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Abstract

The influence of maternal health problems on child’s worrying status is important in

practice in terms of the intervention of maternal health problems early for the influence

on child’s worrying status. Conventional methods apply symmetric prior distributions

such as a normal distribution or a Laplace distribution for regression coefficients, which

may be suitable for median regression and exhibit no robustness to outliers. This work

develops a quantile regression on linear panel data model without heterogeneity from a

Bayesian point of view, i.e., upon a location-scale mixture representation of the asym-

metric Laplace error distribution, this work provides how the posterior distribution

can be sampled and summarized by Markov chain Monte Carlo method. Applying

this approach to the 1970 British Cohort Study data, it finds that a different maternal

health problem has different influence on child’s worrying status at different quantiles.

In addition, applying stochastic search variable selection for maternal health problems

to the 1970 British Cohort Study data, it finds that maternal nervous breakdown, in
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this work, among the 25 maternal health problems, contributes most to influence the

child’s worrying status.

Key words: British Cohort Study data; Bayesian inference; Quantile regression; Asym-

metric Laplace error distribution; Markov chain Monte Carlo; Variable selection.
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1 Introduction

In many applications, conventional regression analysis addressed much attention and focuses

on the mean effect or optimal forecasting in a mean squared error sense. Since a set of

quantles often provides more complete description of the response distribution than the

mean, over classical mean regression, quantile regression not only quantifies the relationship

between quantiles of the response distribution and covariates, but also exhibits robustness to

outliers and has a wide applicability (Buchinsky, 1998; Yu et al., 2003; and Koenker, 2005).

Quantile regression has been applied in many areas, for example, to calculate Value at Risk

and expected shortfall for financial risk management (Taylor, 2008), to study the relationship

between GDP and population (Schnabel and Eilers, 2009) , to study the correlation of the

wage and the level of education (Härdle and Song, 2010), and to estimate the volatility of

temperatures (Guo and Härdle (2012).

For classical quantile regression, the error distribution is often assumed to have the p-th

quantile equal to zero, see, for example, Yu and Stander (2007), and classical qantile regres-

sion parameters depend on asymptotic normality which is assumed unbiased and normal.

Inaddition, confidence intervals depends on the density function of model error which is dif-

ficult to estimate reliability. On the contrary, credible intervals from Bayesian inference can

avoid these problems, whatever sample sizes. Aside from these, Bayesian inference can take

historical information or expert opinion easily via prior information. Therefore Bayesian

quantile regression is naturally motivated.
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Quantile regression is attempted in Bayesian framework in both theoretical and applied

econometric analysis, for example, Walker and Mallick (1999), Kottas and Gelfand (2001),

and Hanson and Johnson (2002) on median regression (one special quantile regression),

and Yu and Moyeed (2001), Tsionas (2003) and Kozumi and Kobayashi (2010) on general

quantile regression with the asymmetric Laplace density for the errors. In addition, on

infinite mixture model, Kottas and Krnjajic (2009) on Bayesian semi-parametric approach,

Yu (2002), Taddy and Kottas (2010) and Yue and Rue (2011) on Bayesian nonparametric

approach. However, few studies have been on Bayesian quantile regression for panel data

(Yuan and Yin, 2010; Reich et al., 2010).

This paper develops a Bayesian quantile regression for linear panel data without het-

erogeneity. For posterior inference, upon a location-scale mixture representation of the

asymmetric Laplace error distribution, we propose a Gibbs sampling algorithm and develop

Markov chain Monte Carlo (MCMC) methods (see, e.g., Chib 2001; Liu 2001; Gamerman

and Lopes 2006). All posterior densities are fully tractable and easy to sample, making

the Gibbs sampler appealing when several quantile regressions are required at one time. In

addition, the proposed Gibbs sampler can be applied for the calculation of the marginal

likelihood and the variable selection.

For variable selection, several criteria have been proposed (see, for example, Zwick and

Velicer, 1986), though no agreement has emerged in the literature on optimal criterion. Aside

from the classical literature, Bayesian approach focus on an unknown number of variables

(Frühwirth-Schnatter and Lopes, 2009).Variable selection in modeling with Bayesian quantile

regression is difficult due to the computational efficiency. This work applies stochastic search

variable selection based on Markov chain Monte Carlo method.

We apply Bayesian approach to the 1970 British Cohort Study (BCS) to analyze the

influence of maternal health problems on child’s worrying status. This is the first instance,

as we know, in which the influences of maternal health problems are estimated to account

for child’s worrying status. We find that different maternal health problems have different

influence on child’s worrying status at different quantiles, and find that maternal nervous

breakdown, in our method, among the 25 maternal health problems, contributes most to

influence the child’s worrying status.

This paper joins the literature in health economics and personality psychology. While
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it is established in psychology on their importance (see, for example, Roberts et al., 2006,

2007; Hampson and Friedman, 2008), and in economics for the influence of personality traits

on health (Kaestner and Callison, 2011; Conti et al., 2010) and health-related behaviors

(Heckman et al., 2006; Cutler and Lleras-Muney, 2010; Conti et al., 2010), it is less recognized

in economics on the influence of maternal health problems on child’s worrying status.

Using principal component analysis, a few studies using the BCS data can be found in

the economic literature. Blanden et al. (2007) constructs several non-cognitive measures to

analyze their role in explaining the rise in intergenerational income persistence across the

1958 and the 1970 cohorts. Feinstein (2000) constructs several indicators of psychological

and behavioral development to analyze their effects on education and labor market outcomes.

Murasko (2007) computes the standardized raw scores from the locus of control and self-

esteem scales and finds that both are significant predictors of self-reported poor health at

age 30. This analysis goes beyond those studies, as we apply Bayesian inference and variable

selection to examine the influence of maternal health problems on child’s worrying status.

Our work contributes an important methodological advancement to these literatures.

When in a data-rich environment, researchers used traditional methods to estimate and

select variables, and in many cases they have been limited by the computing challenging.

Using the BCS data, we propose Bayesian inference and apply variable selection in this

paper, and find that maternal’s different health problems have different influence on child’s

worrying status at different quantiles, and that maternal nervous breakdown, in our method,

among the 25 maternal health problems, contributes most to influence the child’s worrying

status.

The paper is structured as follows. In the next section, we describe the BCS data. Section

3 outlines the basic model, while Section 4 develops MCMC method for quantile regression

model and explain how the MCMC output may be used to compute the marginal likelihoods

and for variable selection. Empirical implementation and results for our Bayesian approach

are shown in Section 5. Section 6 concludes our findings.
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2 Data: The British Cohort Study

The data, we use in this paper, are from the BCS, a survey of all babies born (alive or dead)

after the 24-th week of gestation from 00.01 hours on Sunday, 5th April to 24.00 hours on

Saturday, 11 April, 1970 in places including England, Scotland, Wales and Northern Ireland.

Seven surveys, in detail, respectively in 1975, 1980, 1986, 1996, 2000, 2004 and 2008, are

followed up so far to trace all members of the birth cohort. Information on background

characteristics is drawn from the survey in 1975 and 1980 on maternal health problems, and

on child’s worrying status from the survey in 1980 and 1986. Samples from the family of

multiple children are excluded for the reason of peer effect, and samples for the respondents

with any missing information on those background characteristics are also excluded. A

sample of size 3,426 is left for our analysis in this paper.

2.1 Rutter Score Derived Variable for Child

Applying the Rutter Behaviour Scale question ”Often worried?” for child, the Rutter score

derived variable, Y , was derived, where the question was completed by the cohort member’s

parent (usually the mother) in the BCS 1980 and 1986 follow-up data sets. For our case,

the discrete choice results from 1 (Does not worried), 2 (Somewhat worried), 3 (Certainly

worried).

2.2 Mother Malaise Score Derived Variables

Applying the Malaise Inventory (”How you feel”) completed by the cohort member’s parent

(usually the mother), the mother malaise score derived variables were derived on behalf of

the cohort member and included in the BCS 1975 and 1980 follow-up data sets. These 25

variables were named in the Mother Malaise data sets as follows:

(1) Do you often have backache? (X1)

(2) Do you feel tired most of the time? (X2)

(3) Do you often feel depressed? (X3)

(4) Do you often have bad headaches? (X4)

(5) Do you often get worried about things? (X5)

(6) Do you usually have great difficulty in falling or staying asleep? (X6)
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(7) Do you usually wake unnecessarily early in the morning? (X7)

(8) Do you wear yourself out worrying about your health? (X8)

(9) Do you often get into a violent rage? (X9)

(10) Do people annoy and irritate you? (X10)

(11) Have you at times had a twitching of the face, head or shoulders? (X11)

(12) Do you suddenly become scared for no good reason? (X12)

(13) Are you scared to be alone when there are not friends near you? (X13)

(14) Are you easily upset or irritated? (X14)

(15) Are you frightened of going out alone or of meeting people? (X15)

(16) Are you constantly keyed up and jittery? (X16)

(17) Do you suffer from indigestion? (X17)

(18) Do you suffer from an upset stomach? (X18)

(19) Is your appetite poor? (X19)

(20) Does every little thing get on your nerves and wear you out? (X20)

(21) Does your heart often race like mad? (X21)

(22) Do you often have bad pain in eyes? (X22)

(23) Are you troubled with rheumatism or fibrosis? (X23)

(24) Have you ever had a nervous breakdown? (X24)

(25) Do you have other health problems? (X25)

3 Potential Outcome Model

Let Yit be the Rutter score derived variable for the i-th cohort member surveyed at the t-th

sweep, and X1,it, X2,it,..., X25,it the mother malaise score derived variables for the i-th cohort

member’s parent (usually the mother) surveyed at the t-th sweep. Our linear panel data

model without heterogeneity is introduced as follows.
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Yit = β0 + β1X1,it + β2X2,it + β3X3,it + β4X4,it + β5X5,it + β6X6,it

+ β7X7,it + β8X8,it + β9X9,it + β10X10,it + β11X11,it + β12X12,it

+ β13X13,it + β14X14,it + β15X15,it + β16X16,it + β17X17,it + β18X18,it

+ β19X19,it + β20X20,it + β21X21,it + β22X22,it + β23X23,it + β24X24,it

+ β25X25,it + εit.

(1)

for i = 1, 2, ..., 3426, t = 1, 2, where β. is unknown parameter, and εit is is an idiosyncratic

error term assumed to be independent of the Rutter score derived variable and mother

malaise score derived variables.

4 Bayesian Inference and Variable Selection

In the study, we consider quantile regression to estimate β from:

min
3426∑
i=1

2∑
t=1

ρp(Yit −
25∑
j=1

βjXj;it − β0), (2)

where ρp(.) is the check function with

ρp(u) ≡ {p− I(u < 0)} · u, (3)

for 0 < p < 1, where I(.) is the indicator function. Instead of classical approach, a Bayesian

approach and MCMC algorithm will be developed for posterior inference.

4.1 Asymmetric Laplace Distribution

For a Bayesian analysis, the error term εit is assumed to follow the asymmetric Laplace

distribution (ALD) with density

fAL(εit) =
p(1− p)

σ
exp{−ρp(

εit
σ

)}, (4)
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where σ is the scale parameter. For the properties of this distribution, see, for example,

Yu and Moyeed (2001), Yu and Zhang (2005). Note that the p-th quantile of εit is zero,

E(εit) = 1−2p
p(1−p) , and Var(εit) = 1−2p+2p2

p2(1−p)2 .

To develop MCMC algorithm for the quantile regression, a location scale mixture repre-

sentation is applied:

εit = θvit + τ
√
σvituit, (5)

where θ = 1−2p
p(1−p) , τ = 2

p(1−p) , vit ∼ ε(σ) and uit ∼ N(0, 1) are mutually independent random

variables, ε(σ) is the exponential distribution with mean σ (Kozumi and Kobayashi, 2010).

Thus the panel data model without heterogeneity is represented as follows.

Yit = β0 + β1X1,it + β2X2,it + β3X3,it + β4X4,it + β5X5,it + β6X6,it

+ β7X7,it + β8X8,it + β9X9,it + β10X10,it + β11X11,it + β12X12,it

+ β13X13,it + β14X14,it + β15X15,it + β16X16,it + β17X17,it + β18X18,it

+ β19X19,it + β20X20,it + β21X21,it + β22X22,it + β23X23,it + β24X24,it

+ β25X25,it + θvit + τ
√
σvituit,

(6)

where vit ∼ ε(σ) and uit ∼ N(0, 1) are mutually independent random variables.

To begin posterior inference, some prior distributions are supposed as follows: (1) β ∼

N(β0, B0), where β ≡ (β0, β1, ..., β25), and β0, B0 are specified parameters; (2) σ ∼ IG(n0

2
, s0

2
),

where IG(a, b) is the inverse Gamma distribution with the parameters a and b, and n0, s0

are specified parameters; (3) δ ∼ N(δ0, D0), where δ0, D0 are specified parameters; (4) ϕ2 ∼

IG(m0

2
, r0

2
), where m0, r0 are specified parameters. It is convenient to construct a MCMC

algorithm.

4.2 Markov Chain Monte Carlo Algorithm

A MCMC algorithm for the quantile regression is constructed by sampling {vit}, β, σ, and

ϕ2 from their full conditional distributions (Chib, 1992). A tractable and efficient Gibbs

sampler is proposed as follows.
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1. Sample vit (i = 1, 2, ..., 3426; t = 1, 2) from GIG(1
2
, ĉ2it, d̂

2
it), where

ĉ2it =
(Yit − β>Xit)

2

t2σ
, (7)

d̂2it =
θ2

t2σ
+

2

σ
, (8)

and GIG(ν, c, d) is the generalized inverse Gaussian distribution with the probability density

function

fGIG(x|ν, c, d) =
(d
c
)ν

2Kν(cd)
Xν−1 exp{−1

2
(c2x−1 + d2x)}, (9)

for x > 0, −∞ < ν <∞, and c, d > 0, where Kν(.) is a modified Bessel function of the third

kind (Barndorff-Nielsen and Shephard 2001).

2. Sample β from N(β̂, B̂), where

β̂ = B̂{
3426∑
i=1

2∑
t=1

(Yit − θvit)Xit

t2σvit
+B−10 β0}, (10)

B̂−1 =
3426∑
i=1

2∑
t=1

XitX
>
it

t2σvit
+B−10 . (11)

3. Sample σ from IG( n̂
2
, ŝ
2
), where

n̂ = 20556 + n0, (12)

ŝ =
3426∑
i=1

2∑
t=1

(Yit − β>Xit − θvit)2

t2vit
+ 2

3426∑
i=1

2∑
t=1

vit + s0. (13)

4. Sample ϕ2 from IG( m̂
2
, r̂
2
), where

m̂ = 3426 +m0, (14)

r̂ =
3426∑
i=1

α2
i + r0. (15)

4.3 Marginal Likelihood

The marginal likelihood of the panel data model is defined as

m(Y ) =

∫
f(Y |η)π(η)dη, (16)
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where f(Y |η) is the sampling density of the data {Y } and π(η) is the prior of the model

specific parameter η.

The marginal likelihood can be reformulated as

m(Y ) =
f(Y |η)π(η)

π(η|Y )
, (17)

from which it is suggested (Chib 1995) to estimate the marginal likelihood as follows.

logm(Y ) = log f(Y |η∗) + log π(η∗)− log π(η∗|Y ), (18)

where η∗ is a particular high density point, typically the posterior mean or mode.

For η ≡ {β, σ, ϕ2} and Y ≡ {Yit} in the panel data model, the posterior ordinate π(η∗|Y )

is estimated by the following decomposition.

π(η∗|Y ) = π(σ∗|Y )π(β∗|σ∗, Y )π(ϕ∗2|Y ), (19)

marginalized over the latent variablesα ≡ {αi} and v ≡ {vit}, since the ordinates π(σ∗|Y ),

π(β∗|σ∗, Y ), and π(ϕ∗2|Y ) can be estimated according to Chib (1995).

The likelihood ordinate f(Y |η∗) can be estimated by Chib method from

f(Y |η∗) =
f(Y |η∗, α∗)π(α∗|η∗)

π(α∗|Y, η∗)
, (20)

where α∗ is the posterior mean of α, and

f(Y |η∗, α∗) =
3426∑
i=1

2∑
t=1

fAL(Yit − β∗>Xit − β0 − α∗i ), (21)

and

π(α∗|η∗) =
1

2πϕ∗2
exp{−

∑3426
i=1 α

2
i

2πϕ∗2
}. (22)

And π(α∗|Y, η∗) can be estimated from the output of a reduced Gibbs run with η fixed at η∗

and sampling over {α, v}.
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4.4 Variable Selection

To perform the variable selection for the quantile regression, an indicator vector is defined

as follows. γ ≡ (γ0, γ1, ..., γ25), where γ0 = 1, and γi = 1 for i ≥ 2 if βi is included in the

model (βi 6= 0), and γi = 0 for i ≥ 2 if βi is excluded in the model (βi = 0).

Given γ, kγ denote the size of the γ-th subset model, kγ = γ>1, and βkγ and Xkγ ,it are

kγ×1 vectors corresponding to all the components of β and Xit such that the corresponding

γi’s are equal to 1. Given γ, the following prior assumptions are supposed.

1. βkγ |σ, ν ∼ N(β0, 2σ(X>kγV Xkγ )−1), where p(σ) ∝ σ−1 and each νi ∼ Exp{ σ
p(1−p)}.

2. A prior distribution over model space γ is given by p(γ|π) ∝ πkγ (1− π)k−kγ .

3. π ∼ beta(a0, b0).

Under the prior assumptions, a MCMC algorithm can be developed to compute posterior

model probabilities in quantile regression by running the Gibbs sampler, and the marginal

likelihood of Y under model γ can be obtained by integrating out βkγ and σ,

p(Y |γ, ν,X) ∝
∫
p(σ)dσ

∫
p(Y |βkγ , γ, σ, ν,X)p(βkγ |γ, σ, ν)p(ν|σ)dβkγ . (23)

Integrating out βkγ and σ as a normal integral and an inverse gamma integral,

Y |γ, ν,X ∼ t(2n){Xkγβ0 + ξν,
1

2
(V + V Xkγ (X>kγV Xkγ )−1X>kγV )}. (24)

Then, the Gibbs sampler can be implemented to generate samples of

p(Y |γ, ν,X) ∝ p(Y, γ, ν,X)p(γ|π). (25)

5 Real Data Application

In this section, the Bayesian quantile regression is applied to analysis the British Cohort

study data. This data set was extensively investigated for many sorts of topics, but this paper

examines the influence of maternal health problems on child’s worrying status. There are

3426 observations, 25 predictor variables, and one response variable. We assume a quantile

regression model between the response variable and the 25 covariates, plus an intercept.

In Table 1, upon Bayesian quantile regression applying the MCMC package in R, the
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model is evaluated at three different quantiles 0.05, 0.5 and 0.95. The maternal health

problems have different influence on child’s worrying status at different quantiles, through

MCMC quantile regression iteration 50001 of 51000, in detail, βi have different estmates at

different quantiles for each i = 0, ..., 25 . β24 and β25 have the biggest absolute value for the

three quantiles, except for β0.

Table 2 describes the summary at the quantile 0.05 aplying Bayesian quantile regression

through the MCMC package in R. Upon Bayesian quantile regression applying the MCMC

package in R, Table 3 sumarizes the empirical mean and standard deviation for each variable

Xi ( i = 1, ..., 25), and standard error of the mean for the model at the quantile 0.05. In

this case, X24 has the biggest standard deviation, and X25 has the next biggest standard

deviation. Upon Bayesian quantile regression at the quantile 0.05 applying the MCMC

package in R, Table 4 sumarrizes the quantiles for each variable Xi ( i = 1, ..., 25) .

Tables 5-7 sumarrizes the same contents for the quantile 0.50, and Tables 8-10 for the

quantile 0.95.

Applying the stochastic search variable selection, the top models and the posterior model

probabilities are summerized in Table 11-13 for the different quantiles 0.05, 0.5 and 0.95.

The maternal nervous breakdown, X24, among the 25 maternal health problems, contributed

most to child’s worrying status for the three different quantiles, and the maternal other

health problems, X25, contributed the next most. At the quantile 0.05, maternal often feel

depressed, X3, contributed the third most, while maternal feel tired most of the time, X2,

contributed respectively the third and fourth most at the quantile 0.50 and 0.95.

6 Conclusions

In this paper, we developed a Bayesian quantile regression on linear panel data model without

heterogeneity, in particular, upon a location-scale mixture representation of the asymmetric

Laplace error distribution, this paper provides how the posterior distribution can be sampled

and summarized by MCMC method.

In addition, the influence of maternal health problems on child’s worrying status was

estimated applying the 1970 BCS data, and we find that maternal’s different health problem

has different influence on child’s worrying status at different quantiles, also that maternal

12



nervous breakdown, in our method, among the 25 maternal health problems, contributes

most to influence the child’s worrying status.

Our findings have high policy relevance in terms of the importance of the intervention of

maternal nervous breakdown early for the influence on child’s worrying statuts.
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Frühwirth-Schnatter, S. and H. F. Lopes (2009), Parsimonious Bayesian Factor Analysis

when the Number of Factors is Unknown, Unpub. Tech. Repo..

Gamerman, D. and H. F. Lopes (2006), Markov ChainMonte Carlo: Stochastic simulation

for Bayesian inference (2nd ed), Chapman and Hall/CRC, Boca Raton.
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q=0.05 q=0.50 q=0.95
β0 1126.80 2909.93 6219.29
β1 5.13 0.56 0.95
β2 -3.30 0.05 -8.85
β3 0.23 -0.41 -0.30
β4 -1.11 0.25 -3.58
β5 -4.88 -0.09 0.93
β6 -0.10 -0.20 -2.80
β7 2.20 -0.55 -3.76
β8 -1.81 2.09 1.86
β9 -0.41 -1.19 -5.94
β10 2.22 0.28 0.06
β11 -14.86 -3.09 -7.68
β12 -13.23 -0.79 -2.01
β13 13.86 0.79 6.21
β14 0.96 0.27 5.51
β15 6.42 1.49 -6.35
β16 2.87 0.41 -5.71
β17 2.75 0.54 3.07
β18 -0.85 -0.38 3.42
β19 -3.20 0.32 2.77
β20 6.24 -1.07 1.86
β21 4.43 0.74 3.21
β22 1.31 0.50 0.54
β23 -3.54 0.10 -5.09
β24 -194.69 63.94 317.94
β25 79.96 -40.22 -289.67

Table 1: β for the quantile q=0.05, 0.50, 0.95 (MCMCquantreg iteration 50001 of 51000,
and all figures e-3 units)

Iterations = 1001 : 50991 Thinning interval = 10
Number of chains = 1 Sample size per chain = 5000

Table 2: Summary (posterior) for the quantile q=0.05
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Mean SD Naive SE Time-series SE
(Intercept) 80960.000 71879.300 1017.000 1106.000

X1 261.900 213.400 3.018 3.491
X2 -149.800 237.600 3.360 3.822
X3 185.400 340.400 4.814 5.271
X4 -75.700 245.800 3.476 3.877
X5 -254.900 257.300 3.638 4.211
X6 -157.500 267.900 3.789 3.952
X7 163.800 273.500 3.868 4.166
X8 -186.800 461.000 6.519 7.460
X9 -6554.000 335.300 4.742 5.084
X10 1507.000 290.300 4.106 4.513
X11 -313.300 557.300 7.881 8.479
X12 -329.200 533.100 7.539 8.646
X13 38.260 472.600 6.684 7.343
X14 -4.005 288.400 4.079 4.303
X15 237.800 352.400 4.984 5.331
X16 49.760 423.700 5.992 6.617
X17 -163.300 379.400 5.365 6.031
X18 4.134 425.900 6.023 6.681
X19 188.400 383.400 5.423 5.706
X20 200.100 429.500 6.074 6.698
X21 511.500 445.400 6.298 7.015
X22 -145.200 456.700 6.459 6.873
X23 50.030 266.600 3.771 3.990
X24 8781.000 29472.100 416.800 449.800
X25 894.100 15204.000 215.000 225.300

Table 3: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.05 (all figures e-3 units)
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2.5% 25% 50% 75% 97.5%
X1 -1.34700 1.13700 2.54300 3.98620 6.93500
X2 -6.33800 -3.0220 -1.45200 0.12610 3.02100
X3 -4.75700 -0.49200 1.84600 4.15660 8.71300
X4 -5.81500 -2.35300 -0.73510 0.89110 3.99100
X5 -7.70100 -4.26700 -2.55100 -0.78220 2.43500
X6 -6.94900 -3.34100 -1.56900 0.25070 3.75800
X7 -3.83500 -0.13280 1.64700 3.46200 7.04700
X8 -10.26800 -5.08700 -2.13500 1.18830 7.48600
X9 -7.25500 -2.92700 -0.70160 1.57420 6.00400
X10 -5.59700 -1.81500 0.23440 2.10240 5.73600
X11 -13.57600 -6.94100 -3.33700 0.59920 8.25000
X12 -13.38400 -6.96400 -3.31500 0.28870 7.30000
X13 -8.44000 -2.85800 0.24870 3.44650 10.18400
X14 -5.73800 -1.93200 -0.06721 1.90910 5.67600
X15 -3.93900 -0.09158 2.16200 4.58360 9.75500
X16 -7.83700 -2.42900 0.44340 3.29010 8.77200
X17 -9.35300 -4.09600 -1.53500 0.91150 5.69400
X18 -8.17500 -2.86500 -0.01683 2.891103 8.58500
X19 -5.68900 -0.60500 1.91100 4.39410 9.39800
X20 -6.46200 -0.87610 1.97500 4.88770 10.38500
X21 -3.12100 2.08200 4.94800 7.97480 14.39400
X22 -10.27300 -4.54000 -1.46500 1.52430 7.74900
X23 -4.87600 -1.25900 0.54290 2.24970 5.87200
X24 -475.64400 -100.40000 74.99000 264.89090 698.47500
X25 -292.12600 -91.20000 7.40400 108.54190 310.32500

Table 4: Quantiles for each variable when the quantile q=0.05 (all figures e-3 units)

Iterations = 1001 : 50991 Thinning interval = 10
Number of chains = 1 Sample size per chain = 5000

Table 5: Summary (posterior) for the quantile q=0.50
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Mean SD Naive SE Time-series SE
(Intercept) 29510.00000 1917.03100 27.11000 27.11000

X1 0.66020 4.70700 0.06656 0.06889
X2 0.42350 4.45500 0.06300 0.06300
X3 2.91500 7.11300 0.10060 0.10060
X4 -1.09500 4.83300 0.06835 0.06898
X5 -1.02500 4.17200 0.05899 0.05899
X6 -0.02617 6.51800 0.09217 0.09471
X7 -1.56800 6.86200 0.09704 0.09704
X8 2.16700 12.10100 0.17110 0.17110
X9 -1.96000 7.36500 0.10420 0.10420
X10 -45.60000 5.74800 0.08129 0.0 8129
X11 -5.42100 13.93300 0.19700 0.19700
X12 -6.85000 12.46000 0.17620 0.17250
X13 2.50500 12.51200 0.17700 0.17700
X14 -1.28200 6.02300 0.08517 0.08517
X15 1.26500 9.32900 0.13190 0.13190
X16 1.27600 9.62700 0.13610 0.13810
X17 -0.27990 7.54500 0.10670 0.10670
X18 2.56600 9.28200 0.13130 0.13130
X19 1.81300 11.09900 0.15700 0.15350
X20 -4.30400 10.52200 0.14880 0.14880
X21 2.18700 11.71400 0.16570 0.16950
X22 3.21700 9.07700 0.12840 0.11980
X23 1.50600 6.13100 0.08671 0.08671
X24 489.50000 832.31100 0.11770 11.7700
X25 -172.10000 360.37700 5.09600 5.09600

Table 6: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.50 (all figures e-4 units)
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2.5% 25% 50% 75% 97.5%
(Intercept) 25445.4100 28376.7290 29630.0000 30743.89190 33003.4600

X1 -8.6250 -2.4480 0.5838 3.6300 10.1710
X2 -8.5120 -2.4630 0.4258 3.2990 9.3610
X3 -10.8590 -1.7350 2.7430 7.4820 17.5130
X4 -11.0650 -4.2140 -1.1040 2.0350 8.1710
X5 -9.8440 -3.6330 -0.8936 1.6830 7.0560
X6 -12.7880 -4.2380 -0.0366 4.2310 12.7960
X7 -15.3660 -5.8820 -1.4430 3.0750 11.6360
X8 -21.2970 -5.3980 2.0210 9.5740 26.5670
X9 -16.9570 -6.6250 -1.9170 3.0030 12.1740
X10 -12.1040 -4.0950 -0.2667 3.3190 10.6870
X11 -33.8050 -14.5850 -4.8640 3.8510 21.6330
X12 -34.0110 -14.3300 -6.1220 1.5110 16.1080
X13 -22.5280 -5.1120 2.2030 9.8840 27.8070
X14 -13.8990 -5.0690 -1.1530 2.6480 10.1430
X15 -16.8440 -4.6930 1.0780 7.0880 20.4560
X16 -17.3840 -5.0210 1.0840 7.3910 20.8090
X17 -15.8120 -4.9400 -0.2400 4.6070 14.7560
X18 -15.0820 -3.3770 2.3710 8.3070 21.7620
X19 -19.4420 -5.2890 1.5910 8.5320 25.0950
X20 -26.2960 -11.1120 -4.0050 2.6800 15.8220
X21 -21.3700 -5.5090 2.1500 9.5880 25.7640
X22 -14.1720 -2.7470 3.0950 9.0090 21.8540
X23 -10.5890 -2.4880 1.3630 5.4100 13.9490
X24 -968.4610 -48.3330 402.5000 955.8340 2391.5660
X25 -927.5700 -399.4760 -156.6000 68.2750 502.9410

Table 7: Quantiles for each variable when the quantile q=0.50 (all figures e-4 units)

Iterations = 1001 : 50991 Thinning interval = 10
Number of chains = 1 Sample size per chain = 5000

Table 8: Summary (posterior) for the quantile q=0.95
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Mean SD Naive SE Time-series SE
(Intercept) 543695.460 89426.900 1265.000 1526.000

X1 -26.660 263.000 3.720 4.410
X2 -315.410 285.900 4.044 5.278
X3 56.890 380.900 5.387 6.252
X4 -272.060 277.500 3.924 4.794
X5 -188.940 267.000 3.776 4.756
X6 209.250 330.700 4.677 5.667
X7 -219.800 321.400 4.546 5.336
X8 114.880 493.900 6.985 7.819
X9 -323.280 383.700 5.426 6.256
X10 -23.130 344.300 4.869 5.876
X11 107.880 587.300 8.305 9.311
X12 -288.510 506.800 7.167 7.714
X13 -182.250 502.800 7.111 7.820
X14 -119.030 348.300 4.925 5.872
X15 -180.200 426.800 6.036 7.686
X16 45.020 449.200 6.353 7.070
X17 46.290 382.700 5.412 6.318
X18 40.220 451.800 6.389 7.439
X19 -283.000 463.500 6.555 7.313
X20 -340.210 457.600 6.472 7.280
X21 5380.900 451.000 6.378 7.051
X22 596.060 476.700 6.742 7.828
X23 -69.550 327.200 4.627 5.620
X24 11901.210 32910.100 465.400 526.100
X25 -17966.530 18277.500 258.500 324.300

Table 9: Empirical mean and standard deviation for each variable, and standard error of the
mean for the quantile q=0.95 (all figures e-5 units)
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2.5% 25% 50% 75% 97.5%
(Intercept) 3783.021000 4822.00000 5411.14290 6011.00000 7310.98700

X1 -5.526000 -2.044000 -0.182300 1.547000 4.797000
X2 -8.516000 -5.127000 -3.207600 -1.260000 2.565000
X3 -7.097000 -2.014000 0.679300 3.184000 7.869000
X4 -8.036000 -4.580000 -2.731600 -79.930000 2.706000
X5 -7.234000 -3.644000 -1.910700 -705.400000 3.189000
X6 -4.811000 -0.073560 2.210700 4.391000 8.246000
X7 -8.675000 -4.335000 -2.161400 0.007187 3.938000
X8 -8.859000 -2.114000 1.186400 4.435000 10.403000
X9 -10.886000 -5.801000 -3.227300 -0.648600 4.243000
X10 -7.099000 -2.538000 -0.192100 2.090000 6.376000
X11 -11.012000 -2.672000 1.329400 5.071000 11.764000
X12 -13.181000 -6.219000 -2.721400 0.581100 6.605000
X13 -12.166000 -5.053000 -1.754700 1.648000 7.593000
X14 -8.183000 -3.535000 -1.173300 1.203000 5.571000
X15 -10.492000 -4.647000 -1.685700 1.147000 6.205000
X16 -8.687000 -2.559000 0.555000 3.577000 8.928000
X17 -7.463000 -2.024000 0.643100 3.161000 7.391000
X18 -8.881000 -2.501000 0.658700 3.484000 8.691000
X19 -12.285000 -5.818000 -2.713800 0.417100 5.652000
X20 -12.563000 -6.433000 -3.268300 -0.329300 5.214000
X21 -4.353000 2.590000 5.707900 8.514000 13.439000
X22 -3.864000 2.872000 6.214400 9.278000 14.778000
X23 -7.358000 -2.825000 -0.538400 1.571000 5.350000
X24 -90.350000 -88.010000 147.516800 49.500000 696.594000
X25 -555.750000 -300.300000 -172.533700 -49.340000 153.451000

Table 10: Quantiles for each variable when the quantile q=0.95 (all figures e-3 units)

Models Probability
(Intercept) 0.9278

X24 0.0502
(Intercept), X24 0.0142
(Intercept), X25 0.0052
(Intercept), X3 0.0004

Table 11: Variable Selection for the quantile q=0.05 (SSVSquantreg iteration 50001 of
51000)
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Models Probability
(Intercept) 0.9954

(Intercept), X24 0.0040
(Intercept), X25 0.0004
(Intercept), X2 0.0002

Table 12: Variable Selection for the quantile q=0.50 (SSVSquantreg iteration 50001 of 51000)

Models Probability
(Intercept) 0.9274

(Intercept), X24 0.0486
(Intercept), X25 0.0146
(Intercept), X20 0.0012
(Intercept), X2 0.0010

Table 13: Variable Selection for the quantile q=0.95 (SSVSquantreg iteration 50001 of 51000)
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