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Abstract

In spite of the widespread use of generalized additive models (GAMs), there is no well established

methodology for simultaneous inference and variable selection for the components of GAM. There is no

doubt that both, inference on the marginal component functions and their selection, are essential in this

additive statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a

variable selection criteria through the spline-backfitted kernel smoothing techniques. To characterize the

global features of each component, SCCs are constructed for testing their shapes. By extending the BIC to

additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection

is proposed. Our procedures are examined in simulations for its theoretical accuracy and performance, and

used to forecast the default probability of listed Japanese companies.

Keywords: BIC; Confidence corridor; Extreme value; Generalized additive model; Spline-backfitted ker-

nel.

JEL Classification: C35; C52; C53; G33.
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1 INTRODUCTION

The generalized additive model (GAM) has gained popularity on addressing the curse of dimensionality

in multivariate nonparametric regressions with non-Gaussian responses. GAM was developed by Hastie

and Tibshirani (1990) for blending generalized linear model with nonparametric additive regression, which

stipulates that a data set
{(

XT
i , Yi

)}n

i=1
consists of iid copies of

(
XT, Y

)
that satisfy:

E(Y |X) = b′ {m (X)} ,Var(Y |X) = a (ϕ) b′′ {m (X)} ,m (X) = c+
∑d

α=1
mα(Xα), (1)

Y = b′ {m (X)}+ σ (X) ε, σ (X) = {Var(Y |X)}1/2

where the response Y is one of certain types, such as Bernoulli, Poisson and so forth, the vector X =

(X1, X2, ..., Xd)
T consists of the predictors, mα(·), 1 ≤ α ≤ d are unknown smooth functions, the white

noise ε satisfies that E (ε |X) = 0 and E
(
ε2 |X

)
= 1, while c is an unknown constant, a (ϕ) is a nuisance

parameter that quantifies overdispersion, and (b′)−1 (·) is a known link function. In particular, if one takes

the identity/trivial link, model (1) becomes a common additive model, see Huang and Yang (2004).

It is often the case that in model (1) the probability density function of Yi conditional on Xi with

respect to a fixed σ-finite measure forms an exponential family:

f (Yi |Xi, ϕ) = exp [{Yim (Xi)− b {m (Xi)}} /a (ϕ) + h (Yi, ϕ)] .

Nonetheless, such an assumption is not necessary in this paper. Instead, we only stipulate that the

conditional variance and conditional mean are linked by

Var (Y |X = x) = a (ϕ) b′′
[(
b′
)−1 {E (Y |X = x)}

]
.

For identifiability, one needs

E {mα (Xα)} = 0, 1 ≤ α ≤ d (2)

that leads to unique additive representations of m (x) = c+
∑d

α=1mα (xα). Without loss of generality, x

take values in χ = [0, 1]d.

Model (1) has numerous applications. In corporate credit rating, for instance, one is interested in

modelling how the default or non-default of a given corporate or company depends on the additive effects

of the covariates in financial statements, i.e., the response Y = 0, 1 with 1 indicating default, 0 indi-
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cating non-default, and the predictors are selected from financial statements with a logit-link (b′)−1 (x)

= log {x/ (1− x)}. Our method has been applied to 3, 472 companies in Japan within a 5-year default

horizon (2005-2010), and it has been discovered that the current liabilities and stock market returns of

current, 3 months and 6 months prior to default are very significant as rating factors, and the default

impact of the selected factors are examined via the simultaneous confidence corridors (SCCs) in Figure 1

(a)-(c). More details of this example are contained in Section 6.

[Figure 1 about here.]

The smooth functions {mα(xα)}dα=1 in (1) can be estimated by, for instance, kernel methods in Linton

and Härdle (1996), Linton (1997) and Yang, Sperlich and Härdle (2003), B-spline methods in Stone (1986)

and Xue and Liang (2010), and two-stage methods in Horowitz and Mammen (2004) and Horowitz et al.

(2006). To make statistical inference on these functions individually and collectively, however, the proper

tools are simultaneous confidence corridors (SCCs) and consistent variable selection criteria.

The SCC methodology has attracted attention in a variety of applied fields, see Xia (1998), Fan and

Zhang (2000), Wu and Zhao (2007), Zhao and Wu (2008), Ma, Yang and Carroll (2012) among others.

Capturing shape properties of the functions {mα(xα)}dα=1 is of utmost importance. A smooth component

covered entirely within SCC can be replaced by a parametric one, thereby improving the estimation effi-

ciency, see He, Zhu and Fung (2002), He, Fung and Zhu (2005) for discussions. To our knowledge, SCCs

have not been established due to a technological lack of estimators that fit in Gaussian process extreme

value theory. Using the spline-backfitted kernel (SBK) methodology of Liu, Yang and Härdle (2013) (here-

after LYH), we extend work of univariate nonparametric regression in Bickel and Rosenblatt (1973) and

Härdle (1989) to those of GAM. The SBK technique has been studied in Wang and Yang (2007), Wang

and Yang (2009), Liu and Yang (2010) and Ma and Yang (2011) for the simpler additive model (i.e., GAM

with b′ (x) ≡ x) including the construction of SCC, but ours is the first work on SCC for GAM with

nonlinear link.

While variable selection for nonparametric additive model has been investigated under different settings,

see Wang, Li and Huang (2008), there is lack of theoretically reliable variable selection for GAM. To the

best of our knowledge, only Zhang and Lin (2006) proposed the “COSSO” method for variable selection

in nonparametric regression with exponential families, but without asymptotic theory. Instead, we tackle

this issue by building a BIC type criterion based on spline pre-smoothing (first stage in the SBK), which

is asymptotically consistent and easy to compute. Our work extends the BIC criterion for additive models
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(trivial link) in Huang and Yang (2004). This extension is challenging since a much more complicated

quasi-likelihood is employed with nonlinear link instead of the log mean squared error for trivial link. The

appendix gives more details.

The rest of paper is organized as follows. The SBK estimator and its oracle property are briefly described

in Section 2. Asymptotic extreme value distribution of the SBK estimator is investigated in Section 3,

which is used to construct the SCCs of component functions. Section 4 introduces a BIC criterion in

the GAM setting and provides results on consistent component selection as well as the implementation,

followed by the Monte Carlo simulations in Section 5. Section 6 illustrates the application of our SCC and

BIC methods to predict default of nearly 3, 500 listed companies in Japan. Technical assumptions and

proofs are presented in the Appendix.

2 SPLINE-BACKFITTED KERNEL SMOOTHING IN GAM

In this section we briefly describe the SBK estimator for GAM (1) and its oracle properties obtained in

LYH. Let {Xi, Yi}ni=1 be i.i.d. observations following model (1). Without loss of generality, one denotes

x 1 = (x2, ..., xd) and m 1 (x 1) = c+
∑d

α=2mα (xα) and estimates m1 (x1).

As a benchmark of efficiency, we introduce the “oracle smoother” by treating the constant c and the

last d − 1 components {mα (xα)}dα=2 as known. The only unknown component m1 (x1) is estimated by

maximizing a local log-likelihood function l̃ (a, x1) for each x1 ∈ [h, 1− h]:

l̃ (a, x1) = n−1
∑n

i=1
[Yi {a+m 1 (Xi, 1)} − b {a+m 1 (Xi, 1)}]Kh (Xi1 − x1) , (3)

where a ∈ A, a set whose interior contains m1 ([0, 1]). The oracle smoother of m1 (x1) is

m̃K,1 (x1) = argmax
a∈A

l̃ (a, x1) . (4)

Although m̃K,1 (x1) is not a statistic since c and {mα (xα)}dα=2 are actually unknown, its asymptotic

properties serve as a benchmark for estimators of m1 (x1) to achieve.

To define the SBK, we introduce the linear B spline basis for smoothing: bJ (x) = (1− |x− ξJ | /H)+ ,

0 ≤ J ≤ N + 1 where 0 = ξ0 < ξ1 < · · · < ξN < ξN+1 = 1 are a sequence of equally spaced points, called

interior knots, on interval [0, 1]. Denote by H = (N + 1)−1 the width of each subinterval
[
ξJ , ξJ+1

]
, 0 ≤

J ≤ N and the degenerate knots by ξ−1 = 0, ξN+2 = 1. The space of α-empirically centered linear spline
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functions on [0, 1] is

G0
n,α =

{
gα : gα (xα) =

∑N+1

J=0
λJbJ (xα) ,En {gα (Xα)} = 0

}
, 1 ≤ α ≤ d, (5)

with empirical expectation En {gα (Xα)} = n−1
∑n

i=1 gα (Xαi). The space of additive spline functions on

χ = [0, 1]d is

G0
n =

{
g (x) = c+

∑d

α=1
gα (xα) ; c ∈ R, gα ∈ G0

n,α

}
. (6)

The SBK method is defined in two steps. One first pre-estimates the unknown functions {mα (xα)}dα=2

and constants c by linear spline smoothing. We define the log-likelihood function L̂ (g) as

L̂ (g) = n−1
∑n

i=1
[Yig (Xi)− b {g (Xi)}] , g ∈ G0

n. (7)

According to Lemma 14 of Stone (1986), (7) has a unique maximizer with probability approaching 1.

Therefore, the multivariate function m (x) can be estimated by an additive spline function:

m̂ (x) = argmax
g∈G0

n

L̂ (g) . (8)

The spline estimator is asymptotically consistent, and can be calculated efficiently. However, no measure of

confidence can be assigned to the spline estimator, see Wang and Yang (2007) and LYH. To overcome this

problem, we adapt the SBK estimator, which combines the strength of kernel smoothing with regression

spline. One then rewrites m̂ (x) = ĉ+
∑d

α=1 m̂α (Xiα) for ĉ ∈ R and m̂α (xα) ∈ G0
n,α and defines a univariate

quasi-likelihood function similar to l̃ (a, x1) in (3) as

l̂ (a, x1) = n−1
∑n

i=1
[Yi {a+ m̂ 1 (Xi, 1)} − b {a+ m̂ 1 (Xi, 1)}]Kh (Xi1 − x1) , (9)

with m̂ 1 (x 1) = ĉ +
∑d

α=2 m̂α (xα) being the pilot spline estimator of m 1 (x 1). Consequently, the SBK

estimator of m1 (x1) is

m̂SBK,1 (x1) = argmax
a∈A

l̂ (a, x1) . (10)

We now introduce some useful results and definitions from LYH, under Assumptions (A1)-(A7) in appendix,

as n → ∞,

sup
x1∈[0,1]

|m̂SBK,1 (x1)− m̃K,1 (x1)| = Oa.s.

(
n−1/2 log n

)
, (11)
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m̃K,1 (x1)−m1 (x1) = bias1 (x1)h
2/D1 (x1) + n−1

∑n

i=1
Kh (Xi1 − x1)σ (Xi) εi/D1 (x1) + rK,1 (x1) (12)

in which the higher order remainder rK,1 (x1) satisfies

sup
x1∈[h,1−h]

|rK,1 (x1)| = Oa.s.

(
n−1/2h1/2 logn

)
. (13)

The scale function D1 (x1) and bias function bias1 (x1) are defined in LYH as:

σ2
b (x1) = E

[
b′′ {m (X)} |X1 = x1

]
, σ2 (x1) = E

{
σ2 (X) |X1 = x1

}
(14)

D1 (x1) = f1 (x1)σ
2
b (x1) , v

2
1 (x1) = ∥K∥22 f1 (x1)σ

2 (x1) . (15)

bias1 (x1) = µ2 (K)× (16){
m′′

1 (x1)D1 (x1) +m′
1 (x1) f (x1)σ

2
b (x1)

′ −
{
m′

1 (x1)
}2

f (x1)E
[
b′′′ {m (X)} |X1 = x1

]}

where ∥K∥22 =
∫
K2 (u) du, µ2 (K) =

∫
K (u)u2du. The above equations (11), (12) and (13) lead one to a

simplifying decomposition of the estimation error m̂SBK,1 (x1)−m1 (x1)

sup
x1∈[h,1−h]

∣∣∣m̂SBK,1 (x1)−m1 (x1)− n−1
∑n

i=1
Kh (Xi1 − x1)σ (Xi) εi/D1 (x1)

∣∣∣ (17)

= Oa.s.

(
n−1/2h1/2 log n+ n−1/2 log n+ h2

)
.

A decomposition such as (17) has not appeared in the literature for any other estimators of m1 (x1), and

it is fundamental for constructing SCCs in section 3.

3 GAM INFERENCE VIA SCC

In this section, we propose SCCs for GAM components.

3.1 Main Results

Denote ah =
√
−2 log h,C (K) = ∥K ′∥22 ∥K∥−2

2 and for any α ∈ (0, 1), the quantile

Qh(α) = ah + a−1
h

[
log

{√
C (K)/ (2π)

}
− log

{
− log

√
1− α

}
.
]

(18)
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Also with D1 (x1) and v21 (x1) given in (15), we define

σn (x1) = n−1/2h−1/2v1 (x1)D
−1
1 (x1) . (19)

Theorem 1 Under Assumptions (A1)-(A7), as n → ∞

lim
n→∞

P
{
supx1∈[h,1−h] |m̂SBK,1 (x1)−m1 (x1)| /σn (x1) ≤ Qh (α)

}
= 1− α.

A 100 (1− α)% simultaneous confidence corridor for m1 (x1),

m̂SBK,1 (x1)± σn (x1)Qh (α) . (20)

The above SCC for component function m1 (x1) resembles the SCCs in Bickel and Rosenblatt (1973)

and Härdle (1989) for estimating unknown univariate nonparametric function, although it is for high

dimensional nonparametric regression.

3.2 Implementation

To construct the SCC for m1 (x1) in (20), one needs to select the bandwidth h first, and then evaluate

mSBK,1 (x1) , Qh (α) and σn (x1) given in (10), (18) and (19).

Assumption (A6) requires that the bandwidth for SCC be slightly smaller than the mean square optimal

bandwidth hopt (minimizing AMISE) in LYH, we therefore have taken h = hopt(log n)
−1/4 as a data-driven

undersmoothing bandwidth for SCC construction to fulfill Assumption (A6). Recent articles on SCC

for time series, such as Wu and Zhao (2007), Zhao and Wu (2008), have used similar undersmoothing

bandwidths.

For a given α and a chosen bandwidth h, one can easily estimate mSBK,1 (x1) and Qh (α) as in (10),

(18). To evaluate σn (x1), one needs to estimate v1 (x1) and D−1
1 (x1) given in (15), i.e., estimating

f (x1) , σ
2
b (x1) and σ2 (x1). The estimation of the density function f (x1) is trivial, namely, f̂ (x1) =

n−1
∑n

i=1Kh (Xi1 − x1). We further illustrate the spline estimates of σ2
b (x1) and σ2 (x1) below:

One partitions miniXi1 = t1,0 < · · · < t1,N+1 = maxiXi1 where N is the number of spline interior

knots, i.e., N = Nn = min
([
n1/4 log n

]
+ 1, [n/4d− 1/d]− 1

)
which satisfies the assumption (A7) in the

Appendix. Then σ2
b (x1) can be estimated as

∑3
k=0 â

k
1,kx

k
1 +

∑N+3
k=4 â1,k (x1 − tα,k−3)

3 where {â1,k}N+3
k=0

10



minimize
n∑

i=1

[
b′′ {m̂ (Xi)} −

{∑3

k=0
a1,kX

k
i1 +

∑N+3

k=4
a1,k (Xi1 − tk−3)

3

}]2
, (21)

and σ2 (x1) can be estimated as
∑3

k=0 â
k
1,kx

k
1 +

∑N+3
k=4 â1,k (x1 − tα,k−3)

3 where {â1,k}N+3
k=0 minimize

n∑
i=1

[[
Yi − b′ {m̂ (Xi)}

]2 −{
3∑

k=0

aα,kX
k
i1 +

N+3∑
k=4

aα,k (Xi1 − tk−3)
3

}]2

. (22)

The resulted estimate σ̂n (x1) of σn (x1), using (21) and (22) satisfies supx1∈[h,1−h] |σ̂n (x1)− σn (x1)| =

Op (n
−γ) for some γ > 0, see LYH Section 5 for details. This consistency and Slutzky’s theorem ensure

that P
{
supx1∈[h,1−h] |m̂SBK,1 (x1)−m1 (x1)| /σ̂n (x1) ≤ Qh (α)

}
→ 1− α as n → ∞, and therefore

m̂SBK,1 (x1)± σ̂n (x1)Qh (α) (23)

is a 100 (1− α)% simultaneous confidence corridor form1 (x1). The SCC constructions of other components

m2 (x2) , ...,md (xd) are similar. It is worthwhile to emphasize that, in general, the estimators m̂SBK,1 (x1) ,

Q̂h (α) , f̂ (x1) and σ̂n (x1) remain stable if h slightly varies.

4 VARIABLE SELECTION IN GAM

In this section, we propose a Bayesian Information Criterion (BIC) for component function selection based

on spline smoothing for GAM and an efficient implementation follows.

4.1 Main Results

According to Stone (1985), p.693, the space of α-centered square integrable functions on [0, 1] is defined as

H0 =
{
g : E {g (Xα)} = 0,E

{
g2 (Xα)

}
< ∞, 1 ≤ α ≤ d

}
, (24)

and the model space M is

M =

{
g (x) = c+

∑d

α=1
gα (xα) ; gα ∈ H0, 1 ≤ α ≤ d

}
, (25)

where c is a finite constant.
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To introduce the proposed BIC, let {1, . . . , d} denote the complete set of indices of d tuning variables

(X1, ..., Xd) . For each subset S ⊂ {1, . . . , d}, define a corresponding model space MS for S as

MS =
{
g (x) = c+

∑
α∈S

gα (xα) ; c ∈ R, gα ∈ H0, α ∈ S
}
, (26)

with H0 given in (24), and the space of the additive spline functions as

G0
n,S =

{
g (x) = c+

∑
α∈S

gα (xα) ; c ∈ R, gα ∈ G0
n,α, α ∈ S

}
, (27)

with G0
n,α given in (5). Define the least squares projection of function m in MS as

mS = argmin
g∈MS

E {m (X)− g (X)}2 (28)

and define the set S0 of significant variables as the minimal set S ⊂ {1, . . . , d} such that E{m (X) −

mS (X)}2 = 0, which is uniquely defined according to Lemma 1 of Huang and Yang (2004).

To identify S0, one computes for an index set S the BIC as

BICS = −2L̂ (m̂S) +
NS

n
(log n)3 (29)

where L̂ (·) is given in (7), m̂S (x) ∈ G0
n,S is the pilot spline estimator as in (8), NS = 1 + (N + 1)# (S)

with N the number of interior knots, # (S) the cardinality of S. In practice, N = Nn can be taken as

min
([

n1/4 log n
]
+ 1, [n/4d− 1/d]− 1

)
, (30)

which satisfies the assumption (A7) in the Appendix.

Our variable selection rule takes the subset Ŝ ⊂ {1, . . . , d} that minimizes BICS .

Theorem 2 Under Assumptions (A1)-(A5) and (A7), limn→∞ P
(
Ŝ = S0

)
= 1.

According to Theorem 2, the variable selection rule based on the BIC in (29) is consistent. The

nonparametric version BIC was firstly established in Huang and Yang (2004) for additive autoregression

model, and adapted to additive coefficient model by Xue and Yang (2006), to single index model by Wang

and Yang (2009). Our proposed BIC differs from all of the above as it is based on quasi-likelihood rather

than mean squared error, which makes the technical proof of consistency much more challenging. To the

12



best of our knowledge, it is the first theoretically reliable information criterion in this setting.

4.2 Implementation

The proposed BIC is implemented without a greedy search through all possible subsets. Instead, the

forward stepwise regression procedure is used with minimizing BIC as the criterion.

5 MONTE CARLO SIMULATION

This section studies the performance of the proposed procedures, reporting also the computational costs,

the consistency of selecting variables via BIC and the global coverage precision of the SCC. The data are

generated from

P(Y = 1|X = x) = b′
{
c+

∑d

α=1
mα (Xα)

}
, b′ (x) =

ex

1 + ex
(31)

with d = 10, c = 0,m3 (x) = m4 (x) = m5 (x) = sin (πx) , m6 (x) = x,m7 (x) = ex − (e − e−1) and

mα (x) = 0 for α = 1, 2, 8, 9, 10. The set S0 is therefore S0 = {3, 4, 5, 6, 7}.

The predictors are generated by

Xiα = 2Φ (Ziα)− 1, Zi = (Zi1, ..., Zid) ∼ N(0,Σ) , 1 ≤ i ≤ n, 1 ≤ α ≤ d, (32)

where Φ is the standard normal c.d.f. and Σ = (1− r) Id×d+ r1d1
T
d . The parameter r (0 ≤ r < 1) controls

the correlation between Ziα,1 ≤ α ≤ d.

In what follows, the performance of BIC and COSSO is firstly compared, followed by a computational

comparison between the SBK and a kernel method in GAM, and it ends with a report on the SCC global

coverage for components.

[Table 1 about here.]

[Table 2 about here.]

Table 1 shows the simulation results from 100 replications, where the outcome is defined in accuracy as

correct fitting, if Ŝ = S0; overfitting, if S0 ⊂ Ŝ; and underfitting, if S0 * Ŝ. It is clear that the performance

of BIC on selecting 5 significant variables mα (Xα) , α = 3, ..., 7, is quite satisfactory. The selection accuracy

becomes higher as the sample size increases and the correlation decreases. The accuracy and computing
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time of COSSO are also listed for comparison (Platform: R; PC: Intel 3.4 GHz processor and 16 GB RAM).

It is obvious that the BIC significantly outperforms the COSSO in terms of both accuracy and computing

time. To examine the computing advantage of BIC for large d, we extend d = 10 to 50 by using m3, ...,m7

as above and all the other component functions are 0. The BIC is vastly faster than COSSO for d = 50.

All of these findings confirm what is expected according to the asymptotic theory.

The SCC global coverage for mα (xα) , α = 3, ..., 7 is reported in Table 2. It turns out that the empirical

coverage approaches the nominal confidence levels as n increases, and a better coverage occurs when the

correlation is lower.

The above studies evidently indicate the reliability of our methodology, such as a high selection accuracy

of the BIC and a desired global coverage of the SCC, which make their applications for credit rating

modelling in the following section sensible.

6 APPLICATION

We now return to forecast default probabilities of the listed companies in Japan. The data provided

by the Risk Management Institute, National University of Singapore include the comprehensive financial

statements and the credit events (default or bankruptcy) from 2005 to 2010 of 3, 583 Japanese firms.

Berg (2007) found that the liability status was important to indicate the creditworthiness of a com-

pany, while Bernhardsen (2001) and Ryser and Denzler (2009) proposed to consider the “leverage effect”

expressed by the financial statement ratios. Therefore, we have pooled two situations by considering X1:

Current liability, X2: Current stock return, X3: Long term borrow, X4: Short term borrow, X5: Total

asset, X6: Non-current liability, X7: 3 months earlier (stock) return, X8: 6 months earlier (stock) return,

X9: Current ratio, X10: Net liability to shareholder equity, X11: Shareholder equity to total liability and

equity, X12: TCE ratio, X13: Total debt to total asset, X14: Quick ratio.

Selecting the rating factors via the BIC given in (29), we have found that X1: Current liabilities, X7:

3 months earlier return, X8: 6 months earlier return are selected. Similar rating covariates were also

discovered in Shina and Moore (2003), Berg (2007) and Ryser and Denzler (2009). However, Berg (2007)

selected 23 variables which led to a non-parsimonious GAM. In contrast, Ryser and Denzler (2009) had

found that 3 financial ratios (capital turnover, long-term debt ratio, return on total capital) were significant

based on the blockwise cross-validation (CV) method which is nonetheless extremely time consuming in

comparison to the proposed BIC.
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Figure 1 (a)-(c) depicts the SBK estimator of the factor’s default impact curve on domain, while a

shoal of 95% CIs and the 95% SCC present respectively the pointwise and global uncertainty of the whole

curve. The SBK estimators indicate overall monotonicities of each rating factors, and the SCCs turn out

to be fairly narrow to warrant the global nonlinearities of the factors’ curves which reveal the underlying

nonlinear features in different segments of domain.

As for the model evaluations, the Cumulative Accuracy Profile (CAP) is used. For any credit scoring

method S, one defines its alarm rate F (s) = P (S ≤ s) and the hit rate FD (s) = P (S ≤ s |D) where D

represents the conditioning event of “default”. One then defines the CAP curve for S as

CAP (u) = FD

{
F−1 (u)

}
, u ∈ (0, 1) , (33)

which is the percentage of default-infected obligators that are found among the first (according to their

scores) 100u% of all obligators. The perfect scoring method P assigns low scores first to all default-infected

obligators and thus CAPP (u) = min (u/p, 1) , u ∈ (0, 1) where p is the unconditional default probability,

whereas the completely noninformative scoring method with zero discriminatory power displays a diagonal

line CAPN (u) ≡ u, u ∈ (0, 1), see details of the CAP in Engelmann, Hayden and Tasche (2003).

A satisfactory scoring method’s CAP curve would be expected to approach CAPP (u) and always better

than the noinformative CAPN (u), and one uses the Accuracy Ratio (AR) to quantify its position. The

AR is the ratio of the area aR enclosed between the given CAP curve and the noninformative diagonal

curve CAPN (u) ≡ u, and the total area aP enclosed between the perfect CAP curve CAPP (u) and the

noninformative diagonal curve CAPN (u). Thus

AR =
aR
aP

=
2
∫ 1
0 CAP (u) du− 1

1− p
,

where CAP (u) is given in (33). The AR takes value in [0, 1], with value 0 corresponding to the noninfor-

mative scoring, and 1 the perfect scoring method, a higher AR indicates an overall higher discriminatory

power of a method.

We have applied both GAM and GLM to the first 2000 companies and computed default probabilities of

the remaining 1583 companies, and used the default probabilities as scores. Figure 1 (d) depicts the CAPs

of GAM (thick solid) and GLM (thin solid), as well as the CAPP (u) (dashed) and CAPN (u) (dotted).

Visually it is clear that GAM has much higher accuracy ratio than GLM, which is in fact the case: the AR

is 97.56% for GAM, much higher than the 89.76% for GLM. Nonetheless, we failed to apply the COSSO
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for the same data.

APPENDIX

In what follows, we take ∥·∥ and ∥·∥∞ as the Euclidean and supremum norms, respectively, i.e., for any

x = (x1, x2, ..., xd)
T ∈ Rd, ∥x∥ =

(∑d
α=1 x

2
α

)1/2
and ∥x∥∞ = max1≤α≤d |xα|. For any interval [a, b],

denote the space of p-th order smooth function by C(p)[a, b] =
{
g
∣∣g(p) ∈ C [a, b]

}
, and the class of Lipschitz

continuous functions by Lip ([a, b] , C) = {g ||g (x)− g (x′)| ≤ C |x− x′| , ∀x, x′ ∈ [a, b]} for constant C > 0.

Lastly, define the following latent regression errors

ξi = Yi − b′ {m (Xi)} = σ (Xi) εi, 1 ≤ i ≤ n. (A.1)

We need the following technical assumptions:

(A1) The additive component functions mα ∈ C(1) [0, 1] , 1 ≤ α ≤ d: m1 ∈ C(2) [0, 1] ,m′
α ∈ Lip ([0, 1] , Cm) ,

2 ≤ α ≤ d for some constant Cm > 0.

(A2) The inverse link function b′ satisfies that b′ ∈ C2 (R) , b′′ (θ) > 0, θ ∈ R. For a compact interval Θ

whose interior contains m
(
[0, 1]d

)
, Cb > maxθ∈Θ b′′ (θ) ≥ minθ∈Θ b′′ (θ) > cb for constants 0 < cb <

Cb < ∞.

(A3) The conditional variance function σ2 (x) is continuous and positive for x ∈ [0, 1]d. The errors {εi}ni=1

satisfy that E (εi |Xi ) = 0, E
(
|εi|2+η

)
≤ Cη for some η ∈ (1/2, 1].

(A4) The joint density f (x) of (X1, ..., Xd) is continuous: 0 < cf ≤ infx∈[0,1]d f (x) ≤ supx∈[0,1]d f (x) ≤

Cf < ∞. The marginal density function fα (xα) of Xα have continuous derivatives on [0, 1] and the

uniform bounds Cf and cf . There exists a σ-finite measure λ on R such that the distribution of Yi

conditional on Xi has a probability density function fY |X (y; b′ {m (x)}) relative to λ whose support

for y is a common Ω, and is uniformly continuous in x ∈ [0, 1]d for y ∈ Ω.

(A5)
{
Zi =

(
XT

i , εi
)}n

i=1
are independent and identically distributed.

(A6) The kernel function K (x) is a symmetric probability density function supported on [−1, 1] and ∈

C1[−1, 1]. The bandwidth h = hn satisfies that h = O
{
n−1/5(log n)−1/5

}
, h−1 = O

{
n1/5 (log n)δ

}
for some constant δ > 1/5.
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(A7) The number of interior knots N satisfies that cNn1/4 logn ≤ N ≤ CNn1/4 log n for some constants

cN ,CN > 0.

Assumptions (A1)-(A7) are standard in GAM, see Stone (1986), Xue and Liang (2010). Assumptions

(A5), (A6) are more restrictive than in LYH for the purpose of constructing SCCs, but are unnecessary

for Theorem 2 on the consistency of BIC.

A.1. Preliminaries

Throughout this section, C denotes some generic positive constant unless stated otherwise. Define

Mh (t) = h−1/2

∫ 1

0
K {(x− t) /h} dW (x) (A.2)

where W (x) is a Wiener process defined on (0,∞) and denote

dh = (−2 log h)1/2 + (−2 log h)−1/2
{√

C (K)/ (2π)
}

(A.3)

with C (K) given in (18).

Lemma A.1 Under Assumption (A6). for any x ∈ R

lim
n→∞

P
[
(−2 log h)1/2

{
supt∈[h,1−h] |Mh (t)| / ∥K∥22 − dh

}
< x

]
= e−2e−x

.

Proof. One simply applies the same steps in proving Lemma 2.2 of Härdle (1989).

Denote by Ti the random variable b′ {m (Xi)}, and the Lebesgue measure on Rd as µ(d). By Assumption

(A4), Xi has pdf wrt the Lebesgue measure µ(d), and Assumptions (A1) and (A2) ensure that functions

b′ and m are at least C1, thus the random vector (Ti, Xi1) has a joint pdf wrt the Lebesgue measure µ(2),

which one denotes as fT,X1 (t, x1).

Lemma A.2 Under Assumptions (A1)-(A5), for ξi in (A.1), the distribution of (ξi, Xi1) has joint pdf wrt

µ(2) as fξ,X1 (z, x1) =
∫
Ω fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y).

Proof. The joint pdf of (Yi, Ti, Xi1) wrt λ×µ(2) is therefore fY |X (y; t) fT,X1 (t, x1). For any (z, x1) ∈

R× [0, 1], and △z,△x1 > 0, one has

P [(ξi, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)] =
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P [(Yi − Ti, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)] =

=

∫
Ω
dλ (y)

∫
y−τ∈(z−△z,z+△z)

dτ

∫
χ1∈(x1−△x1,x1+△x1)

fY |X (y; τ) fT,X1 (τ , χ1) dχ1.

Applying dominated convergence theorem, one has as max (△z,△x1) → 0

∣∣∣∣P [(ξi, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)]−
{∫

Ω
fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y)

}
×µ(2) [(z −△z, z +△z)× {(x1 −△x1, x1 +△x1) ∩ [0, 1]}]

∣∣∣ = O(1)

hence the the joint pdf of (ξi, Xi1) wrt µ
(2) is

∫
Ω fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y).

For theoretical analysis, we write cJ,α = E bJ (Xα) =
∫
bJ (xα) fα (xα) dxα and define the centered B

spline basis bJ,α (xα) and the standardized B spline basis BJ,α (xα) respectively as

bJ,α (xα) = bJ (xα)−
cJ,α

cJ−1,α
bJ−1 (xα) ,

BJ,α (xα) =
bJ,α (xα){∫

b2J,α (xα) fα (xα) dxα

}1/2
, 1 ≤ J ≤ N + 1, (A.4)

so that EBJ,α (Xα) ≡ 0, EB2
J,α (Xα) ≡ 1.

One can rewrite with slight abuse of notations the log-likelihood L̂ (g) given in (7) as

L̂ (g) = L̂ (λ) = n−1
∑n

i=1

[
Yiλ

TB (Xi)− b
{
λTB (Xi)

}]
, (A.5)

with g (Xi) = λTB (Xi) ∈ G0
n, λ =(λ0, λJ,α)

T
1≤J≤N+1,1≤α≤d ∈ RNd with Nd = (N + 1) d + 1, B (x) =

{1, B1,1 (x1) , ..., BN+1,d (xd)}T and BJ,α (xα) as given in (A.4). It is straightforward to verify that the

gradient and Hessian of L̂ (λ) are

∇L̂ (λ) = n−1
∑n

i=1

[
YiB (Xi)− b′

{
λTB (Xi)

}
B (Xi)

]
, (A.6)

∇2L̂ (λ) = −n−1
∑n

i=1
b′′

{
λTB (Xi)

}
B (Xi)B (Xi)

T .

Proposition A.1 Under Assumptions (A1)-(A5) and (A7), for m ∈ M with M given in (25) and m̂ as in

(8), as n → ∞, ∥m− m̂∥2,n+ ∥m− m̂∥2 = Oa.s.

(
N1/2n−1/2 log n

)
and ∥m− m̂∥∞ = Oa.s.

(
Nn−1/2 log n

)
.

With probability approaching 1, the Hessian matrix ∇2L̂ (λ) satisfies that ∇2L̂ (λ) < 0, ∀λ and ∇2L̂ (λ) ≤

−cbcV I if λTB (Xi) ∈ Θ, 1 ≤ i ≤ n.
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Proof. See Lemma A.13 of LYH, Assumption (A2), equation (A.6) and Lemma A.11 of LYH.

A.2. Proof of Theorem 1

Proof. Define a stochastic process ε̂n (x1) = n−1
∑n

i=1Kh (Xi1 − x1) ξi, x1 ∈ [0, 1] with ξi given in (A.1),

then (12) and (13) show that

supx1∈[h,1−h]

∣∣m̃K,1 (x1)−m1 (x1)−D−1
1 (x1) ε̂n (x1)

∣∣ = Oa.s.

(
h2 + n−1/2h1/2 log n

)
,

which, together with (11), lead to

supx1∈[h,1−h]

∣∣m̂SBK,1 (x1)−m1 (x1)−D−1
1 (x1) ε̂n (x1)

∣∣ (A.7)

= Oa.s.

(
h2 + n−1/2h1/2 log n+ n−1/2 log n

)
= Oa.s.

(
h2 + n−1/2 log n

)
.

Using v1 (x1) given in (15), one can standardize ε̂n (x1) and then replace x1 by t to obtain

ζ̂n (t) = (nh)1/2 v−1
1 (t) ε̂n (t) = (nh)1/2 v−1

1 (t)
{
n−1

∑n

i=1
Kh (Xi1 − t) ξi

}
. (A.8)

Assumptions (A5), (A8) imply that the following Rosenblatt transformation to the 2-dimensional se-

quence {X1i, ξi}
n
i=1 produces

{
X ′

i1, ξ
′
i

}n

i=1
with

(
X ′

i1, ξ
′
i

)
uniformly distributed on [0, 1]2:

(
X ′

i1, ξ
′
i

)
= T (X1i, ξi) =

{
FX1 (X1i) , Fξ|X1

(ξi|X1i)
}
.

Denote Zn (x1, ξ) =
√
n {Fn (x1, ξ)− F (x1, ξ)} where Fn (x1, ξ) is the empirical distribution of {Xi1, ξi}

n
i=1,

one can rewrite ξ̂n (t) as

ξ̂n (t) = h−1/2v−1
1 (t)

∫ ∫
K {(x1 − t) /h} ξdZn (x1, ξ) .

By the strong approximation theorem in Tusnady (1977), there exists a version of the 2-dimensional

Brownian Bridge Bn

(
x′1, ξ

′) such that

sup
x1,s

|Zn (x1, ξ)−Bn {T (x1, ξ)}| = Oa.s.

(
n−1/2

2
log n

)
. (A.9)
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Applying standard techniques used in Bickel and Rosenblatt (1973), Härdle (1989), one can show that

sup
t∈[0,1]

∣∣∣ξ̂n (t)−Mh (t) / ∥K∥22
∣∣∣ = Op

{
(log n)−1/2

}
, (A.10)

for a version of the Mh (t) given in (A.2). Similar result can be found in Xia (1998).

Furthermore, (A.7) and (A.8) imply that

supx1∈[h,1−h]

∣∣∣σ−1
n (x1) {m̂SBK,1 (x1)−m1 (x1)} − ξ̂n (x1)

∣∣∣ = Oa.s.

(
n1/2h5/2 + h1/2 log n

)
, (A.11)

with σn (x) given in (19). Under Assumption (A6), which entails that (−2 log h)1/2 is of the same order as

(log n)1/2, (A.10) and (A.11) can show that

supx1∈[h,1−h] (−2 log h)1/2
∣∣∣σ−1

n (x1) |m̂SBK,1 (x1)−m1 (x1)| − |Mh (t)| / ∥K∥22
∣∣∣ (A.12)

= Oa.s

{
(log n)1/2 ×

(
n1/2h5/2 + h1/2 log n

)}
+ Op (1) = Op (1) .

Finally, Theorem 1 follows from Lemma A.1 and Slutsky’s Theorem.

A.3. Proof of Theorem 2

Prior to proving Theorem 2, we restate Proposition A.1 for any index set S ⊂ {1, 2, . . . d}.

Denote by λ = (λ0, λJ,α)
T
1≤J≤N+1,1≤α≤d an arbitrary vector. For any S,NS = 1+(N + 1)# (S), denote

λS = (λ0, λJ,α)
T
1≤J≤N+1,α∈S ∈ RNS ,BS (x) = {1, BJ,α (xα)}T1≤J≤N+1,α∈S , (A.13)

and with slight abuse of notations

L̂S (λS) = L̂S

{
λT
SBS (x)

}
= n−1

∑n

i=1

[
Yiλ

T
SBS (Xi)− b

{
λT
SBS (Xi)

}]
(A.14)

whose maximizer is m̂S = λ̂
T

SBS (x).

Proposition A.2 Under Assumptions (A1)-(A5) and (A7), for mS ∈ MS given in (28), m̂S in (A.14), as

n → ∞, ∥mS − m̂S∥2,n+∥mS − m̂S∥2 = Oa.s.

(
N1/2n−1/2 log n

)
and ∥mS − m̂S∥∞ = Oa.s.

(
Nn−1/2 log n

)
.

Next, we consider two cases “underfitting” and “overfitting” for the index set S to establish Theorem

2.
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Definition: if S ⊃ S0 and S ̸= S0, then S overfits, while S is underfitting if S0∩ S ̸= S0 with S0 given

in Theorem 2. We shall show that limn→∞ P (BICS −BICS0 > 0) = 1 in both situations.

Proof. I: overfitting, i.e., S ⊃ S0 and S ̸= S0.

Let λS0S =
{
λS0 ,

(
λJ,α′

)T
1≤J≤N+1,α′∈S\S0

}
, λ̂S0S =

{
λ̂S0 ,

(
λJ,α′

)T
1≤J≤N+1,α′∈S\S0

}
with λJ,α′ ≡ 0 and λ̂S

( or λ̂S0) as the MLE of (A.14) (or when S = S0). Note that L̂S

(
λ̂S0S

)
= L̂S0

(
λ̂S0

)
.

Using Taylor’s expansion, ∃ a vector λ̃S between λ̂S and λ̂S0S , i.e., λ̃S = tλ̂S + (INs − t) λ̂S0S with a

Ns ×Ns diagonal matrix t whose diagonal elements are in [0, 1] s.t.

L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)
= L̂S

(
λ̂S0S

)
− L̂S

(
λ̂S

)
(A.15)

=
(
λ̂S0S − λ̂S

)T
▽ L̂S

(
λ̂S

)
+

1

2

(
λ̂S0S − λ̂S

)T
▽2 L̂S

(
λ̃S

)(
λ̂S0S − λ̂S

)
.

Since ▽L̂S

(
λ̂S

)
= 0 and ▽2L̂S

(
λ̃S

)
is given in (A.6), for m̃S = λ̃

T

SBS (x), one has

L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)
(A.16)

= − (2n)−1
∑n

i=1
b′′

{
λ̃
T

SBS (Xi)
}{(

λ̂S0S − λ̂S

)T
BS (Xi)

}{(
λ̂S0S − λ̂S

)T
BS (Xi)

}T

= − (2n)−1
∑n

i=1
b′′ {m̃S (Xi)} {m̂S0 (Xi)− m̂S (Xi)}2 .

By m = mS0 = mS ∈ MS0 ⊂ MS , Proposition A.2 implies that ∥m̂S0 −m∥2,n = Oa.s.

(
N1/2n−1/2 log n

)
and ∥m̂S −m∥2,n = Oa.s.

(
N1/2n−1/2 log n

)
, thus

∥m̂S0 − m̂S∥22,n = Oa.s.

(
Nn−1log2n

)
. (A.17)

Similarily, one has ∥m̃S −m∥∞ = oa.s. (1), which warrants for large n that m̃S ∈ Θ with Θ given in

Assumption (A.2), so (A.16) implies that

0 ≥ L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)
≥ −Cb

2
∥m̂S0 − m̂S∥22,n . (A.18)

As a result, BIC given in (29) shows that

BICS −BICS0 = 2
{
L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)}
+

NS −NS0

n
log3n (A.19)

≥ −Cb ∥m̂S0 − m̂S∥22,n + (N + 1)n−1log3n,
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which implies by (A.17) that limn→∞ P (BICS −BICS0 > 0) = 1.

II: underfitting, i.e., S0∩ S ̸= S0.

Let S′ = S0 ∪ S and denote by λ̂S0 , λ̂S and λ̂S′ the MLEs in (A.14) for S0, S and S′, respectively. Since

S′ overfits S0, similarly to (A.18), one has

0 ≥ L̂S0

(
λ̂S0

)
− L̂S′

(
λ̂S′

)
≥ −Cb

2
∥m̂S0 − m̂S′∥22,n , (A.20)

Define a set ΘS′ =
{
λS′ : λT

S′BS′ (Xi) ∈ Θ, 1 ≤ i ≤ n
}
. which is compact and convex in RNS . By

definition,

max
1≤i≤n

∣∣∣λ̂T

S′BS′ (Xi)−m (Xi)
∣∣∣ ≤ ∥m̂S′ −m∥∞ = Oa.s.

(
Nn−1/2 log n

)
,

so for large n, with probability approaching 1, λ̂S′ ∈ ΘS′ , so Proposition A.1 ensures that, with probability

approaching 1, the Hessian matrix ∇2L̂S′

(
λ̂S′

)
≤ −cbcV INS′ , while ∇L̂S′

(
λ̂S′

)
= 0 and ∇2L̂S′ (λS′) ≤ 0,

∀ λS′ . Thus, with probability approaching 1, there exists a constant c1 > 0 such that

L̂S′ (λS′)− L̂S′

(
λ̂S′

)
≤


−2−1cbcV

∥∥∥λS′ − λ̂S′

∥∥∥2 , if λS′ ∈ ΘS′

max
λS′∈∂ΘS′

L̂S (λS)− L̂S′

(
λ̂S′

)
≤ −c1, otherwise

. (A.21)

Next, define a new vector λ̂SS′ =
{
λ̂S ,

(
λJ,α′

)T
1≤J≤N+1,α′∈S′\S

}
with λJ,α′ ≡ 0 and note that λ̂

T

SS′

BS′ (x) ≡ m̂S (x) , λ̂
T

S′ BS′ (x) ≡ m̂S′ (x), so applying Lemma A.5 of Wang and Yang (2007), there exists

a constant C0 > 0 such that ∥∥∥λ̂SS′ − λ̂S′

∥∥∥2 ≥ C−1
0 ∥m̂S − m̂S′∥22 .

Applying Proposition A.2 entails that

∣∣∣∥m̂S − m̂S′∥22 − ∥mS −mS′∥22
∣∣∣ = Oa.s.

(
Nn−1

2
log n

)

while the definitions of underfitting and overfitting lead to

∥mS −mS′∥22 = ∥mS −m∥22 = cS > 0

and thus ∥∥∥λ̂SS′ − λ̂S′

∥∥∥2 ≥ C−1
0 cS +Oa.s.

(
Nn−1log2n

)
. (A.22)
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Note next that

L̂S

(
λ̂S

)
− L̂S′

(
λ̂S′

)
= L̂S′

(
λ̂SS′

)
− L̂S′

(
λ̂S′

)
(A.23)

which according to (A.21), is bounded by

≤


−2−1cbcV

∥∥∥λ̂SS′ − λ̂S′

∥∥∥2 , if λ̂SS′ ∈ ΘS′

max
λS′∈∂ΘS′

L̂S (λS)− L̂S′

(
λ̂S′

)
≤ −c1, otherwise

which is, according to (A.22), bounded by

≤ max
(
−2−1cbcV C

−1
0 cS ,−c1

)
+Oa.s.

(
Nn−1log2n

)
= −c2 +Oa.s.

(
Nn−1log2n

)
, for a constant c2 > 0.

The above bound, together with (A.17), (A.20) and (A.23) lead to L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)

=
{
L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S′

)}
−

{
L̂S

(
λ̂S

)
− L̂S′

(
λ̂S′

)}
≥ c2 +Oa.s.

(
Nn−1log2n

)
. (A.24)

Finally, (A.24) implies that

BICS −BICS0 = 2
{
L̂S0

(
λ̂S0

)
− L̂S

(
λ̂S

)}
+

NS −NS0

n
log3n ≥ c2 + Op(1) , (A.25)

and thus limn→∞ P (BICS −BICS0 > 0) = 1.
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Figure 1: Plots of the rating factors in (a)-(c): SBK estimators (thin), 95% CIs (dashed) and 95% SCCs
(thick). Plot of the CAPs in (d): Perfect (dashed), GAM (thick solid), GLM(thin solid), noninforma-
tive(dotted).
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Computing Time Accuracy
d r n BIC COSSO Ratio BIC COSSO

250 0.43 5.90 13.7 4 90 6 20 66 14
0 500 0.58 11.50 19.8 0 95 5 7 85 8

1000 1.05 27.89 26.6 0 99 1 6 90 4
10

250 0.51 6.12 12.0 31 62 7 42 44 14
0.5 500 0.64 12.90 20.1 3 91 6 17 73 10

1000 1.12 29.43 26.3 0 99 1 12 82 6

250 1.89 − − 87 10 3 − − −
0 500 2.76 209.34 76 14 77 9 21 46 33

1000 5.14 531.96 103 0 96 4 1 89 10
50

250 2.02 − − 90 4 6 − − −
0.5 500 2.87 215.64 75 63 32 5 44 26 30

1000 5.39 545.43 101 10 86 4 10 71 19

Table 1: Simulation results for the proposed BIC method and COSSO with d = 10 and 50. For each setup,
the first, second, and third columns under Accuracy give respectively the frequencies of under fitting,
correct fitting, and over fitting over 100 replications. Ratio is the computing time of COSSO over that of
BIC. For d = 50 and n = 250, COSSO becomes unstable to the point of crashing.
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r n α
3 4 5 6 7

0.0 250 0.925 0.920 0.920 0.930 0.925
500 0.955 0.945 0.945 0.950 0.955
1000 0.950 0.945 0.950 0.945 0.950

0.5 250 0.910 0.910 0.915 0.920 0.920
500 0.935 0.925 0.930 0.930 0.935
1000 0.945 0.945 0.940 0.950 0.945

Table 2: The 95% SCC global coverage for ma (x) , α = 3, ..., 7 from 200 replications
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