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Abstract

An extended single-index model is considered when responses are missing at ran-

dom. A three-step estimation procedure is developed to define an estimator for the

single index parameter vector by a joint estimating equation. The proposed estimator is

shown to be asymptotically normal. An iterative scheme for computing this estimator

is proposed. This algorithm only involves one-dimensional nonparametric smoothers,

thereby avoiding the data sparsity problem caused by high model dimensionality. Some

simulation study is conducted to investigate the finite sample performances of the pro-

posed estimators.

Key words: Missing data; Estimating equations; Single-index models; Asymptotic nor-

mality.
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1 Introduction

The single-index model has been paid considerable attention recently because it is useful in

several areas of science such as econometrics, biostatistics, finance and so on. The single-

index model (SIM), which is investigated extensively, is of the following form

Y = g(β>X) + ε, (1.1)

where Y is the univariate response and X is a d-dimensional covariable vector, β is an

unknown index parameter vector of interest, the function g(·) is an unknown link function,

and E(ε|X) = 0. The SIM provides dimension reduction in the sense that, if one can estimate

the index β efficiently, the univariate index β>X serves as a covariable to estimate the

nonparametric link g(·). Much effort has been devoted to estimating the index β efficiently.

Hall (1989), Zhu and Fang (1992) considered a projection pursuit framework. Härdle et

al. (1993) employed the kernel smoothing method to study the model (1.1), and gave an

empirical rule for bandwidth selection. Ichimura (1993) studied the properties of a semi-

parametric least-squares estimator in a general single-index model. Ichimura (1987) showed

that the parameter vector β can be estimated root-n consistently. Härdle et al.(1993) and

Hristache et al.(2001) obtained a
√

n consistent estimator of the index vector β using the

average derivative method. The technology of sliced inverse regression can also be used to

achieve
√

n consistent estimator, see Li (1991) and Zhu (1996).

Let (Yi, Xi) denote the observed values with Yi being the response variable and Xi being

the vector of d explanatory variables. In this paper we consider an extended single index

model (ESIM) which specifies the relationship of the mean and variance of Yi as follows

E(Yi|Xi) = µ{g(β>Xi)}, Var(Yi|Xi) = σ2V {g(β>Xi)}, (1.2)

where µ(·) is a known monotonic function, V (·) is a known covariance function, g(·) is an

unknown univariate link function and β is an unknown index vector which belongs to the

parameter space Θ = {β = (β1, · · · , βd)
> : ‖β‖ = 1, β1 > 0, β ∈ Rd}. Cui, Härdle and

Zhu (2011) developed a method of estimating function (EFM) to study the ESIM. They

investigated the efficiency and computation of the estimates for the ESIM, and obtained the
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asymptotic properties of the EFM. However, the existing work is for the case where data are

observed fully.

In practice, some responses may be missing, by design (as in two-stage studies) or by

circumstance. For example, the response Y
′
s may be very expensive to measure and only

part of Y
′
s are available. Another example is that the Y

′
s represent the responses to a set of

questions and some sampled individuals refuse to supply the desired information. Actually,

missingness of responses is very common in opinion polls, market research surveys, mail

enquiries, social-economic investigations, medical studies and other scientific experiments.

Missing data issues have been investigated extensively. See, e.g., Rosenbaum and Rubin

(1983), Robins et al. (1994), Robins et al. (1995), Wang et al. (2002), Wang et al. (2004)

and among others. To the best of our knowledge, the literature is reduced to just a few recent

papers for the single-index models (1.1) with µ{g(β>Xi)} = g(β>Xi) and V {g(β>Xi) = 1

for missing data. For this special case, Wang et al. (2010) derived semi-parametric nonlin-

ear least squares estimators by incorporating missing mechanism into the least-squares loss

function proposed by Härdle et al.(1993) and minimizing the loss function with respect to

the bandwidth and the parameters simultaneously. They obtained the central limit theo-

rem(CLT), the law of the iterated logarithm(LIL) for the estimator of β, and the optimal

convergence rate for the estimator of g(·). However, the computational burden of solving

the minimization problem is very high when the dimension of explanatory variable vector is

large.

In this paper, we extend the EFM due to Cui, Härdle and Zhu (2011) to the missing

response case for estimating both β and g(·) in model (1.2). That is, we consider the case

where some Y -values may be missing and X is observed completely. The data we observe

are

{(Yi, δi, Xi)}n
i=1

where δi = 0 if Yi is missing, otherwise δi = 1. Throughout this paper, it is assumed that Y

is missing at random (MAR). The MAR assumption implies that δ and Y are conditionally

independent given X. That is, P(δ = 1|Y, X) = P(δ = 1|X). MAR is a common assumption

for statistical analysis with missing data and is reasonable in many practical situations, see

Little and Rubin (2002).

In this paper, we develop a three-steps estimating approach for estimating both β and
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g(·) by extending the EFM due to Cui, Härdle and Zhu (2011) to the missing response

problem. Unlike the two-step estimating approach of Cui, Härdle and Zhu (2011), the three-

steps estimating approach can define an estimator of g(·). For the estimating approach, the

estimating function system only involves one-dimensional nonparametric smoothers, thereby

avoiding the data sparsity problem caused by high dimensionality. Firstly, unlike the method

proposed by Wang et al.(2010) for the special case of the ESIM where the minimization is

difficult to implement when d is large, our method is easy to implement. Secondly, unlike

the method proposed by Wang et al.(2010) where the methodology can only be applied to

the case of homogeneous errors, our method can apply to the case of heterogeneous errors.

Hence, the proposed methodology based on model (1.2) has more wide application and much

more flexible framework. Cui, Härdle and Zhu (2011) define the estimator of β only when

data are observed fully. However, we define the estimators of both β and g(·) and investigate

their asymptotic properties with data missing.

This paper is organized as follows. In Section 2, we describe the estimating procedures. In

Section 3, we establish the asymptotic theory for the proposed procedure. Some simulation

studies are provided in Section 4. In Section 5, we analyze a real data set to illustrate the

proposed procedures and all proofs are included in Section 6.

2 Three-Step Estimation

We develop the following three-step approach to define the estimators of β and g(·), respec-

tively.

Step 1: We use the nonparametric fusion-refinement (FR) approach to get the initial esti-

mate of β, denoted by β̃ with ‖β̃‖ = 1, see Ding and Wang (2011).

Step 2: Define the estimator of g(·) and g
′
(·).

Note that under MAR, we have

µ{g(t)} = E[δY |β>X = t]/E[δ|β>X = t].

We then may obtain an initial estimator of µ{g(t)}

µ{g̃(t)} = (
∑n

j=1 δjYjHhn(t− β̃>Xj))/(
∑n

j=1 δjHhn(t− β̃>Xj)),
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where H(·) is a kernel function with support on (−1, 1), hn is a bandwidth sequence and

Hhn(·) = H(·/hn).

Denote by α0 and α1 the values of g(·) and g
′
(·) evaluating at β>x, respectively. The local

linear approximation for g(β>X) in a neighborhood of β>x is g0(β
>X) = α0+α1(β

>X−β>x).

The estimators G(β>x)
def
= (g(β>x), g

′
(β>x)) are obtained by solving the kernel estimating

equations:

∑n
j=1 Kbn(β̃>Xj − β>x)µ

′{g0(β̃
>Xj)}V −1{g0(β̃

>Xj)}
×[δjYj + (1− δj)µ{g̃(β̃>Xj)} − µ{g0(β̃

>Xj)}] = 0,

∑n
j=1(β̃

>Xj − β>x)Kbn(β̃>Xj − β>x)µ
′{g0(β̃

>Xj)}V −1{g0(β̃
>Xj)}

×[δjYj + (1− δj)µ{g̃(β̃>Xj)} − µ{g0(β̃
>Xj)}] = 0

(2.1)

where Kbn(·) is the symmetric kernel density function satisfying Kbn(·) = K(·/bn) and bn is

a bandwidth, with respect to α0 and α1, yielding Ĝ(β>x) = (ĝ(β>x), ĝ
′
(β>x)) = (α̂0, α̂1).

Step 3: Obtain the estimator of β. Similar to Cui et al (2011), by eliminating β1, the

parameter space Θ can be rearranged to the form Θ = {(1 − ∑d
r=2 β2

r )
1/2, β2 · · · , βd)

> :
∑d

r=2 β2
r < 1}.

We turn to the estimation of β ∈ Θ. First, we estimate β(1) = (β2, · · · , βd), which can

be obtained by solving the following equation

∑n
j=1[∂µ{ĝ(β>Xj)}/∂β(1)]V −1{ĝ(β>Xj)}[δjYj + (1− δj)µ{g̃(β>Xj)} − µ{ĝ(β>Xj)}] = 0.

(2.2)

The solution is defined as β̃(1) and hence we obtain β̃ by the transformation. Repeat Steps

2 and 3 until convergence and hence we can obtain the estimate of β(1) and β, β̂(1) and β̂

say, respectively.

3 Asymptotic theory

To establish asymptotic theory, we firstly give some notations. Let q1(z, y) = µ
′
(z)V −1(z){y−

µ(z)}, ρl(z) = {µ′(z)}lV −1(z), π(X) = P(δ = 1|X). Let

γj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt, j = 1, 2, ...
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and S =


 γ0 0

0 γ2


, S∗ =


 ν0 ν1

ν1 ν2


. Denote by β0 = (β0

1 , β
(1)0>)> the true values of

β = (β1, β
(1)>)>. Denote J = ∂β

∂β(1) be the Jacobian matrix of size d× (d− 1) with

J =


 −β(1)>/

√
1− ‖β(1)‖2

Id−1


 .

Denote C = (1− δ)J> E{X|β>X}+ J>(X − E{X|β>X})g′{(β>X)}. Let

A = E[ρ2{g(β>X)}C>C],

B = E[δρ2{g(β>X)}σ2C>C].

We are ready to present the asymptotic results of the proposed estimators. The proofs of

the theorem are provided in Section 6.

Theorem 3.1 Suppose that conditions (a) − (f) hold in Section 6, if nb4
n → 0, nh4

n → 0,

nh2
n/ log(1/hn) →∞ and nb2

nh
2
n → 0, then

√
n(β̂(1) − β(1)0)

L→ Nd−1(0, Ω),

where Ω = A−1BA−1|β(1)=β(1)0 .

Remark 3.1 When δ = 1, the asymptotic co-variance matrix reduces to that of Cui,

Härdle and Zhu (2011).

To define a consistent estimator of the asymptotic variance, a natural way is first to

define estimators of h(t) = E{X|β>X} using the local linear estimate as

ĥ(t) =
n∑

i=1

bi(t)Xi/

n∑
i=1

bi(t).

where bi(t) = Kbn(β̂>Xi−t){Sn,2(t)−(β̂>Xi−t)Sn,1(t)} and Sn,k(t) = Kbn(β̂>Xi−t)(β̂>Xi−
t)k, k = 1, 2. Let Ĉi = (1 − δi)J

>ĥ(β̂>Xi) + J>(Xi − ĥ(β̂>Xi))ĝ
′{(β̂>Xi)}. Then the

asymptotic variance Ω can be estimated as

Ω̂ = [n−1
∑n

i=1 ρ2{ĝ(β̂>Xi)}ĈiĈ
>
i ]−1

×{n−1
∑n

i=1 δiq
2
1[ĝ(β̂>Xi), Yi]ĈiĈ

>
i }[n−1

∑n
i=1 ρ2{ĝ(β̂>Xi)}ĈiĈ

>
i ]−1.
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Remark 3.2 If µ{g(β>X)} = g(β>X), σ2V {g(β>X)} = σ2, then the matrix Ω in Theorem

3.1 reduces to

A−1BA−1 = E[{(1− δ)J> E(X|β>X) + J>(X − E(X>|β>X))[g
′
(β>X)]}

×{(1− δ)J> E(X|β>X) + J>(X − E(X>|β>X))[g
′
(β>X)]}>σ2].

The asymptotic normality of β̂ = (β̂1, β̂
(1)>)> follows from Theorem 3.1 with a simple

application of the multivariate delta-method, since β̂1 =

√
1− ‖β̂(1)>‖.

Corollary 3.2 Under the conditions of Theorem 3.1, we have

√
n(β̂ − β0)

L→ Nd−1(0, Λβ0),

where Λβ0 = JΩJ>|β=β0 .

Using the plug in method, the asymptotic variance Λβ0 can be estimated by ĴΩ̂Ĵ>, where

Ĵ is J with β replaced by β̂.

Theorem 3.3 Suppose that conditions of Theorem 3.1 hold, we have

√
nbn(ĝ(β̂>X)− g(β0>X)− µ(2){g(β>x)}

2
e1S

−1Ub2
n)

L→ N(0, Λ1),

where U = (µ2, µ3), e1 = (1, 0) and Λ1 = σ2

π(x)ρ2{g(β>x)}f
β>x

(β>x)
e1S

−1S∗S−1.

Let Z∗
i = (1,

bβ>Xi−t
bn

)>. The asymptotic variance Λ1 can be estimated by

Λ̂1 = e1[n
−1

∑n
i=1 δiq2[µ{ĝ(β̂>Xi)}, Yi]Z

∗
i Z

∗>
i Kbn(β̂>Xi − t)]−1

×n−1
∑n

i=1 δiq
2
1[µ{ĝ(β̂>Xi)}, Yi]Z

∗
i Z

∗>
i K2

bn
(β̂>Xi − t)}

×[n−1
∑n

i=1 δiq2[µ{ĝ(β̂>Xi)}, Yi]Z
∗
i Z

∗>
i Kbn(β̂>Xi − t)]−1

Remark 3.2. The choice of bandwidth is a very important topic in nonparametric regres-

sion estimation. For the semiparametric problem considered here, the n1/2-rate asymptotic

normality of the proposed estimators of the global parameter vectors β implies that a proper

choice of the bandwidths depends only on the second order term of the mean square errors

of these estimators. Therefore the selection of bandwidths might be not so critical if one

is only interested in estimation of β. However, the estimators of g(·) depend the choice of

the bandwidth heavily. The popular cross-validation method such as cross-validation, gen-

7



eralized cross-validation (GCV) and the rule of thumb can be used to select the optimal

bandwidth for the estimator of g(·). Here, we recommend using GCV to determine the

optimal bandwidth.

4 Simulation studies

We conducted some Monte Carlo simulation studies to evaluate the performance of the

proposed estimators for finite samples.

In our simulation, kernel functions H(·) and K(·) were taken as Gaussian kernel. As

pointed out in Remark 3.2, the selection of bandwidths is not so critical if one is only inter-

ested in estimation of the parametric part. In the following simulation study, the bandwidths

were directly taken to be hn = n−2/5 and bn = n−1/3 which satisfy the conditions in the above

theorems.

Example 1. To compare the proposed method with Wang et al (2010), we first consider

the following simple single-index model

Y = (X>β)2 + ε, (4.1)

where X is generated from Nd(2, I) for d = 50, ε ∼ N(0, 0.2), the true parameter is β =

(2/
√

5, 1/
√

5, 0, · · · , 0). Take the missing mechanism:

logit{P(δ = 1|Y, X)} = γ>X + c0, (4.2)

where logit(a) = log{a/(1− a)}, γ = (
√

2/4, · · · ,
√

2/4, 0, c1)
>/

√
1 + c2

1, c0 is a constant to

control missing proportion and c1 is a constant to control the distance between γ and β.

The number of replications is 500. The size of the sample was taken to be n=100, 200 and

400, respectively.

The proposed estimator β̂ is compared to β̂wang of Wang, et al (2010) and the complete

case (CC) estimator (denoted by β̂cc), ignoring the missing data. We compute the average

absolute bias (AB) which is defined by

AB =
1

500

500∑
i=1

(
1

d

d∑
s=1

|β̂i
n,s − βs|

)
,

8



where β̂i
n,s is the sth component of β̂i

n and β̂i
n is one of β̂, β̂wang and β̂cc at the ith run. We

also compute the square root of the trace of the standard covariance matrix (SRTSC) which

is defined by

SRTSC =

√√√√ 1

499

500∑
i=1

{1

d
(β̂i

n − ¯̂
β)(β̂i

n − ¯̂
β)>},

where
¯̂
β = 1

500

∑500
i=1 β̂i

n. The results of AB and SRTSC for β̂, β̂wang, β̂cc with about 25% and

50% missing proportions are reported in Table 1.

insert Table 1 about here

Several observations can be made from Tables 1. Firstly, we can see that AB and SRTSC

of all estimators decrease as the sample size increases as expected. Secondly, we also see

that β̂ clearer outperforms β̂wang and β̂cc in terms of AB and SRTSC. This shows that the

proposed method for the simple single index model improves the method due to Wang,et al

(2010) although the proposed methods are suggested for the extended single index model.

AB and SRTSC increase with the missing rate increasing for all the estimators.

Example 2. In this study, we consider the following the extended single index model

E(Y |X) = exp{g(β>X)}, g(β>X) = sin(X>β)

Var(Y |X) = σ2, σ = 0.2.
(4.3)

The true parameter is β = (2/
√

5, 1/
√

5, 0, · · · , 0), X is generated from Nd(2, I) for d = 50,

ε ∼ N(0, 0.04) and the missing mechanism follows the model (4.2). We calculated AB and

SRTSC for β̂ and β̂cc where µ(·) = exp(·) in (1.2). At the same time, AB and SRTSC for

β̂wang are also computed where we treated model (4.3) as a simply single index model. For

each sample size of n=100, 200 and 400, 500 replications were calculated. The simulation

results are summarized in Tables 2.

insert Table 2 about here

In this setting, we also compare the AB and SRTSC of β̂, β̂cc and β̂wang. From Table

2, the similar observations to Example 1 can be found except that β̂ have more obviously
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advantage than β̂cc. This shows that the proposed method is more attractive than β̂cc for

the extended single index model.

Example 3. To illustrate the adaptivity of our algorithm to heterogeneous errors, we

consider model (4.1),

E(Y |X) = {g(β>X)}2, g(β>X) = X>β

Var(Y |X) = σ2 exp{
√

5
7

g(β>X)}, σ2 = 1.
(4.4)

where the true parameter is β = (2/
√

5, 1/
√

5, 0, · · · , 0), X is generated from Nd(2, I) for

d = 50 and the missing mechanism follows the model (4.2). We calculated AB and SRTSC

for β̂ and β̂cc. For each sample size of n=100, 200 and 400, 500 replications were calculated.

The simulation results are also summarized in Tables 3.

For the heteroscedastic setting, β̂wang cannot be calculated and hence we compare β̂ with

β̂cc only. From Table 3, the similar observations to Example 1 can be found except that β̂

have more obviously advantage than β̂cc.

insert Table 3 about here

5 Real data analysis

ACTG 175 data have been studied by some authors (see, e.g., Hammer et al., 1996; Davidian

et al., 2005; Ding and Wang 2011; Hu et al., 2010). In an HIV clinical trial, 2139 HIV positive

patients were involved. The patients were randomized into four arms to receive monotherapy

(ZDV) or combined therapy (ADV+didanosine, ZDV+zalcitabine, and didanosine). We

apply the proposed methods to this data set. The response Y = I(′′the CD4 count at 96±
5 weeks′′ ≥ 300). The predictors X are six baseline characteristics: age, weight, CD4 counts

at baseline and 20 ± 5 weeks, CD8 counts at baseline and 20 ± 5 weeks. Let T denote the

received therapy, i.e., T = 1 if receiving combined therapy, and T = 0 otherwise. Among the

746 patients, there were 473 patients with observations in Y , including 105 patients receiving

monotherapy and 368 patients receiving other therapies, and due to death and dropout there

were 273 patients with missing observations in Y , including 74 patients with T = 0 and 199

patients with T = 1. All the patients had predictors X observed.

10



The single-index model will be used to model the relationship between the CD4 count at

96± 5 weeks and the relevant 6 predictors X = (X1, · · · , X6)
>:

P(′′the CD4 count at 96± 5 weeks′′ ≥ 300|X) = exp{g(β>X)}/[1 + exp{g(β>X)}],
(5.1)

where β = (β1, · · · , β6)
>. We first focused on the subset of data labeled by T = 0. we can

obtain the estimator β̂ by the proposed method. The estimator β̂ is (0.1289, 0.9195, 0.0161,

0.3546,−0.0677)>. For the subset of data labeled by T = 1, we can also obtain β̂ =

(0.1927,−0.9792,−0.0058,−0.0079, 0.0582, 0.0244)>.

As one can see from two estimates, ’weight’ has the larger positive influence when patients

receive combined therapy. On the contrary, there is a negative influence when patients receive

monotherapy for proposing method. ’Age’ has the positive influence in the two setting, this

is true because resistance become more and more weak with increasing age.

We also plot the scatter plot of the estimated single index ĝ(β̂>X) against β̂>X in the

setting of T = 0 and T = 1, respectively. The scatter plot suggests a curvature relationship

between the response and covariates. The pattern is displayed in Fig 1 and Fig 2, respectively.

insert Figure 1 about here

insert Figure 2 about here

It is seen that there is a nonlinear trend. Therefore, using the model (5.1) in the regression

is perhaps more appropriate than using the internally linear model

P(′′the CD4 count at 96± 5 weeks′′ ≥ 300|X) = exp(β>X)/{1 + exp(beta>X)}. (5.2)

6 Technical Assumptions and Proofs

6.1 Technical Assumptions

In order to prove the asymptotic normality of the estimators, we first introduce some regu-

larity conditions.

(a) µ(·), V (·) and g(·) have two bounded and continuous derivatives. V (·) is uniformly

bounded and bounded away from 0.
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(b) Assume that ∂q(z, y)/∂z < 0 for z ∈ R and y in the range of the response variable.

(c) Define the block partition of matrix Ω as follows:

Ω =


 Ω11 Ω12

Ω21 Ω22




where Ω11 is a positive constant, Ω12 is a (d − 1)-dimensional row vector, Ω21 is a (d − 1)-

dimensional column vector and Ω22 is a (d− 1)× (d− 1) nonnegative definite matrix. The

largest eigenvalues of Ω22 is bounded away from infinity.

(d) The density function of X has a continuous second derivative on its support A. The

density function fβ>X(β>X) of random variable β>X is bounded away from 0 on Tβ and

satisfies the Lipschitz condition of order 1 on Tβ, where Tβ = {β>X : X ∈ T} and T is the

compact support set of X.

(e) The kernel K(·) is a bounded and symmetric density function with a bounded derivative,

and satisfies
∫ +∞
−∞ |t|2K(t)dt < ∞,

H(·) is a bounded kernel function of order 2 with bounded support.

(f) π(·) > 0 and µ(·) 6= 0.

6.2 Proofs of Theorems

In order to prove the asymptotic normality of the estimators, we first introduce several

lemmas.

Lemma 1. Let (x1; y1), · · · , (xn; yn) be i.i.d random vectors, where the y
′
is are univariate

random variables. Assume that E |y|r < ∞ and supx

∫ |y|rp(x, y) < ∞, where p denotes

the joint density of (x, y). Let K be a bounded positive function with bounded support,

satisfying the Lipschitz condition. Then

supx |n−1
∑n

i=1{Kh(xi − x)yi − E[Kh(xi − x)yi]}| = Op{(− log h
nh

)1/2}

provided that n2ε−1h →∞ for some ε < 1− r−1.
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Lemma 1 is a direct result of Mack and Silverman (1982), which is also cited by many

papers on kernel method. In what follows, we give an important lemma which derives the

asymptotic structure of g which will be used to get the asymptotic property of parameters.

Lemma 2. Suppose that conditions of Theorem 3.1 hold, Ĝ(β>x) and G(β>x) are defined

in Step 2 of Section 2, then

√
nbn(H2{Ĝ(β>x)−G(β>x)− λ(x)}) L→ N(0, σ2

π(x)ρ2{g(β>x)}f
β>x

(β>x)
S−1S∗S−1)

where H2 = diag(1, bn) and

λ(x) = µ(2){g(β>x)}
2

S−1Ub2
n.

Proof Let Ŷ ∗
i = δiYi + (1− δi)µ(g̃{β>Xi)} and Y ∗

i = δiYi + (1− δi)µ(g{β>Xi)}. Note that

solution Ĝ(β>x) of the estimating equation defined in (2.1) can be obtained by maximizing

the quasi-likelihood:

`(α0, α1)
def
=

∑n
i=1 Q[µ{α0 + α1(β

>Xi − β>x)}, Ŷ ∗
i ]Kbn(β>Xi − β>x)

with respect to (α0, α1), where Q(µ, y) =
∫ µ

y
y−s

V {µ−1(s)} and µ−1(·) is the inverse function of

µ(·).

Let ql(z, y) = ∂l

∂zl Q[µ(z), y], l = 1, 2, 3, then q1[z, y] = {y − µ(z)}ρ1(z) and q2[z, y] =

{y − µ(z)}ρ′l(z)− ρ2(z), where ρl(z) = µ(l){z}V −1{z}.

Denote α̂∗ =
√

nbnH2(ĝ(β>x)−g(β>x), ĝ
′
(β>x)−g

′
(β>x)), α∗ =

√
nbnH2(α0−g(β>x), α1−

g
′
(β>x)) and ᾱi(β

>x) = α0 + α1(β
>Xi − β>x) and X∗

i = (1, β>Xi−β>x
bn

). Then α̂∗ is the so-

lution of the following normalized function

`(α∗) = bn

∑n
i=1{Q[µ{ᾱi(β

>x) + 1√
nbn

α∗>X∗
i }, Ŷ ∗

i ]−Q[µ{ᾱi(β
>x)}, Ŷ ∗

i ]}Kbn(β>Xi − β>x).

13



By Taylor expansion, we have

`(α∗) = V >
n α∗ + 1

2
α∗Bnα

∗(1 + Op(1)), (6.1)

where

Vn =
√

bn

n

∑n
i=1 q1[ᾱi(β

>x), Ŷ ∗]X∗
i Kbn(β>Xi − β>x),

Bn = 1
n

∑n
i=1 q2[ᾱi(β

>x), Ŷ ∗
i ]X∗

i X∗>
i Kbn(β>Xi − β>x)

According to the definition of q2[x, y], we have

q2(ᾱi, Ŷ
∗
i )− q2(ᾱi, Y

∗
i )

= ρ1(ᾱi)(Ŷ
∗
i − Y ∗

i )

= (1− δi)ρ1(ᾱi)(µ{g̃(β>Xi)} − µ{g(β>Xi)}).

(6.2)

It can be observed

µ{g̃(β>Xi)} − µ{g(β>Xi)}

= {∑n
j=1 δjHhn(β>Xi − β>Xj)}−1{∑n

j=1 δjYjHhn(β>Xi − β>Xj)} − µ{g(β>Xi)}

= [
∑n

j=1 δjYjHhn(β>Xi − β>Xj)−
∑n

j=1 δjµ{g(β>Xi)}Hhn(β>Xi − β>Xj)]

×{∑n
j=1 δjHhn(β>Xi − β>Xj)}−1

=
∑n

j=1 δj[Yj − µ{g(β>Xj)}Hhn(β>Xi − β>Xj){
∑n

j=1 δjHhn(β>Xi − β>Xj)}−1

−∑n
j=1 δj[µ{g(β>Xj)} − µ{g(β>Xi)}]Hhn(β>Xi − β>Xj){

∑n
j=1 δjHhn(β>Xi − β>Xj)}−1

=
∑n

j=1 δjq1[µ{g(β>Xj)}, Yj]{ρ1{g(β>Xj)}−1Hhn(β>Xi − β>Xj)}

×{nhnπ(Xi)fβ>Xi
(β>Xi)}−1 + Op(1).

(6.3)
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By (6.2) and (6.3), we have

Bn = 1
n

∑n
i=1 q2{ᾱi(β

>x), Y ∗
i }X∗

i X∗>
i Kbn(β>Xi − β>x) + Op(1)

= E[q2[ᾱ1(β
>x), Y ∗

1 ]X∗
1X

∗>
1 Kbn(β>X1 − β>x)] + Op(1)

= −ρ2{g(β>x)}fβ>x(β
>x)S + Op(1).

(6.4)

For Vn, we have

Vn =
√

bn

n

∑n
i=1 q1[ᾱi(β

>x), Y ∗
i ]X∗

i Kbn(β>Xi − β>x)

+
√

bn

n

∑n
i=1[q1(ᾱi(β

>x), Ŷ ∗
i )− q1(ᾱi(β

>x), Y ∗
i )]X∗

i Kbn(β>Xi − β>x)

def
= Vn1 + Vn2.

(6.5)

For Vn2, by Taylor expansion, we have

Vn2 =
√

bn

n

∑n
i=1(1− δi)ρ1{g(ᾱi(β

>x))}[µ{g̃(β>Xi)} − µ{g(β>Xi)}]X∗
i Kbn(β>Xi − β>x)

+Op(
√

nbn|µ{g̃(β>Xi)} − µ{g(β>Xi)}|2)

=
√

bn

n

∑n
i=1

(1−δi)ρ1{g(ᾱi(β
>x))}

nhnf
β>Xi

(β>Xi)π(Xi)

×∑n
j=1 δj

q1[µ{g(β>Xj)},Yj ]

ρ1{g(β>Xj)} X∗
j Khn(β>Xj − β>Xi)Kbn(β>Xi − β>x) + Op(1)

=
√

bn

n

∑n
i=1 δiq1[µ{g(β>Xi)}, Yi]

(1−π(Xi)ρ1{g(ᾱi(β
>x))}

π(Xi)ρ1{g(β>Xi)} X∗
i Kbn(β>Xi − β>x) + Op(1)

≡ Tn + Op(1).

(6.6)

By (6.1), (6.4), (6.5) and (6.6), we have

`(α∗) = (Vn1 + Tn)>α∗ − α∗Bα∗/2 + Op(1). (6.7)

According to quadratic approximation lemma, we obtain

α̂∗ = B−1(Vn1 + Tn) + Op(1). (6.8)
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It is easy to show that

E(Vn1 + Tn)

=
√

bn

n
E[q1{ᾱ1(β

>x), Y ∗
1 }X∗

1Kbn(β>X1 − β>x)]

+
√

bn

n
E[δ1q1[µ{g(β>X1)}, Y1]

(1−π(X1)ρ1{g(ᾱ1(β>x))}
π(X1ρ1{g(β>x)} X∗

1Kbn(β>X1 − β>x)]

=
√

bn

n
µ(2){g(β>x)}b2n

2
ρ2{g(β>x)}fβ>x(β

>x)U{1 + O(1)}.

and

Var(Vn1 + Tn)

= bn Var[q1{ᾱ1(β
>x), Y ∗

1 }X∗
1Kbn(β>X1 − β>x)]

+bn Var[δ1q1[µ{g(β>X1)}, Y1]
(1−π(X1)ρ1{g(ᾱ1(β>x))}

π(X1ρ1{g(β>x)} X∗
1Kbn(β>X1 − β>x)]

=
σ2ρ2{g(β>x)}f

β>x
(β>x)

π(x)
S∗{1 + O(1)}.

(6.9)

Since Vn1 +Vn2 is a sum of i.i.d. random vectors and Liapounov’s condition is satisfied, thus

proof is completed.

Lemma 3. Suppose that conditions of Theorem 3.1 hold, then

∂bg(β>x)

∂β(1)

p→ C,

where C is defined in Section 3.
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Proof The first equation of (2.1) can be decomposed as

0 = n−1
∑n

j=1 Kbn(β>Xj − t)µ
′{α̂0 + α̂1(β

>Xj − β>x)}V −1{α̂0 + α̂1(β
>Xj − β>x)}

×[δjYj + (1− δj)µ{g̃(β>Xj)} − µ{α̂0 + α̂1(β
>Xj − β>x)}]

= n−1
∑n

j=1 Kbn(β>Xj − t)µ
′{α̂0 + α̂1(β

>Xj − β>x)}V −1{α̂0 + α̂1(β
>Xj − β>x)}

×[δjYj + (1− δj)µ{g(β>Xj)} − µ{α̂0 + α̂1(β
>Xj − β>x)}] + op(1)

= n−1
∑n

j=1 δjKbn(β>Xj − t)µ
′{α̂0 + α̂1(β

>Xj − β>x)}V −1{α̂0 + α̂1(β
>Xj − β>x)}

×[Yj − µ{α̂0 + α̂1(β
>Xj − β>x)}]

+n−1
∑n

j=1(1− δj)Kbn(β>Xj − t)µ
′{α̂0 + α̂1(β

>Xj − β>x)}V −1{α̂0 + α̂1(β
>Xj − β>x)}

×[µ{g(β>Xj)} − µ{α̂0 + α̂1(β
>Xj − β>x)}] + op(1)

def
= D1 + D2 + op(1).

(6.10)

For D1, taking derivatives with respect to β(1), we have

∂D1

∂β(1) = n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{α̂0 + α̂1(β

>Xj − β>x)}

×V −1{α̂0 + α̂1(β
>Xj − β>x)}[Yj − µ{α̂0 + α̂1(β

>Xj − β>x)}]

+n−1
∑n

j=1 δjKbn(β>Xj − β>x)µ
′′{α̂0 + α̂1(β

>Xj − β>x)}

×[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]

×V −1{α̂0 + α̂1(β
>Xj − β>x)}[Yj − µ{α̂0 + α̂1(β

>Xj − β>x)}]

+n−1
∑n

j=1 δjKbn(β>Xj − β>x)µ
′{α̂0 + α̂1(β

>Xj − β>x)}(V −1)
′{α̂0 + α̂1(β

>Xj − β>x)}

×[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]

×[Yj − µ{α̂0 + α̂1(β
>Xj − β>x)}]

−n−1
∑n

j=1 δjKbn(β>Xj − β>x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)}]2

×[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]

×V −1{α̂0 + α̂1(β
>Xj − β>x)}

def
= F1 + F2 + F3 − F4.
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We decompose F1 as follows:

F1 = n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{g(β0>Xj)}V −1{g(β0>Xj)}[Yj − µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)} − µ
′{g(β0>Xj)}]

×V −1{g(β0>Xj)}[Yj − µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{g(β0>Xj)}

×V −1{g(β0>Xj)}[µ{α̂0 + α̂1(β
>Xj − β>x)− µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)} − µ
′{g(β0>Xj)}]

×V −1{g(β0>Xj)}[µ{α̂0 + α̂1(β
>Xj − β>x)− µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{g(β0>Xj)}

×[V −1{α̂0 + α̂1(β
>Xj − β>x)} − V −1{g(β0>Xj)}][Yj − µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)} − µ
′{g(β0>Xj)}]

×[V −1{α̂0 + α̂1(β
>Xj − β>x)} − V −1{g(β0>Xj)}][Yj − µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{g(β0>Xj)}

×[V −1{α̂0 + α̂1(β
>Xj − β>x)} − V −1{g(β0>Xj)}]

×[µ{α̂0 + α̂1(β
>Xj − β>x)− µ{g(β0>Xj)}]

+n−1
∑n

j=1 δjK
′
bn

(β>Xj − β>x)J>(Xj − x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)} − µ
′{g(β0>Xj)}]

×[V −1{α̂0 + α̂1(β
>Xj − β>x)} − V −1{g(β0>Xj)}]

×[µ{α̂0 + α̂1(β
>Xj − β>x)− µ{g(β0>Xj)}]

def
=

∑8
i=1 F1i.

Noting that
∫

ukK(1)(u)du = 0 when k is an even number and using the arguments similar

to the proof of Theorem 5.2 in Ichimura (1993), we have F1i = op(1) for k = 1, · · · , 8.

Similarly, we can show that F2 = Op(1) and F3 = Op(1) under Conditions (a), (d) and
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(e). Further, we also can show

n−1
∑n

j=1 δjKbn(β>Xj − β>x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)}]2

× ∂bα1

∂β(1) (β
>Xj − β>x)V −1{α̂0 + α̂1(β

>Xj − β>x)}

= Op(1).

According to Lemma 1, we obtain

n−1
∑n

j=1 δjKbn(β>Xj − β>x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)}]2V −1{α̂0 + α̂1(β
>Xj − β>x)}

= E{δ[µ′{g(β>X)}]2V −1{g(β>X)}|β>X = u}f(u){1 + Op(1)}.

and

n−1
∑n

j=1 δjKbn(β>Xj − β>x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)}]2J>XjV
−1{α̂0 + α̂1(β

>Xj − β>x)}

= E{δ[µ′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u){1 + Op(1)}.

Then, we have

D1 = −E{δ[µ′{g(β>X)}]2V −1{g(β>X)}|β>X = u}f(u) ∂bα0

∂β(1)

−E{δ[µ′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u)α̂1

+ E{δ[µ′{g(β>X)}]2V −1{g(β>X)}J>x|β>X = u}f(u)α̂1 + Op(1).

(6.11)
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For D2, similarly taking derivatives with respect to β(1), we have

∂D2

∂β(1) = n−1
∑n

j=1(1− δj)K
′
bn

(β>Xj − β>x)J>(Xj − x)µ
′{α̂0 + α̂1(β

>Xj − β>x)}

×V −1{α̂0 + α̂1(β
>Xj − β>x)}[µ{g(β>Xj)} − µ{α̂0 + α̂1(β

>Xj − β>x)}]

+n−1
∑n

j=1(1− δj)Kbn(β>Xj − β>x)µ
′′{α̂0 + α̂1(β

>Xj − β>x)}

×[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]

×V −1{α̂0 + α̂1(β
>Xj − β>x)}[µ{g(β>Xj)} − µ{α̂0 + α̂1(β

>Xj − β>x)}]

+n−1
∑n

j=1(1− δj)Kbn(β>Xj − β>x)µ
′{α̂0 + α̂1(β

>Xj − β>x)}(V −1)
′

×{α̂0 + α̂1(β
>Xj − β>x)}[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]

×[µ{g(β>Xj)} − µ{α̂0 + α̂1(β
>Xj − β>x)}]

−n−1
∑n

j=1(1− δj)Kbn(β>Xj − β>x)[µ
′{α̂0 + α̂1(β

>Xj − β>x)}]2

×[ ∂bα0

∂β(1) + ∂bα1

∂
β(1)(β>Xj − β>x) + α̂1J

>(Xj − x)]V −1{α̂0 + α̂1(β
>Xj − β>x)}

+n−1
∑n

j=1(1− δj)Kbn(β>Xj − β>x)µ
′{α̂0 + α̂1(β

>Xj − β>x)}

×µ
′{g(β>Xj)}J>XjV

−1{α̂0 + α̂1(β
>Xj − β>x)}

def
= R1 + R2 + R3 −R4 + R5.

Using the arguments similar to F1, we can obtain Rj = Op(1) for j = 1, 2, 3. Again,

according to Lemma 1, we also obtain

R4 = E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}|β>X = u}f(u) ∂bα0

∂β(1)

+ E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u)α̂1

−E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>x|β>X = u}f(u)α̂1 + op(1).

and

R5 = E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u) + Op(1).
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Then, we obtain

D2 = −E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}|β>X = u}f(u) ∂bα0

∂β(1)

−E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u)α̂1

+ E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>x|β>X = u}f(u)α̂1

+ E{(1− δ)[µ
′{g(β>X)}]2V −1{g(β>X)}J>X|β>X = u}f(u) + Op(1).

(6.12)

Combining the (6.10), (6.11) and (6.12), we obtain

∂bα0

∂β(1) = ∂bg(β>x)

∂β(1)

p→ C.

The proof is completed.

Proof of Theorem 3.1 By Taylor expansion, we have

[µ{ĝ(β̂>Xj)} − µ{g(β>Xj)}]

= µ
′{g(β>Xj)}{ĝ(β̂>Xj)− g(β>Xj)}+ Op(1)

= µ
′{g(β>Xj)}{ĝ(β̂>Xj)− ĝ(β>Xj) + ĝ(β>Xj)− g(β>Xj)}+ Op(1)

= µ
′{g(β>Xj)}∂bg(β>Xj)

∂β(1) (β̂(1) − β(1))

+µ
′{g(β>Xj)}{ĝ(β>Xj)− g(β>Xj)}+ Op(1).

Let

Zj = [µ
′{g(β>Xj)}∂bg(β>Xj)

∂β(1) ]>V −1{g(β>Xj)}[µ′{g(β>Xj)}∂bg(β>Xj)

∂β(1) ],

Qj = [µ
′{g(β>Xj)}∂bg(β>Xj)

∂β(1) ]>V −1{g(β>Xj)}µ′{g(β>Xj)}{ĝ(β>Xj)− g(β>Xj)}.
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Then, it can be observed

n−1
∑n

j=1 Zj

√
n(β̂(1) − β(1))

= n−1/2
∑n

j=1[µ
′{g(β>Xj)}∂bg(β>Xj)

∂β(1) ]>V −1{g(β>Xj)}

×[µ{ĝ(β̂>Xj)} − µ{g(β>Xj)}]− n−1/2
∑n

j=1 Qj + Op(1).

= n−1/2
∑n

j=1{[µ
′{g(β>Xj)}∂bg(β>Xj)

∂β(1) ]>V −1{g(β>Xj)}{δj[µ{ĝ(β̂(1)>Xj)} − µ{g(β(1)>Xj)}]

+(1− δj)[µ{ĝ(β̂(1)>Xj)} − µ{g(β(1)>Xj)}]} − n−1/2
∑n

j=1 Qj + Op(1).

(6.13)

By Lemma 2 and some tedious calculations, we have

n−1/2
∑n

j=1{[µ
′{ĝ(β>Xj)} − µ

′{g(β>Xj)}]∂bg(β>Xj)

∂β(1) ]>V −1{g(β>Xj)}

×{δj[Yj − µ{ĝ(β̂>Xj)}] + (1− δj)[µ{g̃(β>Xj)} − µ{ĝ(β̂>Xj)}]} = Op(1).

(6.14)

By (6.13) and (6.14), we have

√
n(β̂(1) − β(1)) = Z−1{n−1/2

∑n
j=1 µ

′{ĝ(β>Xj)}∂bg(β>Xj)

∂β(1) V −1{g(β>Xj}

×{δj[Yi − µ{g(β>Xj)}] + (1− δj)[µ{g̃(β>Xj)} − µ{g(β>Xj)}]}

−n−1/2
∑n

j=1 Qj + Op(1).

(6.15)

By Lemma 1 and Lemma 2, we can obtain

n−1/2
∑n

j=1 Qj = Op(1). (6.16)

By condition (a), (6.15) and (6.16), we obtain

√
n(β̂(1) − β(1)) = Z−1n−1/2

∑n
j=1 µ

′{ĝ(β>Xj)}∂bg(β>Xj)

∂β(1) V −1{g(β>Xj)}

×{δj[Yi − µ{g(β>Xj)}]}+ Op(1).

(6.17)

Theorem 3.1 follows directly form Lemma 3. The proof is completed.
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Proof of Theorem 3.3 By Theorem 3.1, we know that β̂ is a root-n consistent estimator

of β0. Then, using the arguments similar to the proof of Proposition 1 (iii) in Cui et al

(2011), we have that

√
nbn(ĝ(β̂>X)− ĝ(β0>X)) = Op(1).

According to Lemma 2, we know

√
nbn{ĝ(β0>X)− g(β0>X)− µ(2){g(β>x)}

2
e1S

−1Ub2
n}

L→ N(0, ρ2{g(β>x)}
π(x)f

β>x
(β>x)

S−1S∗S−1),

Therefore, we have

√
nbn{ĝ(β̂>X)− g(β0>X)− µ(2){g(β>x)}

2
e1S

−1Ub2
n}

=
√

nbn{ĝ(β̂>X)− ĝ(β0>X)}

+
√

nbn[ĝ(β0>X)− µ{g(β0>X)− µ(2){g(β>x)}
2

e1S
−1Ub2

n}]
L→ N(0, ρ2{g(β>x)}

π(x)f
β>x

(β>x)
S−1S∗S−1).

The proof is completed.
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Table 1: AB and SRTSC of β̂, β̂cc and β̂wang with different missing proportion and
different sample sizes.

AB

n p β̂ β̂cc β̂wang

100
p = 0.25
p = 0.50

0.0247
0.0476

0.0967
0.1256

0.1014
0.1277

200
p = 0.25
p = 0.50

0.0104
0.0203

0.0405
0.0737

0.0413
0.0209

400
p = 0.25
p = 0.50

0.0063
0.0096

0.0062
0.0247

0.0114
0.0102

SRTSC

100
p = 0.25
p = 0.50

0.0305
0.0572

0.0932
0.0808

0.1092
0.1090

200
p = 0.25
p = 0.50

0.0133
0.0253

0.0784
0.0934

0.0873
0.0775

400
p = 0.25
p = 0.50

0.0086
0.0125

0.0271
0.0623

0.0494
0.0439
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Table 2: AB and SRTSC of β̂, β̂cc and β̂wang with different missing proportion and
different sample sizes.

AB

n p β̂ β̂cc β̂wang

100
p = 0.25
p = 0.50

0.0347
0.0685

0.1273
0.1366

0.1044
0.1262

200
p = 0.25
p = 0.50

0.0106
0.0232

0.0784
0.1144

0.0184
0.0730

400
p = 0.25
p = 0.50

0.0064
0.0095

0.0203
0.0535

0.0059
0.0092

SRTSC

100
p = 0.25
p = 0.50

0.0442
0.0775

0.0813
0.0722

0.1267
0.1371

200
p = 0.25
p = 0.50

0.0138
0.0305

0.0904
0.0861

0.0581
0.1070

400
p = 0.25
p = 0.50

0.0090
0.0125

0.0203
0.0831

0.0296
0.0438
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Table 3: AB and SRTSC of β̂ and β̂cc with different missing proportion and
different sample sizes.

AB

n p β̂ β̂cc

100
p = 0.25
p = 0.50

0.0500
0.0718

0.1214
0.1335

200
p = 0.25
p = 0.50

0.0325
0.0443

0.0829
0.1106

400
p = 0.25
p = 0.50

0.0227
0.0294

0.0360
0.0630

SRTSC

100
p = 0.25
p = 0.50

0.0567
0.0779

0.0873
0.0759

200
p = 0.25
p = 0.50

0.0382
0.0504

0.0916
0.0913

400
p = 0.25
p = 0.50

0.0263
0.0340

0.0556
0.0824
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Figure 1: the scatter plot of the estimated single index ĝ(β̂>X) against β̂>X in the setting
of T = 0.
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Figure 2: the scatter plot of the estimated single index ĝ(β̂>X) against β̂>X in the setting
of T = 1.
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