CIs for the threshold model
following the procedures described in Section 3.2.

5 Simulations

This section demonstrates the �nite sample performance of the estimators and test statistics through

two simulation experiments.

Simulation 1: We examine the consistency of the pro�led LS estimator and the FGLS estimator
under di¤erent model settings. We make comparisons between these two estimators to demonstrate

the advantage of the FGLS estimator when serial correlation and model endogeneity exist.

We consider the simple regression model

yt = �xt + �nxt(qt � 0) + �vt + ut;

where xt = xt�1 + vt and ut = �ut�1 + "t. The threshold variable qt is generated by an AR(1) process:
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qt = 0:5qt�1 + et: The innovation processes vt; "t and et follow i.i.d. N(0; 1) and are independent of

each other. The true threshold value is set as 0 = 0 and the coe¢ cient � is set as 1: The parameter

� is set as 0 or 0:5, which controls the correlation between xt and ut: To check the impact of the serial

correlation of ut on the estimation, we set � as either 0; 1; 0:95 or �0:95. Moreover, we set the size
of the threshold e¤ect as �n = 2n�1=2�� with � chosen as either 0 or 0:5, corresponding to the case

with identi�cation or the case with weak identi�cation. The number of replications is N = 1000: The

sample size n is set as 100; 200 or 400. We let the number of lags K = 5 in the FGLS estimator.8

Tables 1a and 1b report the mean square errors (MSE) of the pro�led LS and the FGLS estimators

for the threshold value and regression coe¢ cients, respectively.

Here insert Tables 1a and 1b

Speci�cally, Table 1a compares the performance of the pro�led LS and the FGLS estimators of the

threshold value under di¤erent model settings. Panel A displays the results when � = 0 (the case with

identi�cation). The pro�led LS estimator b is consistent when � < 1 (the error term ut is stationary)

no matter whether there exists regressor endogeneity or not, but it is inconsistent when � = 1 (the

error term ut is a unit root process). On the other hand, the FGLS estimator e is always consistent.
Of particular interest is that the FGLS estimator performs better than the pro�led LS estimator when

serial correlation and regressor endogeneity exist, which is consistent with the theoretical result. Panel

B reports the results when � = 0:5 (the case with weak identi�cation). Both pro�led LS and FGLS

estimators are inconsistent since their MSE do not converge to zero as the sample size increases to

in�nity. However, the FGLS estimators still have smaller MSE than the pro�led LS estimators in

most cases. Similar conclusions can be drawn from Table 1b, which reports the MSE of the regression

coe¢ cient estimators.

Simulation 2: In this experiment, we examine the performance of the sup-Wald test statistics and
the model selection procedure. The data generating process is the same as in Simulation 1, but we

consider an additional case with �n = 0 to evaluate the size performance of the test statistics.

Table 2a reports the size performance of the sup-Wald statistic Tn and the generalized sup-Wald

statistic eTn; which are based on the pro�led LS estimator and the FGLS estimator, respectively. Com-
paring Panel A with Panel B, one can see that eTn has better size performance than Tn when serial
correlation or regressor endogeneity exists. In an unreported result with the sample size n = 1000, the

rejection rate of eTn is close to the size, but not for Tn: Thus, we suggest that the generalized sup-Wald
statistic eTn should be used in practice.

Here insert Table 2a

Tables 2b through 2d report the power performance for Tn and eTn with di¤erent sample sizes. In
all three tables, Panel A shows the results for the case with identi�cation and Panel B shows the case

with weak identi�cation.
8Other values for K; such as 10 and 15, are also applied with little change in the results.
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Here insert Tables 2b, 2c and 2d

When the threshold e¤ect is identi�ed, both Tn and eTn seem to be consistent since their power

converges to one as the sample size increases. In particular, eTn performs better than Tn when there
exists serial correlation, model endogeneity or both; the advantage of the generalized sup-Wald statistic

is con�rmed.

However, when the threshold e¤ect is only weakly identi�ed, both statistics seem to have low power

even when the sample size is 400, which is consistent with the theoretical results. In practice, one may

use the model selection procedure described in Section 3.2 to detect the case with weak identi�cation.

We choose (ln(n))2 as the tuning parameter �n and judge that the model is weakly identi�ed if Tn oreTn is smaller than �n. From the columns corresponding to (ln(n))2 in Tables 2b-2d, one can �nd that

the model selection procedure based on eTn works very well in all cases.
6 Conclusion

In the literature, statistical theory for threshold models with stationary explanatory variables has been

well developed by Hansen (1996, 2000). However, in empirical macroeconomics and �nance, many

explanatory variables are nonstationary. This paper establishes statistical theory for threshold models

with nonstationary regressors under the diminishing threshold e¤ect assumption. Our work can also

be related to the literature of nonlinear cointegration. The proposed approach o¤ers some �exibility of

the cointegrating structure such that it can capture threshold e¤ects in the long-run relationship. The

merits of the method have been successfully demonstrated through Monte Carlo simulations.

There are several directions open for further work. First, it may be interesting to develop a more

general model with multiple threshold e¤ects, each with a di¤erent identi�cation strength. A sequential

procedure can be applied to determine the number of regimes and their identi�cation strengths. Second,

the model can be extended to allow for stationary regressors. Moreover, there are many interesting

applications. For example, one can use the model to study the regime-sensitive Taylor rule (Taylor,

1993), where the dependent variable yt could be the short-term interest rate, the explanatory variables

xt could be macroeconomic variables such as the in�ation rate and the unemployment rate, and the

threshold variable qt could be the GDP growth rate. Another application is to model the regime-

dependent predictability of the fundamental ratios, such as the dividend-price ratio and the earning-

price ratio, to equity returns. The threshold variable could be a variable indicating the status of the

economy. All these are left for future studies.
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Appendix
In this appendix, Part A provides the proofs related to the basic model while Part B is for the generalized model.

To save space, we skip the details for some intermediary results and a more detailed presentation can be found in

Chen (2013).

Part A
Lemma A.1: Under Assumptions (A1)�(A3), for any  2 [; ]; we have 1p

n

P[ns]
t=1 It(qt � )ut ) �uW (s; F ()):

Lemma A.2: Under Assumptions (A1)� (A4), for any  2 [; ]; we have

1

n

nX
t=1

xtIt()ut ) �u

Z
Bv(s)dW (s; F ()):

Lemma A.3: Under Assumptions (A1)� (A4), for any  2 [; ]; as n!1; we have
a) n�2

Pn
t=1At()A

0
t() =M() + oa:s(1);

b) n�1
Pn

t=1At()ut ) �u

 R
Bv(s)dW (s)R

Bv(s)dW (s; F ())

!
;

where At() is de�ned in Equation (5) and M() =

 R
Bv(s)B

0
v(s)ds F ()

R
Bv(s)B

0
v(s)ds

F ()
R
Bv(s)B

0
v(s)ds F ()

R
Bv(s)B

0
v(s)ds

!
:

Lemma A.4: Under Assumptions (A1)� (A4); we have

n(b�(0)� �)) �uM(0)
�1

 R
Bv(s)dW (s)R

Bv(s)dW (s; F (0))

!
:

For any  6= 0; if �1=2 < � < 1=2; we have

n�+1=2(b�()� �))M()�1�(; 0; �0);

if � = 1=2;

n(b�()� �)) �uM()
�1

 R
Bv(s)dW (s)R

Bv(s)dW (s; F ())

!
+M()�1�(; 0; �0);

where

�(; 0; �0) = �
 

(F ()� F (0))
R
Bv(s)B

0
v(s)ds

(F ()� F (0 ^ ))
R
Bv(s)B

0
v(s)ds

!
�0:

Proof of Lemma A.1-A.4: The proofs are standard and are skipped here.

Lemma A.5: If �1=2 < � < 1=2; we have bn p! 0:

Proof: To establish the consistency of bn, we need to prove Pr(jbn � 0j > ") ! 0 for any " > 0: Denote

B(�) = f : j � 0j > "g and B(�) = [; ]nB(�): By the de�nition of bn; we have
Pr(jbn � 0j > ") = Pr

 
inf

2B(�)
SSRn() < inf

2B(�)
SSRn()

!
� Pr

�
inf

2B(�)
SSRn() < SSRn(0)

�
= Pr( inf

2B(�)
n2��1(SSRn()� SSRn(0)) < 0):

Thus, to prove Pr(jen � 0j > ") ! 0; it su¢ ces to show that inf2B(�) n2��1(SSRn() � SSRn(0)) > 0 with

probability 1.
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Rewrite Equation (2) as a matrix compacted form: Y = X 0� + X(0)
0�n + u; where Y;X;X(0) and u stack

yt; xt; xtI(qt � 0) and ut; respectively. Denote X�() = (X(); X �X()) and de�ne its projection matrix P � =
X�()(X�()0X�())�1X�()0: By some simple algebra, we have

SSRn() = Y
0(I � P � )Y = �0nX(0)0(I � P � )X(0)�n + 2�0nX(0)0(I � P � )u+ u0(I � P � )u;

where the second equation uses the fact that X 0(I � P � ) = 0; since X is a linear combination of (X(); X �X()):
When  = 0; we have SSRn(0) = u

0(I � P �0)u; and it follows that

n2��1(SSRn()� SSRn(0)) = n�1+2��0nX(0)
0(I � P � )X(0)�n + n�1+2�2�0nX(0)0(I � P � )u

+n�1+2� (u0(I � P � )u� u0(I � P �0)u) � S1 + S2 + S3; say. (A.1)

Next, we will show that S1 + S2 + S3 uniformly converges to a function b() which is positive for any  2 B(�):
Given �1=2 < � < 1=2, by Lemma A.3, it can be shown that

S2 = n
�1=2+�2

�
n1=2+��n

�0 1
n
X(0)

0(I � P � )u = n�1=2+�2�00
1

n
X(0)

0(I � P � )u = Op(n�1=2+� )
p! 0;

S3 = n
�1+2� (u0(I � P � )u� u0(I � P �0)u) = n

�1+2� (u0P �0u� u
0P � u) = Op(n

�1+2� )
p! 0:

Using a similar argument of Lemma A.5 in Hansen(2000), we can show, for any  � 0;

S1 = n
�1+2��0nX

0(0)(I � P � )X(0)�n
p! (F (0)� F (0)F ()�1F (0))�00

�Z
Bv(s)B

0
v(s)ds

�
�0 � b1()

uniformly: Since (F (0)�F (0)F ()�1F (0)) � 0 and
R
Bv(s)B

0
v(s)ds is positive de�nite random matrix, b1() � 0

and the equality holds if and only if  = 0:

For  � 0; we can show

S1
p! (F (0)� F ())�00

�Z
Bv(s)B

0
v(s)ds

�
�0 � b2()

uniformly, where b2() � 0 and the equality holds if and only if  = 0: De�ne b() = b1()I( � 0)+b2()I( � 0),
and we have shown that

n�1+2� (SSRn()� SSRn(0))
p! b()

uniformly for any  2 [; ] and b() is strictly positive when  2 B(�): Thus, Pr(inf2B(�) n2��1(SSRn() �
SSRn(0)) > 0)! 1:

Proof of Theorem 3.1: We �rst prove the limiting results for the case with �1=2 < � < 1=2: Let an = n1�2� :
To prove bn converge to 0 with rate an; we need to prove that anjbn�0j = Op(1), or there exists a constant v > 0;
limn!1 Pr(jbn � 0j � v=an) = 1: For any B > 0; de�ne VB = f : j � 0j < Bg: When n is large enough, we have
v=an < B: Since bn p! 0 according to Lemma A.5, Pr(fbn 2 VBg) p! 1: Therefore, we only need to examine the

limiting behavior of  in VB :

De�ne a subset VB(v) = f : v=an < j � 0j < Bg: Thus, VB(v) � VB : To prove Pr(jbn � 0j � v=an) = 1; we
just need to prove Pr(bn 2 VB(v)) = 0: Let b� and b� be the estimation of b�(bn) and b�(bn): Also, we denote SSR�n() =Pn

t=1(yt�b�0At())2 and SSR�n(0) =Pn
t=1(yt�b�0At(0))2: By the de�nition of bn; we have SSR�n(bn) � SSR�n(0):

Hence, it su¢ ces to prove that for any  2 VB(v); SSR�n() > SSR�n(0) with probability 1.
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We consider the case of  > 0 �rst. Using an argument of symmetry, we can, without loss of generality, prove

the result for the case of  < 0: Note that

SSR�n()� SSR�n(0) =
nX
t=1

(yt � b�0At())2 � nX
t=1

(yt � b�0At(0))2
=

nX
t=1

�0n(xt()� xt(0))(xt()� xt(0))0�n � 2�0n
nX
t=1

(xt()� xt(0))u+ 2b�0 nX
t=1

(xt()� xt(0))(xt()� xt(0))0(b� � �)
+2

nX
t=1

(b� + �n)0(xt()� xt(0))(xt()� xt(0))0(b� � �n) + 2(�0n � b�0) nX
t=1

(xt()� xt(0))u

� R1 �R2 +R3 +R4 +R5; say. (A.2)

Next, we show that R1+R2+R3+R4+R5

an(�0)
converges to a positive random variable almost surely by studying the

limiting behavior for each term speci�cally. First, note that

R1
an

=
1

an

nX
t=1

�0n(xt()� xt(0))(xt()� xt(0))0�n = (F ()� F (0))�00
Z
Bv(s)B

0
v(s)ds�0 + op(1)

= f(0)( � 0)�00
�Z

Bv(s)B
0
v(s)ds

�
�0 + op(1):

The last equation uses the �rst-order Taylor approximation of F () around 0:

Noting that v=an < j � 0j < B and an = n1�2� with � < 1=2; We have
p
v <

p
an
p
(j � 0j): Thus, there

exists k > 0; such that

R2
an( � 0)

=
2�00

1
n

Pn
t=1(xt()� xt(0))up
an( � 0)

= Op(
1

p
an
p
(j � 0j)

) � k=
p
v:

For any B ! 0+, there exists v > 0 and N; such that k=
p
v < f(0)�

0
0

R
Bv(s)B

0
v(s)ds�0 with probability 1 and

v=an < B when n > N: Therefore, for any  2 VB(v), we have

R1
an( � 0)

� R2
an( � 0)

> 0; (A.3)

Furthermore, from Lemma A.4, we have n�+1=2((b�� �) = Op(bn � 0) and n�+1=2(b�n � �n) = Op(bn � 0), thus
R3

an( � 0)
=
2n�+1=2b�0nn�2Pn

t=1(xt()� xt(0))(xt()� xt(0))0n�+1=2(b� � �)
( � 0)

= Op(bn � 0) = op(1); (A.4)

R4
an( � 0)

=
2n�+1=2(b� + �n)0n�2Pn

t=1(xt()� xt(0))(xt()� xt(0))0n�+1=2(b� � �n)
( � 0)

= Op(n
�+1=2(b� � �n) = Op(bn � 0) = op(1); (A.5)

R5
an( � 0)

=
2n2� (�0n � b�0)n�1Pn

t=1(xt()� xt(0))u
( � 0)

= Op(n
�+1=2(b� � �n)n��1=2) = op(1): (A.6)

Combining the results of Equations (A.3) through (A.6), we have SSR
�
n()�SSR

�
n(0)

an(�0)
> 0 with probability 1 for any

 2 VB(v) and  > 0: Similarly, we can prove SSR�n() > SSR�n(0) when  < 0 and  2 VB(v) with probability
1.
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Next, we study the limiting distribution for the estimator b: Given �1=2 < � < 1=2; b is a consistent estimator
with convergence rate an, thus, we could focus on its asymptotic behavior in the neighborhood of the true thresholds.

Let  = 0 +
!

an
. By the de�nition of bn; we have

an(bn � 0) = !� = arg min
!2(�1;1)

�
SSR�n(0 +

!

an
)� SSR�n(0)

�
:

By Equation (A.2), we know SSR�n(0+
!

an
)�SSR�n(0) = R1�R2+R3+R4+R5; with  replaced by 0+

!

an
:

Next, we turn to study the limiting behavior for each term. We only provide the proof for the case where ! > 0, as

the proof for the case with ! � 0 is analogous. Given ! > 0; we have

R1 = �0n

nX
t=1

�
xt(0 +

!

an
)� xt(0)

��
xt(0 +

!

an
)� xt(0)

�0
�n

= n1�2��00n
�2

nX
t=1

�
xt(0 +

!

an
)� xt(0)

��
xt(0 +

!

an
)� xt(0)

�0
�0

= n1�2��00(F (0 +
!

an
)� F (0))

�Z
Bv(s)B

0
v(s)ds

�
�0 + op(1)

p! f(0)!�
0
0

�Z
Bv(s)B

0
v(s)ds

�
�0: (A.7)

Note that the last equation uses the �rst-order Taylor expansion of F (0 +
!

an
) around 0: For R2; we have

R2 = �2
nX
t=1

�0n

�
xt(0 +

!

an
)� xt(0)

�
ut = �2n1=2���00

1

n

nX
t=1

�
xt(0 +

!

an
)� xt(0)

�
ut

) �2pan�00�u
Z
Bv(s)d

�
W (s; F (0 +

!

an
))�W (s; F (0))

�
= �2pan�00�u

�
J1(F (0 +

!

an
))� J1(F (0))

�
: (A.8)

Note that J1(�) =
R
Bv(s)dW (s; �) is a mean-zero Gaussian process with an almost surely continuous sample

path and with the covariance kernel

E(J1(�1)J1(�2)) = (�1 ^ �2)
Z
Bv(s)B

0
v(s)ds:

Thus, D(!) =
p
an�

0
0�u

�
J1(F (0 +

!

an
))� J1(F (0))

�
is also a Brownian motion with

V ar(D(!)) = �2uan(F (0 +
!

an
)� F (0))�00

Z
Bv(s)B

0
v(s)ds�0

= �2uf0!

Z
Bv(s)B

0
v(s)ds+ op(1):

By Equations (A.4) to (A.6); we have R3 + R4 + R5 = !op(1) = op(1): Combining the convergence results of
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Equations (A.7) and (A.8), we have

SSR�n ()� SSR�n (0) ) f0!�
0
0

Z
Bv(s)B

0
v(s)ds�0 � 2D(!)

= f0!�
0
0

Z
Bv(s)B

0
v(s)ds�0 � 2�u

s
f0!�

0
0

Z
Bv(s)B0v(s)ds�0�1(!);

where �1(!) is a standard Brownian motion on [0;1): Making the change of variables as follows

! =
�2u

�00
�R
Bv(s)B0v(s)ds

�
�0f0

r;

we have

SSR�n ()� SSR�n (0)) 2�2u(
r

2
� �1(r)): (A.9)

Using continuous mapping theorem, the asymptotic distribution of b can be expressed as
n1�2��(b � 0) = r� ) arg max

r2(0;1)
(�1(r)�

1

2
jrj):

Lastly, we establish the limiting results for bn when � = 1=2; i.e., the threshold is only weakly identi�ed: By the
de�nition of bn, we have bn = argmin2[;] SSRn() = argmax2[;](SSRn � SSRn()); where SSRn is de�ned
as the sum of squared residuals by regressing yt to xt: By some standard algebra, we have

SSRn � SSRn() = Y 0(I � Pn)X()(X 0()(I � Pn)X())�1X 0()(I � Pn)Y;

where X() = (x1(); x2(); :::; xn())0 and X = (x1; x2; :::; xn)
0: Pn = X(X

0X)�1X 0 is the projection matrix of X.

De�ne �n() = n�1X 0()(I � Pn)Y: By substituting the true model Y = X�+X(0)�n + u; it can be shown that

�n() = n
�1X 0()X(0)�n � n�1X 0()X(X 0X)�1X 0X(0)�n + n

�1X 0()(I � Pn)u:

Given � = 1=2; we have n�n = �0. By Lemma A.3, it can be shown that

�n()) �u

Z
Bv(s)d (W (s; F ())� F ()W (s)) + (F ( ^ 0)� F ()F (0))

�Z
Bv(s)B

0
v(s)ds

�
�0 � �1():

Since

n�2X 0()(I � Pn)X() = n�2X 0()X()� n�2X 0()X(X 0X)�1X 0X()) F ()(1� F ())
Z
Bv(s)B

0
v(s)ds;

by continuous mapping theorem, we can show that

(SSRn � SSRn()) = �0n()(X
0()(I � Pn)X()=n2)�1�n()

) 1

F ()(1� F ())�
0
1()

�Z
Bv(s)B

0
v(s)ds

��1
�1() = Q(; 0; �0):
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Proof of Theorem 3.2: Note that

Tn() = b�n()0(X()(I � P ())X())b�n()=b�2u
= (I � Pn)Y 0X()(X 0()(I � Pn)X())�1X 0()(I � Pn)Y=b�2u
= �n()

0 �n�2X()0X()� n�2X()0X(X 0X)�1XX()
��1

�n()=b�2u: (A.10)

By Lemma A.3, we have

n�2X()0X()� n�2X()0X(X 0X)�1XX()
a:s:!
�
F ()� F ()2

� Z
Bv(s)B

0
v(s)ds:

Next, we consider the limiting result for �n() for di¤erent � : When �1=2 < � < 1=2; we have

�n() =
1

n
X 0()(I � Pn)Y =

1

n
X 0()u� 1

n
X 0()X(X 0X)�1X 0u+

1

n
X 0()X(0)�n �

1

n
X 0()X(X 0X)�1X 0X(0)�n

) �u

Z 1

0

Bv(s)d (W (s; F ())� F ()W (s)) + n1=2�� (F ( ^ 0)� F ()F (0))
�Z

Bv(s)B
0
v(s)ds

�
�0

= Op(n
1=2�� )

p!1:

It follows that Tn() = Op(n1�2� )
p!1: When � = 1=2; we have

�n() =
1

n
X 0()u� 1

n
X 0()X(X 0X)�1X 0u+

1

n
X 0()X(0)�n �

1

n
X 0()X(X 0X)�1X 0X(0)�n

) �() + (F ( ^ 0)� F ()F (0))
�Z

Bv(s)B
0
v(s)ds

�
�0 = �1():

It follows that

Tn())
1

�2uF ()(1� F ())
�01()

�Z
Bv(s)B

0
v(s)ds

��1
�1():

Proof of Theorem 3.3: We prove the equality by showing the following two inequalities: AsySZ(a) � 1� a
and AsySZ(a) � 1� a hold simultaneously. We �rst consider the proof of AsySZ(a) � 1� a:
By the de�nition ofAsySZ(a) as Equation (20), we can �nd a parameter sequence (�n; n) such thatAsySZ(a) =

lim infn!1 Pr(�n; n)(n 2 CI;n(a)): Let fbng be a subsequence of fng such thatAsySZ(a) = limn!1 Pr(�bn ; bn )(bn 2
CI;bn(a)): Denote �

�
0 = n�n where �

�
0 2 R[f�1;1g: Because the Euclidean space is complete, we can always �nd

a subsequence fcng of fbng such that
�
cn�cn ; cn

�
! (��0; 0):

If � = 1=2; we have ��0 = nn
�1=2���0 = �0 2 R: By Theorem 3.2, we have Tn = Op(n1�2� ) = Op(1) < �n with

probability one. Thus, CI;n(a) = CIW;n(a); and

AsySZ(a) = lim
n!1

Pr(�cn ;cn )(cn 2 CI;cn(a)) = lim
n!1

Pr(�cn ;cn )(jbcn � cn j � bqW;1�a)
� lim

n!1
Pr(�cn ;cn )(jbcn � cn j � bqW;1�a(0; �0)) = 1� a:

The inequality uses the fact that bqW;1�a = sup2[;] sup�2R qW;1�a(; �): The last equation uses the fact that jbcn�cn j
converges to jb(0; �0) � 0j and bqW;1�a(0; �0) is de�ned as the (1 � a) quantile of the limiting distribution of
jb(0; �0)� 0j:
If �1=2 < � < 1=2; ��0 = nn�1=2���0 = n1=2���0 = �1: Note that n���1=2n ! 0 for any � > 0; we have
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Tn = Op(n
1�2� ) > �n with probability approaching one. Thus, CI;cn(a) = CI

I
;cn(a) and

AsySZ(a) = lim
n!1

Pr(�cn ;cn )(cn 2 CI;cn(a)) = lim
n!1

Pr(cn 2 CI
I
;cn(a)) = lim

n!1
Pr(LR(cn) � q

I
1��):

As LRn(n)) supr2(�1;1)(2�(r)�jrj); LRcn(cn) converges to supr2(�1;1)(2�(r)�jrj) and qI1�� is the 1�a
quantile of supr2(�1;1)(2�(r)� jrj): Thus,

AsySZ(a) = lim
n!1

Pr(LR(cn) � q
I
1��) � 1� a:

Next, we consider the other side AsySZ(a) � 1 � a: Let �n = n�1=2�0 and n = 0 with �0 2 R=f0g: By
de�nition, we have

AsySZ(a) � lim inf
n!1

Pr(�0;0)(0 2 CI;n(a)):

When �n = n�1=2�0, we have Tn = Op(n1�2� ) = Op(n) > �n with probability approaching one. Thus, CI;n(a) =

CII;n(a); and

lim inf
n!1

Pr(�n;0)(0 2 CI;n(a)) = lim inf
n!1

Pr(0 2 CII;n(a)) = lim inf
n!1

Pr(LRn(0) � qI1��) = 1� a:

where the last equality holds because LRn(0)) supr2(�1;1)(2�(r)� jrj).

Part B

De�ne the moment functionals for the stationary regressors zt

h() = E(ztI(qt � )); h1() = E(ztI(qt�1 � )); h2() = E(zt�1I(qt � ));

H = E(ztz
0
t); H1 = E(ztz

0
t�1):

Lemma B.1; Under Assumptions A10; A20; A3 and A4; for any  2 [; ]; as n!1;
a) n�3=2

Pn
t=1 ztx

0
t() = h()

R
B0v(s)ds+ op(1);

b) n�3=2
Pn

t=1 ztx
0
t�1() = h1()

R
B0v(s)ds+ op(1);

c) n�3=2
Pn

t=1 zt�1x
0
t() = h2()

R
B0v(s)ds+ op(1);

d) n�1
Pn

t=1 ztz
0
t = H + op(1);

e) n�1
Pn

t=1 ztz
0
t�1 = H1 + op(1):

Lemma B.2: Under Assumptions A10; A20; A3 and A4, for any  2 [; ] and � = F () as n!1;
a) : n�1=2

Pn
t=1 I(qt � )"t ) �W (s; �);

b) : n�1=2
Pn

t=1 I(qt�1 � )"t ) �W1(s; �);

c) : n�1
Pn

t=1 xt()
0"t ) �

R
B0v(s)dW (s; �);

d) : n�1
Pn

t=1 xt�1()
0"t ) �

R
B0v(s)dW1(s; �);

e) : n�1=2
Pn

t=1 zt"t ) �J2;

f) : n�1=2
Pn

t=1 zt�1"t ) �J3;

where J2 and J3 are Gaussian random variable with mean zero and variance H: W (s; �) and W1(s; �) are two

two-parameter Brownian motions.

Proof of Lemma B.1-B.2: The proofs are standard and are skipped for space considerations.
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Lemma B.3: If �1=2 < � < 1=2; under Assumptions A10; A20; A3 and A4, we have bn p! 0 for any � 2 (�1;
1]:

Proof: We conduct the proof by considering two cases according to the value of �: When � < 1; ut = �0zt + �t
is stationary process. The proof is similar to Lemma A.5 and is skipped for brevity. When � = 1; ut = �0zt + �t

is nonstationary since �t is a unit root process. Using a similar argument of Lemma A.5, we only need to show

that n�1+2� (SSRn()� SSRn(0)) uniformly converges to a function b() which is positive when  2 B(�); where
B(�) = f : j � 0j > "g for any " > 0: Note that Equation (A.1) still holds, i.e., n�1+2� (SSRn()� SSRn(0)) =
S1 + S2 + S3. Next, we will show that both S2 and S3 converge to zero but S1 uniformly converges a function b()

which is positive when  2 B(�):
First, note that the stationary component �0zt of ut is asymptotically negligible, implying that

S3 = n
�1+2� (u0(I � P � )u� u0(I � P �0)u) = n

�1+2� (�0P � � � �0P �0�) + op(1):

Denote B�(s) as a Brownian motion such that 1p
n
�[ns] ) B�(s): By Lemma B.1, we have

n�2�0X�()(X�()0X�())�1X�()0� = n�2�0X�()(n�2X�()0X�())�1n�2X�
1 ()

0�

=

 
F ()

R 1
0
Bv(s)B�(s)ds

(1� F ())
R 1
0
Bv(s)B�(s)ds

!0 
F ()

R
Bv(s)B

0
v(s)ds; 0

0; (1� F ())
R
Bv(s)B

0
v(s)ds

!�1 
F ()

R 1
0
Bv(s)B�(s)ds

(1� F ())
R 1
0
Bv(s)B�(s)ds

!
+ op(1)

=

 
F ()

R 1
0
Bv(s)B�(s)ds

(1� F ())
R 1
0
Bv(s)B�(s)ds

!0 
(
R
Bv(s)B

0
v(s)ds)

�1 R 1
0
Bv(s)B�(s)ds

(
R
Bv(s)B

0
v(s)ds)

�1 R 1
0
Bv(s)B�(s)ds

!
+ op(1)

=

�Z 1

0

Bv(s)B�(s)ds

�0�Z
Bv(s)B

0
v(s)ds

��1�Z 1

0

Bv(s)B�(s)ds

�
+ op(1);

which is unrelated to : Thus, �0P � ���0P �0� = op(1) and it follows that S3 = n
�1+2� (�0P � ���0P �0�)+op(1) = op(1):

To prove S2 converge to zero almost surely, we �rst consider the case where  > 0: For the case where  � 0;the
proof is similar and not repeated here. Given  > 0; We have

n�2X 0()X(0) = n
�2X 0(0)X(0) = F (0)

Z
Bv(s)B

0
v(s)ds+ op(1);

n�2X(0)
0(X �X()) = 0;

n�2(X �X(0))0X() = (F ()� F (0))
Z
Bv(s)B

0
v(s)ds+ op(1):

It follows that

n�2X�(0)
0X�() =

 
F (0)

R
Bv(s)B

0
v(s)ds; 0

(F ()� F (0))
R
Bv(s)B

0
v(s)ds; (1� F ())

R
Bv(s)B

0
v(s)ds

!
+ op(1):

Furthermore, it can be shown that

n�1+2�2�0nX(0)
0� = 2n1=2+��00n

�2
nX
t=1

xt(0)� = 2n
1=2+��00

 
F (0)

R
Bv(s)B�(s)ds

(1� F (0))
R
Bv(s)B�(s)ds

!
+ op(1);
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and

2n�1+2��0nX(0)
0P � � = 2n

1=2+��0

 
F (0)

R
Bv(s)B

0
v(s)ds; 0

(F ()� F (0))
R
Bv(s)B

0
v(s)ds; (1� F ())

R
Bv(s)B

0
v(s)ds

!
 

F ()
R
Bv(s)B

0
v(s)ds; 0

0; (1� F ())
R
Bv(s)B

0
v(s)ds

!�1 
F ()

R
Bv(s)B�(s)ds

(1� F ())
R
Bv(s)B�(s)ds

!

= 2n1=2+��00

 
F (0)

R
Bv(s)B

0
v(s)ds

(1� F (0))
R
Bv(s)B

0
v(s)ds

!
+ op(1):

Thus,

S2 = n
�1+2�2�0nX(0)

0(I � P � )� = n�1+2�2�0nX(0)0� � 2n�1+2��0nX(0)0P � � + op(1) = op(1):

Using a similar argument in Lemma A.5, we can show S1
p! b() uniformly and b() is strictly positive when

 2 B(�): Combining the convergence results for S1; S2 and S3, we complete the proof.

Proof of Theorem 4.1: Under Assumption A10, the model can be rewritten as

yt = �
0xt + �

0
nxt(0) + ut = �

0
1x
�
t (b) + ��t ;

where x�t (b) = (xt(b)0; x0t � x0t(b); zt)0; �1 = (�0 + �0n; �0; �0)0 and ��t = �t + �01(x�t (0)� x�t (b)):
Since �01(x

�
t (0)� x�t (b)) = �0n(xt(0)� xt(b)); we have ��t = �t + �0n(xt(0)� xt(b)): The LS residual �t(b) can

be expressed as b�t(b) = yt � b�1(b)0x�t (b) = �t + �0n(xt(0)� xt(b)) + (b�1(b)� �1)0x�t (b):
Next, we conduct the proof by considering two cases according to the value of � :

Case 1: �1=2 < � < 1=2; by Lemma B.3, we have b p! 0 and �
0
n = Op(n

�1=2�� ) = op(1). Thus �
0
n (xt(0)� xt(b)) =

op(1):

If � = 1; �t is a unit root; thus, b�t(b) = �t + �0n(xt(0) � xt(b)) + (b�1(b) � �1)0x�t (b) is also a unit root process
and it can be shown that b� = 1 +Op( 1n ):
If � < 1; �t is stationary. Since b p! 0; it can be shown that Dn(b�1(b) � �1) = Op(n

�1=2); where Dn =

diagfn1=2Id1 ; n1=2Id1 ; Id2g is a weighting matrix.
It follows that b�t(b) = �t+ �0n(xt(0)�xt(b))+(b�1(b)��1)0x�t (b) = �t+op(1)+(b�1(b)��1)0DnD�1

n x�t (b)0 p! �t:

As �t is assumed to be �t = ��t�1 + "t; it can be shown that b� = �+Op( 1p
n
):

Case 2: � = 1=2; b is inconsistent. Noting that n�n = �0; we have �
0
n(xt(0) � xt(b)) = Op(

1p
n
) = op(1): If

� = 1, the term b�t(b) = �t + �
0
n(xt(0) � xt(b)) + (b�1(b) � �1)0x�t (b) is an I(1) process and it can be shown thatb�(b) = 1 +Op( 1n ):

If � < 1; using a similar argument of Lemma A.2, we can show that Dn(b�1(b) � �1) = Op(n
�1=2): Thus,

the following convergence still holds: b�t(b) = �t + �
0
n(xt(0) � xt(b)) + (b�1(b) � �1)0x�t (b) p! �t; implying thatb� = �+Op( 1p

n
):

Lemma B.4: For any � 2 (�1; 1]; there exists a nonrandom weighting matrix eDn such that
a) : n�1 eD�1

n
eA1()0 eA1() eD�1

n = eG() + op(1);
b) : n�1=2 eD�1

n
eA1()0e� ) e�():

where eG() and e�() are de�ned below.
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Proof: When � < 1; de�ne the weighting matrix eDn = diagfn1=2Id1 ; n1=2Id1 ; Id2g;
G() =

0B@
R
Bv(s)B

0
v(s)ds F ()

R
Bv(s)B

0
v(s)ds 0

F ()
R
Bv(s)B

0
v(s)ds F ()

R
Bv(s)B

0
v(s)ds

�R
Bv(s)ds

�
h()0

0 h()
�R
B0v(s)ds

�
H

1CA ;

G1() =

0B@
R
Bv(s)B

0
v(s)ds F ()

R
Bv(s)B

0
v(s)ds 0

F ()
R
Bv(s)B

0
v(s)ds F1()

R
Bv(s)B

0
v(s)ds

�R
Bv(s)ds

�
h02()

0 h1()
�R
B0v(s)ds

�
H1

1CA ;
eG() = G() + �2G()� � (G1() +G01()) ;

and

e�() =
0B@ �

R
Bv(s)dfW (s)

�
R
Bv(s)dfW (s; F ())

� eJ
1CA ;

where fW (s) = (1� �)W (s); fW (s; ) =W (s; F ())� �W1(s; F ()) and eJ = J2 � �J3:
By Lemmas B.1, B.2 and Theorem 4.1, it can be shown that

n�1
nX
t=1

eD�1
n
eA1t() eA1t()0 eD�1

n = n�1
nX
t=1

eD�1
n A1t()A1t()

0 eD�1
n + n�1b�2 nX

t=1

eD�1
n A1t�1()A1t�1()

0 eD�1
n

�b� nX
t=1

eD�1
n A1t()A1t�1()

0 eD�1
n � b� nX

t=1

eD�1
n A1t�1()A1t()

0 eD�1
n

p! G() + �2G()� � (G1() +G01()) :

By Lemmas B.1, B.2 and Theorem 4.1, we can also show that

n�1=2
nX
t=1

eD�1
n
eA1t()e�t =

0B@ n�1
Pn

t=1 exte�t
n�1

Pn
t=1D

�1
n ext()e�t

n�1=2
Pn

t=1 ezte�t
1CA) e�():

When � = 1; de�ne the weighting matrix eDn = fId1 ; n1=2Id1 ; Id2g;
eG() =

0B@ H (h()� h1())
R
B0v(s)ds H �H1

(
R
Bv(s)ds) (h()� h1())0 2(F ()� F1())

R
Bv(s)B

0
v(s)ds

R 1
0
Bv(s)ds (2h()� h1()� h2())0

H 0 �H 0
1 (2h()� h1()� h2())

R 1
0
B0v(s)ds 2H �H1 �H 0

1

1CA ;
and

e�() =
0B@ �J2

�
R 1
0
Bv(s)dfW (s; )

� eJ
1CA :

Using a similar argument for the case of � < 1, we can establish the convergence results a) and b).

Proof of Theorem 4.2: The proof is similar to that of Theorem 3.1 and is skipped for brevity.

Proof of Theorem 4.3: The proof is similar to that of Theorem 3.2 and is skipped for brevity.
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Table 1a: The Mean Squared Errors (MSE) of Threshold Estimators

n = 100 n = 200 n = 400

Panel A: � = 0

� � MSE(b) MSE(e) MSE(b) MSE(e) MSE(b) MSE(e)
0 0 :012 :019 :004 :0040 :0021 :0022

0 :5 :013 :009 :004 :0020 :0008 :0003

1 0 :191 :002 :221 :0056 :2030 :0002

1 :5 :314 :005 :197 :0019 :2340 :0002

:95 0 :129 :019 :097 :0010 :0320 :0001

:95 :5 :125 :002 :129 :0031 :0310 :0004

�:95 0 :093 :004 :043 :0002 :0270 :0002

�:95 :5 :171 :020 :095 :0031 :0230 :0003

Panel B: � = 0:5

0 0 :365 :379 :485 :4720 :4540 :4550

0 :5 :519 :509 :518 :4880 :5100 :4540

1 0 1:17 :592 :654 :5270 :7170 :4080

1 :5 :435 :302 :460 :3890 :5440 :4290

:95 0 :586 :410 :572 :3800 :5220 :4040

:95 :5 :375 :359 :557 :4400 :4940 :3670

�:95 0 :800 :608 :422 :3640 :6060 :4120

�:95 :5 :742 :530 :532 :4200 :6220 :3560

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and �

is set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of
the threshold e¤ect �n is set as �n = 2n�1=2�� , where � is 0 or 0:5. MSE(b) is the MSE calculated for the
pro�led LS estimator of 0 and MSE(e) is for the FGLS estimator. The sample size n takes either 100,
200 or 400. The replication number is 1000.
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Table 1b: The Mean Squared Errors of Coe¢ cients Estimators

n = 100 n = 200 n = 400

Panel A: � = 0

� � MSE(b�) MSE(e�) MSE(b�) MSE(e�) MSE(b�) MSE(e�)
0 0 3:70e�3 4:50e�3 8:40e�4 9:3e�4 2:13e�4 2:10e�4

0 :5 5:90e�3 5:50e�3 1:14e�3 8:40e�4 2:60e�4 2:13e�4

1 0 1:34 2:60e�1 1:25 1:40e�1 1:27 6:80e�2

1 :5 1:39 2:10e�1 9:80e�1 1:30e�1 9:97e�1 9:10e�2

:95 0 1:66e�1 4:68e�2 3:80e�2 1:70e�2 1:70e�2 5:70e�3

:95 :5 1:81e�1 4:57e�2 4:10e�2 1:60e�2 1:50e�2 5:90e�3

�:95 0 3:50e�2 1:34e�3 2:43e�3 3:50e�4 1:29e�3 9:80e�5

�:95 :5 4:20e�2 1:70e�3 1:93e�3 4:98e�4 1:89e�3 1:08e�4

Panel B: � = 0:5

0 0 1:36e�2 1:44e�2 3:19e�3 3:49e�3 6:89e�4 1:00e�3

0 :5 1:60e�2 1:44e�2 4:20e�3 3:70e�3 1:13e�3 9:50e�4

1 0 1:88 2:01e�1 1:09 1:05e�1 9:62e�1 6:15e�2

1 :5 1:66 2:10e�1 1:50 1:41e�1 9:80e�1 6:56e�2

:95 0 1:81e�1 4:89e�2 7:50e�2 2:14e�2 2:11e�2 6:30e�3

:95 :5 2:40e�1 5:29e�2 9:50e�2 1:81e�2 2:48e�2 5:93e�3

�:95 0 1:40e�1 5:70e�3 3:22e�2 1:59e�3 5:90e�3 2:66e�4

�:95 :5 1:06e�1 5:20e�3 2:25e�2 1:43e�3 7:40e�3 1:16e�4

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and � is

set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of the
threshold e¤ect �n is set as �n = 2n�1=2�� , where � is 0 or 0:5. MSE(b�) is de�ned as the sum of MSE(b�)
and MSE(b�n); where MSE(b�) is the MSE calculated for the pro�led LS estimator of � and MSE(b�n) is
MSE calculated for the pro�led LS estimator of �: MSE(e�) is de�ned as the sum of MSE(e�) and MSE(e�n);
where MSE(e�) is the MSE for the FGLS estimator of � and MSE(e�n) is for the FGLS estimator of �n: The
sample size n takes either 100, 200 or 400. The replication number is 1000.

32



Table 2a: Size Performance
n = 100 n = 200 n = 400

� �n � 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Tn
0 0 0 :078 :028 :005 :114 :056 :018 :098 :046 :008

0 0 :5 :120 :092 :034 :084 :050 :008 :076 :052 :010

1 0 0 :132 :082 :030 :064 :034 :014 :068 :044 :013

1 0 :5 :086 :052 :022 :134 :074 :022 :112 :076 :018

:95 0 0 :128 :073 :042 :178 :072 :030 :104 :046 :008

:95 0 :5 :134 :075 :020 :146 :064 :004 :132 :061 :016

�:95 0 0 :120 :072 :010 :106 :060 :018 :093 :042 :015

�:95 0 :5 :070 :034 :008 :118 :064 :006 :092 :039 :006

Panel B: eTn
0 0 0 :110 :072 :030 :102 :062 :022 :098 :047 :010

0 0 :5 :144 :084 :028 :076 :044 :014 :088 :046 :008

1 0 0 :084 :058 :020 :112 :038 :018 :104 :054 :014

1 0 :5 :130 :062 :014 :082 :042 :014 :116 :055 :012

:95 0 0 :114 :062 :002 :072 :060 :008 :082 :042 :008

:95 0 :5 :128 :064 :032 :132 :076 :020 :094 :037 :008

�:95 0 0 :086 :036 :016 :142 :078 :024 :090 :044 :010

�:95 0 :5 :116 :066 :022 :089 :046 :016 :091 :058 :015

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and � is

set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of the
threshold e¤ect �n is set as 0 to check the size performance. n is the sample size. The replication number

is 1000.
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Table 2b: Power Performance
n = 100 Tn eTn
Panel A: � = 0

� � 10% 5% 1% > (ln(n))2 10% 5% 1% > (ln(n))2

0 0 1:00 :994 :984 :956 1:00 :998 :988 :970

0 :5 :992 :980 :968 :904 :998 :994 :984 :952

1 0 :478 :436 :360 :462 :998 :996 :982 :958

1 :5 :506 :460 :312 :486 1:00 :998 :992 :970

:95 0 :796 :720 :564 :610 :986 :986 :968 :968

:95 :5 :830 :772 :654 :636 :996 :996 :994 :978

�:95 0 :956 :922 :884 :464 1:00 :998 :994 :994

�:95 :5 :856 :802 :708 :444 1:00 1:00 :998 :996

Panel B: � = 0:5

0 0 :322 :224 :074 :024 :324 :206 :110 :034

0 :5 :258 :150 :030 :020 :206 :090 :030 :032

1 0 :164 :098 :050 :100 :278 :190 :078 :044

1 :5 :090 :043 :010 :030 :298 :240 :100 :048

:95 0 :070 :034 :010 :018 :296 :206 :118 :068

:95 :5 :322 :234 :072 :024 :268 :196 :084 :072

�:95 0 :296 :236 :146 :002 :550 :434 :182 :110

�:95 :5 :308 :198 :050 :004 :500 :392 :266 :088

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and �

is set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of
the threshold e¤ect �n is set as �n = 2n�1=2�� , where � is 0 or 0:5. n is the sample size. The replication

number is 1000.
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Table 2c: Power Performance
n = 200 Tn eTn
Panel A: � = 0

� � 10% 5% 1% > (ln(n))2 10% 5% 1% > (ln(n))2

0 0 1:00 1:00 :998 :982 1:00 1:00 :998 :984

0 :5 1:00 1:00 :996 :974 1:00 1:00 1:00 :990

1 0 :854 :836 :816 :328 1:00 1:00 1:00 :992

1 :5 :668 :614 :540 :346 1:00 1:00 1:00 :988

:95 0 :856 :820 :732 :624 1:00 1:00 1:00 :986

:95 :5 :790 :750 :708 :584 1:00 1:00 1:00 :992

�:95 0 :962 :950 :912 :506 1:00 1:00 1:00 1:00

�:95 :5 :964 :956 :906 :502 1:00 1:00 1:00 1:00

Panel B: � = 0:5

0 0 :284 :222 :098 :004 :256 :198 :108 :004

0 :5 :254 :144 :078 :002 :250 :170 :066 :008

1 0 :098 :050 :016 :000 :280 :212 :126 :080

1 :5 :116 :050 :010 :030 :292 :174 :072 :014

:95 0 :082 :034 :016 :000 :428 :336 :194 :020

:95 :5 :078 :044 :002 :034 :308 :228 :068 :016

�:95 0 :318 :220 :124 :000 :442 :352 :268 :034

�:95 :5 :110 :050 :016 :000 :402 :292 :160 :030

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and �

is set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of
the threshold e¤ect �n is set as �n = 2n�1=2�� , where � is 0 or 0:5. n is the sample size. The replication

number is 1000.
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Table 2d: Power Performance
n = 400 Tn eTn
Panel A: � = 0

� � 10% 5% 1% > (ln(n))2 10% 5% 1% > (ln(n))2

0 0 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

0 :5 1:00 1:00 1:00 :994 1:00 1:00 1:00 :998

1 0 :742 :692 :586 :234 1:00 1:00 1:00 1:00

1 :5 :546 :488 :410 :266 1:00 1:00 1:00 :998

:95 0 :910 :884 :820 :722 1:00 1:00 1:00 1:00

:95 :5 :942 :916 :868 :668 1:00 1:00 1:00 :998

�:95 0 :994 :986 :958 :596 1:00 1:00 1:00 1:00

�:95 :5 :996 :984 :958 :648 1:00 1:00 1:00 1:00

Panel B: � = 0:5

0 0 :294 :196 :042 :002 :264 :166 :052 :000

0 :5 :166 :124 :054 :000 :272 :192 :108 :002

1 0 :386 :312 :160 :000 :248 :162 :052 :000

1 :5 :020 :012 :002 :012 :228 :146 :050 :002

:95 0 :074 :026 :004 :002 :264 :186 :068 :002

:95 :5 :094 :052 :010 :000 :292 :210 :082 :000

�:95 0 :092 :042 :020 :000 :546 :448 :302 :010

�:95 :5 :134 :064 :018 :000 :320 :204 :134 :010

Note: The model is yt = �xt + �nxt(qt � 0) + �vt + ut with xt = xt�1 + vt, ut = �ut�1 + "t and

qt = 0:5qt�1 + et; where vt, "t and et are i.i.d. N(0; 1): The true threshold value is set as 0 = 0 and �

is set as 1: Parameter � is set as either 0; 1; 0:95 or �0:95. Parameter � is set as 0 or 0:5. The size of
the threshold e¤ect �n is set as �n = 2n�1=2�� , where � is 0 or 0:5. n is the sample size. The replication

number is 1000.
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