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Strategic Complementarities and Nominal Rigidities✩

Philipp Königa, Alexander Meyer-Gohdeb

aDIW Berlin, Department of Macroeconomics, Mohrenstraße 58, 10117 Berlin, Germany
bHumboldt-Universität zu Berlin, Institute for Economic Theory II, Spandauer Straße 1, 10178 Berlin, Germany

Abstract

We reconsider the canonical model of price setting with menu costs by Ball and Romer

(1990). Their original model exhibits multiple equilibria for nominal aggregate demand

shocks of intermediate size. By abandoning Ball and Romer’s (1990) assumption that de-

mand shocks are common knowledge among price setters, we derive a unique symmetric

threshold equilibrium where agents adjust prices whenever the demand shock falls outside

the thresholds. The comparative statics of this threshold may differ from the one that gives

rise to maximal nominal rigidity examined by Ball and Romer (1990). In contrast to their

analysis, we find that a decrease in real rigidities can be associated with an increase in nom-

inal rigidities due to the endogenous adjustment of agents’ beliefs regarding the aggregate

price level.

Keywords: JEL classification codes: E31, C70, D82

Keywords: menu costs, global games

1. Introduction

Price setting with fixed costs to adjustment (menu costs) and strategic complementari-

ties in firms’ pricing decisions may give rise to multiple equilibria. Ball and Romer (1990)

(henceforth BR) show that monopolistically competitive firms find it more attractive to incur

✩We are grateful to Tijmen Daniëls and Frank Heinemann for useful discussions and suggestions. Alexander

Meyer-Gohde is thankful for the research assistance provided by Tobias König and the support provided by the

DFG through the SFB 649 “Economic Risk”. Any and all errors are entirely our own.
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menu costs and adjust their prices in response to aggregate demand shocks if other firms do

so as well. Two equilibria, sustained by self-fulfilling beliefs, may emerge. In one, all firms

adjust prices, while in the other, prices are rigid. We derive a unique threshold equilibrium

in BR’s model by exploiting ideas from the literature on global games.1 The equilibrium is

such that firms pay the menu cost and adjust their price if and only if the magnitude of the

shock exceeds a certain threshold. In their original analysis, BR derive upper and lower

bounds for the shock such that multiple equilibria emerge for shocks within these bounds.

The equilibrium threshold in our version equals the midpoint of these bounds.

At first glance this seems to strengthen BR’s conclusion that the existence of large mon-

etary nonneutralities in a standard representative agent model with menu costs requires

implausible values of standard parameters. However, the threshold we derive implies dif-

ferent comparative statics than those presented by BR. More specifically, BR examine only

the comparative statics of the upper bound on the region of multiplicity and neglect how

price setters’ beliefs about the behavior of other price setters adjust in equilibrium. In con-

trast, we endogenize price setters’ beliefs by endowing them with noisy private information

regarding the nominal aggregate demand shock and explicitly confining attention to sym-

metric threshold strategies, i.e., strategies such that agents adjust if and only if their signals

exceed a common threshold. We then show that in the limit when information regarding the

shock becomes arbitrarily precise, a price setter who is just indifferent between adjusting

and not adjusting believes that half of the agents adjust while the remaining half does not.

Our comparative statics then reflect the adjustment of beliefs and we provide necessary and

sufficient conditions for them to differ qualitatively from BR’s original conclusions.

BR’s main focus is the role of real rigidities, i.e., forces that render price setters reluc-

tant to fully adjust their relative prices to a change in aggregate demand, in explaining

monetary nonneutralities. When price setters’ objective functions are very concave in their

relative prices, a unilateral price change by one agent is rather costly (in utility terms) and

1See Morris and Shin (2003) for an overview of the theory of global games.
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real rigidities are high. This implies agents are more inclined to adjust when others adjust in

order to keep relative prices stable. Thus, pricing decisions are also characterized by a high

degree of strategic complementarities highlighting that real rigidities and strategic com-

plementarities are closely interlinked.2 Moreover, when menu costs are present, the gain

from price adjustment may fall short of the menu cost, implying that it may be optimal to

forgo the adjustment. In particular when real rigidities are large, there is a range of shocks

where an agent gains from adjusting only if sufficiently many others adjust as well. This is

the range of shocks where multiple equilibria, sustained by self-fulfilling beliefs regarding

the behavior of others, may occur.

Multiplicity of equilibrium, however, is driven by the indeterminacy of price setters’ be-

liefs. In the literature on global games, such an indeterminacy is seen as resulting from

agents sharing common knowledge about the model’s fundamentals and each being perfectly

aware of what the others do in equilibrium.3 This implies that agents’ actions and beliefs are

perfectly coordinated in equilibrium and thus equilibrium multiplicity occurs.4 To eliminate

this multiplicity, the global games approach, pioneered by Carlsson and van Damme (1993),

abandons common knowledge about the economy’s fundamental and instead endows agents

with idiosyncratic noisy signals. We adopt a similar approach to derive a unique equilibrium

in BR’s model.5 In the limiting case with uncertainty regarding the fundamental eliminated,

agents’ beliefs are still subject to strategic uncertainty breaking the perfect coordination of

actions and beliefs and eliminating the equilibrium multiplicity of BR’s original analysis.

This further implies that the comparative statics in our version may differ from those

of BR. Consider a situation where, for some reason, a price setter’s optimality condition

becomes less sensitive to changes relative prices and at the same time only slightly less sen-

2See especially the discussion in Woodford (2003, pp. 158–173).
3Morris and Shin (2003)
4Morris and Shin (2001)
5While, strictly speaking, the model in not a standard global game, the particular information structure

constitutes a convenient device to obtain an equilibrium in threshold strategies, which contrasts with the equi-

librium arbitrarily selected by BR.
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sitive to variations in aggregate demand. This is tantamount to a decrease in real rigidities.

In BR’s analysis, this implies that the agent will focus relatively more on her response to

aggregate demand given that her beliefs regarding the aggregate price level are assumed to

remain unchanged, rendering her more inclined to adjust her price. Thus, the decrease in

real rigidities implies a decrease in nominal rigidities. This reasoning is, however, incom-

plete as it neglects an important effect. If real rigidities decrease, price setters are not only

more inclined to adjust their prices in response to large shocks even if others do not, but

they are also more inclined to tolerate other agents’ price adjustments in response to small

shocks. Whether a shock is large or small from the point of view of the agent depends on

how sensitive her utility function is to the shock in equilibrium. Thus, coming back to the

example above, since the agent became much less sensitive to relative prices than to varia-

tions in demand, she is more strongly inclined to tolerate price adjustments by others for a

shock of a given magnitude. Therefore she may be more reluctant to adjust her price and,

as a consequence, the reduction in real rigidities may be associated with a higher degree of

nominal rigidities.

The remainder of the paper is organized as follows. Section 2 presents the basic BR

framework and shows the existence of multiple equilibria. Section 3 presents our unique

threshold equilibrium and a general comparative statics result. Section 4 provides a numer-

ical illustration in BR’s baseline model of monopolistic competition. Section 5 concludes. All

mathematical proofs and calculations are relegated to the Appendix.

2. Ball and Romer (1990): Multiple Equilibria

BR consider a canonical model of price setting. A representative price setter produces a

differentiated good with her own labor and faces fixed costs to price adjustment. Her utility

is given by

Ui =W

(

Y ,
Pi

P

)

− zD i (1)

4



where Y is real aggregate expenditures,
Pi

P
is agent i’s relative price and z is the menu

cost—a small resource cost of changing a nominal price; D i is equal to one if agent i changes

her price and zero otherwise.

Assuming a quantity theory approach to expenditures,

Y =
M

P
(2)

where M is the nominal money supply,6 it follows in equilibrium

Ui =W

(
M

P
,
Pi

P

)

− zD i (3)

BR assume W2(1,1) = 0, W22(1,1) < 0, and W12(1,1) > 0, which, in turn, normalizes the opti-

mal relative price to unity, implies that the second order condition is satisfied at this price,

and that the equilibrium is stable.

The optimal price is governed by the first-order condition

W2

(
M

P
,
Pi

P

)

= 0 (4)

A first order expansion in log deviations from a symmetric equilibrium Pi = P = M yields

W2

(

em−p, epi−p
)

≈W21(1,1)(m− p)+W22(1,1)(p i − p)= 0 (5)

where M = Mem, P = Pep, and Pi = Pi e
pi . Agent i’s optimal deviation from the symmetric

equilibrium absent menu costs becomes

p∗
i =−

W21(1,1)

W22(1,1)
︸ ︷︷ ︸

≡β

m+
W21(1,1)+W22(1,1)

W22(1,1)
︸ ︷︷ ︸

≡1−β

p (6)

Whenever an agent changes her price, she will do optimally and choose p i = p∗
i
. In deciding

whether to change her price, she compares the payoff difference between setting the optimal

6Thus, following BR we assume without loss of generality that fluctuations in aggregate demand arise from

fluctuations in the nominal money supply.
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price, p i = p∗
i
, and maintaining her old price, p i = 0, to the menu costs z. This payoff

difference can be expanded to second order in terms of log deviations around Pi = P = M as7

PC(m, p, p∗
i )

.=W
(

em−p, ep∗
i
p
)

−W
(

em−p, e−p
)

≈−W22(1,1)
(

p∗
i

)2
(7)

We are now in a position to assess the range of monetary deviations, m, for which rigidity,

p i = p = 0, and adjustment, p i = p = p∗
i
, are equilibrium. Note that even if no other agents

adjust their prices, agent i always adjusts her price if

PC(m,0, p∗
i )> z ⇔−

1

2
W22(1,1)

(

p∗
i

)2 > z

Agent i’s optimal price in this case is p∗
i
= βm. Combining this with the latter inequality

yields a threshold value

x∗ =
1

β

√

2z

−W22(1,1)
(8)

implying that all agents consider adjustment their dominant choice whenever |m| > x∗ and

consequently, adjustment is the only equilibrium.

Conversely, suppose that all agents adjust their prices, i.e. p∗ = m. Even then, agent i

does not adjust her price if

PC(m, m, p∗
i )< z (9)

This yields another threshold value

x∗∗ =

√

2z

−W22(1,1)
(10)

implying that if |m| < x∗∗, not adjusting is dominant for all agents and rigidity is the only

equilibrium. However, as β ∈ (0,1) and x∗∗ < x∗, there exists multiple equilibria for interme-

diate monetary deviations. This partition of equilibria is displayed in figure 1.

7See Appendix A.1 for details.
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[Figure 1 about here.]

Proposition 1. Full Information Thresholds

For large monetary deviations, |m| > x∗, a unique equilibrium exists where all agents adjust

prices. For small monetary deviations, |m| < x∗∗, a unique equilibrium exists where no agent

adjusts her price. For intermediate deviations x∗∗ < |m| < x∗ both, adjustment and rigidity

can be sustained as (self-fulfilling) equilibria.

Proof. See BR.

3. Unique Threshold Equilibrium

The multiplicity of equilibria is due to the indeterminacy of price setters’ beliefs, which

follows from assuming that monetary deviations are common knowledge among agents and

that agents are perfectly coordinated in equilibrium.8 This multiplicity prohibits the deriva-

tion of general comparative statics. BR nonetheless examine the comparative statics of the

x∗ threshold, ignoring the effects of multiplicity.

To obtain a unique equilibrium and valid set of comparative statics, we assume that m

is drawn from a uniform distribution over the real line. This “improper prior” assumption

is often made in the literature on global games. Since we confine attention to posterior

conditional distributions, it does not present any technical difficulties.9 The realization of

m is not common knowledge but agents observe private signals concerning its realization.

These signals take the form

xi = m+ǫi, with ǫi ∼N (0,σ), i.i.d. (11)

[Figure 2 about here.]

8Morris and Shin (2001)
9Morris and Shin (2003, Section 2.1).
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We confine ourselves to symmetric threshold strategies. A threshold strategy for agent i

can be described by a value x̃i such that agent i adjusts if and only if |xi| > x̃i. A symmetric

threshold strategy is simply described by a common threshold for all agents, x̃i = x̃ j = x̃. We

then look for symmetric equilibria in threshold strategies. Such a threshold strategy for

agent i is depicted in figure 2. In order to derive the equilibrium threshold, we exploit the

indifference of an agent between adjusting and not adjusting when she observes xi = x̃ and

believes that other agents also use the threshold x̃.

Proposition 2. Unique Threshold Equilibrium

As fundamental uncertainty regarding the size of the monetary shocks vanishes, σ→ 0, there

exists a unique threshold, x̃, such that all agents adjust if and only if |xi| < x̃ and refrain from

adjusting otherwise. The threshold is given by

x̃ =
x∗+ x∗∗

2
(12)

Proof. See Appendix A.2.

To understand the intuition behind proposition 2, consider the equilibrium beliefs un-

der the resulting threshold equilibrium as displayed in figure 3. Now imagine the model

with a very small amount of uncertainty regarding the fundamental. An agent’s belief is a

random variable whose distribution is centered on the signal she receives. As σ is small,

for signals far enough away from the thresholds, x̃ and −x̃, the distribution of beliefs will

place essentially no mass past the threshold. As fundamental uncertainty vanishes, these

distributions collapse and coordination will occur as long as m 6= x̃. That is, an agent expects

that others receive almost exactly the same signal as she does and therefore she expects the

aggregate price level to equal her signal. However, whenever she receives a signal equal to

either threshold, the distribution is split into two half: one to the left and one to the right

of the threshold. In other words, the distribution collapses to a point mass divided evenly

between rigidity and adjustment. With agents coordinating their beliefs and actions on half

of the agents adjusting and half not, the resulting aggregate price level becomes exactly

8



the average of what it would be with an infinitesimally larger or smaller monetary shock.

The threshold, then, that splits beliefs half to adjustment and half to rigidity and leaves

the agent indifferent to both choices is the average of the thresholds with beliefs wholly

coordinated either to adjustment or rigidity.

[Figure 3 about here.]

A direct consequence of propositions 1 and 2 is x̃ < x∗ or that the unique threshold equi-

librium is associated with less nominal rigidity than the x∗ threshold examined by BR would

imply. This is not surprising as BR themselves point out that they examine the region with

the largest possible nominal rigidities. The crucial question is whether the comparative

statics of the x̃ and x∗ thresholds differ. Without loss of generality, suppose that the function

W(·, ·) depends on a finite number of parameters denoted by αk, k = 1, . . . , I. The follow-

ing proposition provides necessary and sufficient conditions under which the comparative

statics of the threshold x∗ are different from those of x̃.

Proposition 3. Comparative Statics

For marginal changes in parameters αk, denoted dαk, k = 1, . . . , I, the threshold x̃ is increas-

ing and x∗ decreasing if and only if

β
I∑

i=1

∂W22

∂αi

dαi >
2

β

I∑

i=1

∂W21

∂αi

dαi +
I∑

i=1

∂W22

∂αi

dαi > 0 (13)

And vice versa, the threshold x̃ is decreasing and x∗ increasing if and only if

β
I∑

i=1

∂W22

∂αi

dαi <
2

β

I∑

i=1

∂W21

∂αi

dαi +
I∑

i=1

∂W22

∂αi

dαi < 0 (14)

Proof. See Appendix A.3.

To interpret this result, recall that the equilibrium thresholds are defined as the critical

signals that render an agent indifferent between adjusting and not adjusting given that she

either believes no other agent adjusts (the BR threshold x∗) or that other agents use the

same threshold strategy as she does (our threshold x̃). What we are after is understanding

9



when the two thresholds, x∗ and x̃, have different comparative statics. Indifference entails

that the agent’s payoff difference, under either threshold x∗ or x̃, equals the menu cost z.

Then, if parameter variations increase one of these payoff differences and decrease the other,

the former threshold will fall and the latter will rise. Differentiating the payoff difference

gives (which is valid for either threshold),

dPC = p∗ (

2(−W22)dp∗− p∗dW22

)

(15)

Since the optimal prices under either threshold are identical, i.e., p∗|x∗ = βx∗ = 2β

1+β x̃ =

p∗|x̃, the signs of the differentials will be different if

2(−W22)dp∗− p∗dW22 (16)

have different signs under the two thresholds in question. Note that all terms in the last

equation are independent of the thresholds except for dp∗. Hence, the important question is

how the optimal prices p∗|x∗ and p∗|x̃ change. Given any signal xi, we can write

dp∗ = xidβ−E [p|xi]dβ+
(

1−β
)

dE [p|xi] (17)

where we abbreviate dβ=
∑I

i=1

∂β

∂αi
dαi and dW22 =

∑I
i=1

∂W22

∂αi
dαi.

At the threshold x∗, given BR’s implicit assumption that E [p|xi]= dE [p|xi]= 0,

dp∗∣
∣
x∗ = x∗dβ (18)

Yet, at our threshold x̃

d p∗∣
∣
x̃
= (x̃−E[p])dβ+

(

1−β
)

dE[p]=
(

x̃−
p∗

2

)

dβ+
(

1−β
) 1

2
dp∗ =

x∗

1+β
dβ (19)

From equations (18) and (19) follows that |d p∗|x̃ | < |d p∗|x∗ |. This implies that there

exists a range of values for dβ such that

2(−W22)d p∗∣
∣
x∗ − p∗

i dW22 > 0 but 2(−W22)d p∗∣
∣
x̃
− p∗

i dW22 < 0.

10



Using the differential for dβ = β

W21

(

dW21 +βdW22

)

, it is straightforward to show that the

parameter restrictions under which the above two inequalitites hold simultaneously are

those provided in Proposition 3.

The reason is that BR ignore how the expected aggregate price level adjusts to changes

in parameters and maintain that the expected aggregate price level equals zero. In our

version, the expected aggregate price level is not assumed equal zero and agents take into

account how it is affected by parameter variations. This can be seen from expression (17),

where the second term in brackets measures the effect of parameter changes on an agent’s

response to her beliefs regarding the aggregate response of agents and the third component

measures how her beliefs themselves respond to these parameter changes. In contrast to

BR this also entails that we may find certain combinations of parameter changes which

induce, say, a reduction in the degree of real rigidities, but at the same time are associated

with a higher degree of nominal rigidities: For example, whenever parameter variations

reduce agents’ sensitivity towards the shock by less than their sensitivity towards changes

in relative prices, they may accept variations in relative prices for a larger range of monetary

shocks. Since this holds true for all agents, the aggregate price becomes smaller, thus further

reducing agents’ incentives to adjust their price. As a consequence, the change in any agent’s

optimal price is smaller and the gains from adjusting the price may fall short of the menu

costs.

4. Ball and Romer’s (1990) Baseline Model

4.1. Baseline Model of Monopolistic Competition

Here we consider BR’s baseline model of monopolistically competitive yeoman farmers

who produce differentiated goods and follow BR closely in presentation and notation. There

exists a unit mass of ex ante identical agents. Agent i produces her good, Yi, with the

production function Yi = L i using her own labor, L i, to maximize her utility, given by

Ui =
[∫1

0
C(ǫ−1)/ǫ

i j
d j

]ǫ/(ǫ−1)

−
ǫ−1

γǫ
L
γ

i
− zD i (20)

11



where Ci j is agent i’s consumption of good j. The number of parameters is I = 2 and the

parameter vector contains the elasticity of substitution between goods, ǫ> 1, and γ> 1 which

captures the degree of increasing marginal disutility to labor.

With the transactions technology Y = M/P, where aggregate production is given by Y =
∫1

0 Yi di and the aggregate price level, given by P =
[∫1

0 P1−ǫ
i

d j
]1/(1−ǫ)

, utility (20) can be

written in the form of (3) as

Ui =
(

M

P

)(
Pi

P

)1−ǫ
−
ǫ−1

γǫ

(
M

P

)γ (
Pi

P

)−γǫ
− zD i (21)

where use is made of the agent’s budget constraint, PCi
.= P

[∫1
0 C(ǫ−1)/ǫ

i j
d j

]ǫ/(ǫ−1)
= PiYi , and

the demand function for agent i’s produce, Y D
i

=Y (Pi/P)−ǫ.

4.2. Numerical Results

BR consider a numerical experiment by asking how big the menu costs would need to be

to just render rigidity an equilibrium given that a 5% monetary shock occurs. That is, we

set x∗ = 0.05 and solve for the associated z from the indifference condition (10) to recover the

values reported by BR. In a similar way, we then set x̃= 0.05 to recover the menu costs that

correspond to our threshold equilibrium reported in (12). We compare the different menu

costs for different values of the markup implied by the substitution elasticity, ǫ, and the

labor supply elasticity that follows from γ; reporting both values for the menu costs as well

as their ratio.

[Table 1 about here.]

The results are presented in Table 1. Firstly, observe that for rigidity to be an equilib-

rium, the menu costs needed under the threshold x̃ are always higher than those reported by

BR. This is a direct consequence of Proposition 2 since the threshold x̃ equals the average of

x∗ and x∗∗, thus x̃ < x∗. Hence, for a given monetary shock (here 5%), a larger menu cost is

required to render agents indifferent under the x̃-threshold compared to the BR-equilibrium.

12



Secondly, with small markups and inelastic labor supply, the menu costs required by the

x̃-equilibrium is 8.66 percent of revenue or 3.65 times larger than those in BR. Increasing

the elasticity of labor supply or the markup reduces the required menu costs. Increasing the

elasticity of labor supply, however, reduces the menu costs required by the BR-equilibrium

relatively more than under the x̃-equilibrium, leading the latter to increase slightly relative

to the former. This relationship is reversed when markups are increased. If we do this,

the menu costs under the x̃-equilibrium decline so much more quickly than under the BR-

equilibrium that their ratio falls by roughly one half.

4.3. Comparative Statics

We now turn to the comparative statics of the model. The results in table 1 seem to

indicate that increases in the markup and/or the elasticity of labor supply increase nominal

rigidity associated with both the x∗ threshold studied by BR and the x̃ threshold that we

introduce. This is misleading. A simultaneous increase in the one and decrease in the other

parameter of appropriate magnitude will move the two thresholds in opposite directions.

[Figure 4 about here.]

Tracing contours in the thresholds, figure 4 outlines the nonlinear region of parameter

changes, starting from a 15% markup and labor supply elasticity of 0.15 and z such that

x̃ = 0.05, associated with the two thresholds moving in opposite directions. The bounds in

proposition 3 give the slopes of these contours at the point associated with the 15% markup

and labor supply elasticity of 0.15 and the points in the figure correspond to the pairs of

markups and labor supply elasticities considered in table 2. Note that the points are located

inside the black curves, which trace out parameter combinations that leave the thresholds

unchanged. Movements towards the northeast imply increases in both thresholds, holding

the menu costs fixed.

[Table 2 about here.]

13



For example, increasing the markup from 5% to 100% while simultaneously decreasing

the elasticity of labor supply leads the x∗ threshold to decrease as the menu costs in the

table required to leave an agent indifferent to a 5% monetary shock are increasing. This

implies that nominal rigidity is decreasing. However, x̃ is rising as the menu costs that

lead to indifference are falling, implying that nominal rigidity is actually increasing. Notice

that β, inversely related to the degree of nominal rigidity or strategic complementarities, is

increasing here. Thus, BR’s x∗ threshold has nominal and real rigidities moving moving in

concert, whereas our x̃ threshold has the two types of rigidity moving in opposite directions.

This difference in the movements of x∗ and x̃ can be understood as follows. A large in-

crease in the markup and small decrease in the elasticity of labor supply leads to a substan-

tial decrease in the concavity of the agent’s utility function with respect to her relative price,

−W22, but only a mild decrease in the sensitivity of the optimality condition to a change in

real balances, W21. With agents’ beliefs fixed on rigidity under the x∗ threshold, agents are

relatively more inclined to offset the change in real balances, thus requiring a larger menu

cost to leave them indifferent between adjusting and not adjusting for a given monetary

shock as in table 2. This same motive, however, implies a stronger reaction of the price level

under the x̃ threshold. This reduces the change in real balances faced by agents. Along

with the reduced concavity due to the fall in −W22, this renders agents’ utility less sensitive

to monetary shocks. As shown in table 2, this translates to a reduction in the menu costs

required for indifference with a 5% shock to the money supply.

5. Conclusion

We have derived a unique threshold equilibrium for the canonical price setting problem

studied by Ball and Romer (1990) with fixed costs to price adjustment. By applying ideas

often used in the literature on global games, we break the common knowledge of nominal

aggregate demand shocks which would sustain the regions of multiple equilibria. We find

that BR’s comparative statics are sensitive to these multiple equilibria, even in their canoni-

cal model of price setting under monopolistic competition. BR’s analysis, which assumes the
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largest possible range of rigidity sustainable as a Nash equilibrium, would conclude that

large increases in firms’ markups coinciding with small decreases in the labor supply elas-

ticity should decrease nominal rigidity. We find the potential for the opposite conclusion,

as the endogenous change in beliefs has a larger impact on price setting than the decrease

in real rigidities induced by the parameter changes. While we have restricted ourselves to

BR’s framework, Dotsey and King (2005) highlight that multiple equilibria resulting from

coordination failures are a pervasive feature in the state-dependent pricing literature, which

would give our approach the potential for applicability to a broader set of models than ex-

amined by BR.

15



References

BALL, L., AND D. ROMER (1990): “Real Rigidities and the Non-Neutrality of Money,” Review

of Economic Studies, 57(2), 183–203.

CARLSSON, H., AND E. VAN DAMME (1993): “Global Games and Equilibrium Selection,”

Econometrica, 61(5), 989–1018.

DOTSEY, M., AND R. G. KING (2005): “Implications of State-Dependent Pricing for Dynamic

Macroeconomic Models,” Journal of Monetary Economics, 52(1), 213–242.

MORRIS, S., AND H. S. SHIN (2001): “Rethinking Multiple Equilibria in Macroeconomic

Modeling,” in NBER Macroeconomics Annual, vol. 15, pp. 139–182.

(2003): “Global Games: Theory and Application,” in Advances in Economics and

Econometrics: Theory and Applications, ed. by M. Dewatripont, and S. Turnovsky. Cam-

bridge University Press.

WOODFORD, M. (2003): Interest and Prices. Princeton University Press, Princeton and Ox-

ford.

16



Appendix A. Appendix

Appendix A.1. Derivation of Second Order Log Payoff Difference Approximation

Noting that terms that do not involve p1
i

or p2
i

drop out, the payoff difference can be written as

PC(m, p, p1
i , p2

i )=W
(

em−p, e
p1

i
−p

)

−W
(

em−p, e
p2

i
−p

)

≈W2(1,1)
(

p1
i − p

)

+W21(1,1)(m− p)
(

p1
i − p

)

+ (1/2)W22(1,1)
(

p1
i − p

)2

−W2(1,1)
(

p2
i − p

)

−W21(1,1)(m− p)
(

p2
i − p

)

− (1/2)W22(1,1)
(

p2
i − p

)2
(A.1)

From the agent’s first order condition, (4), W2(1,1)= 0, simplifying the foregoing to

PC(m, p, p1
i , p2

i )≈W21(1,1)(m− p)
(

p1
i − p

)

+ (1/2)W22(1,1)
(

p1
i − p

)2

−W21(1,1)(m− p)
(

p2
i − p

)

− (1/2)W22(1,1)
(

p2
i − p

)2
(A.2)

collecting terms in W21(1,1) and W22(1,1) yields

PC(m, p, p1
i , p2

i )≈W21(1,1)(m− p)
(

p1
i − p2

i

)

+
1

2
W22(1,1)

[(

p1
i − p

)2
−

(

p2
i − p

)2
]

(A.3)

expanding and recollecting the terms in brackets delivers

PC(m, p, p1
i , p2

i )≈W21(1,1)(m− p)
(

p1
i − p2

i

)

+
1

2
W22(1,1)

(

p1
i + p2

i −2p
) (

p1
i − p2

i

)

(A.4)

which can be rewritten as

PC(m, p, p1
i , p2

i )≈
[

W21(1,1)(m− p)+W22(1,1)
(

p∗i − p
)](

p1
i − p2

i

)

+W22(1,1)

(
p1

i
+ p2

i

2
− p∗i

)
(

p1
i − p2

i

)

(A.5)

the term in brackets is zero according to the expansion of the first order condition, (5), delivering

PC(m, p, p1
i , p2

i )=W
(

em−p, e
p1

i
−p

)

−W
(

em−p, e
p2

i
−p

)

≈W22(1,1)

(
p1

i
+ p2

i

2
− p∗i

)
(

p1
i − p2

i

)

(A.6)

Evaluating the foregoing at p1
i
= p∗

i
, p2

i
= 0 yields the expression in the main text.

Appendix A.2. Proof of Proposition 2

Suppose that all other agents use a threshold strategy around some value k, i.e., they adjust if and only if

the magnitude of their signal, |x j | exceeds the value k. Consider agent i who observes signal xi. Her optimal

price is given by

E[p∗i |xi ,k] =βxi +
(

1−β
)

E[p|xi ,k] (A.7)

Her conditional payoff difference is

E[PC(m, p, p1
i , p2

i )|xi,k] ≈W22(1,1)

(
p1

i
+ p2

i

2
−E[p∗i |xi ,k]

)
(

p1
i − p2

i

)

(A.8)
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as we assume the prices set by each agent are known to her and the expression above is then linear in p∗
i

thus

allowing us to pass the expectations operator through. Evaluating this at p1
i
= E[p∗

i
|xi ,k], p2

i
= 0 yields

E[PC(m, p,E[p∗i |xi,k],0)|xi ,k]≈−W22(1,1)
(

E[p∗i |xi,k]
)2

(A.9)

To simplify notation, we write

E[p|xi ,k]
.= h(xi ,k,σ)

and abbreviate

E[PC(m, p,E[p∗i |xi ,k],0)|xi ,k]
.= PCσ(xi ,k)

thus making the dependence on σ explicit.

In order to calculate the payoff difference, we first need to calculate the conditionally expected price level

h(xi ,k,σ). Here we exploit the symmetry of the price setting problem, i.e. we use the fact that agent j 6= i

with signal x j uses an optimal price setting rule of the form given by equation (A.7) and expects the price level

h(x j ,k,σ).

Conditional on the threshold strategy around k, agent i calculates,

h(xi ,k,σ) =(1−β)

∫

R

∫

R

h(x j ,k,σ)f (x j |m)dx j f (m|xi )dm (A.10)

− (1−β)

∫

R

∫k

−k
h(x j ,k,σ)f (x j |m)dx j f (m|xi )dm (A.11)

+β

∫

R

∫

R

x j f (x j |m)dx j f (m|xi )dm (A.12)

−β

∫

R

∫k

−k
x j f (x j |m)dx j f (m|xi )dm (A.13)

where the parts (A.11) and (A.13) reflect the definition of the threshold strategy, whereby no agent adjusts her

price for signals in the interval [−k,k].

With signal noise terms distributed normally, the distributions of x j conditional on m and vice versa are

f (x j |m)=
1

p
2π

1

σ
exp

(

−
(x j −m)2

2σ2

)

, f (m|xi)=
1

p
2π

1

σ
exp

(

−
(m− xi )

2

2σ2

)

We now rewrite parts (A.10) - (A.13) of h(xi ,k,σ) to obtain expressions which allow us to study the case

where σ→ 0.

Define µ= x j−m

σ and the change of variables, dµ= 1
σdx j . The inner integral of (A.10) can be rewritten as

∫

R

h(x j ,k,σ)f (x j |m)dx j =
∫

R

h(x j ,k,σ)
1

p
2π

1

σ
exp

(

−
(x j −m)2

2σ2

)

dx j =
∫

R

h(σµ+m,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ

Inserting this into (A.10) and using γ= m−xi
σ and another change of variables, dγ= 1

σdm, part (A.10) is

(1−β)

∫

R

∫

R

h(x j ,k,σ)f (x j ,m)dx j f (m|xi )dm= (1−β)

∫

R

∫

R

h(σµ+m,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ
1

p
2π

1

σ
exp

(

−
(m− xi )

2

2σ2

)

dm

= (1−β)

∫

R

∫

R

h(σµ+σγ+ xi ,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ
1

p
2π

exp

(

−
γ2

2

)

dγ

Next, we rewrite the inner integral of (A.11) as

∫k

−k
h(x j ,k,σ)f (x j |m)dx j

∫k

−k
h(x j ,k)

1
p

2π

1

σ
exp

(

−
(x j −m)2

2σ2

)

dx j =
∫ k−m

σ

−k−m
σ

h(σµ+m,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ
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where we have used the change of variables from before. Part (A.11) then becomes

=−(1−β)

∫

R

∫ k−m
σ

−k−m
σ

h(σµ+m,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ
1

p
2π

1

σ
exp

(

−
(m− xi)

2

2σ2

)

dm

=−(1−β)

∫

R

∫ k−m
σ −γ

−k−m
σ −γ

h(σµ+σγ+ xi ,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ
1

p
2π

exp

(

−
γ2

2

)

dγ

Note further that signals are unbiased, i.e.
∫

R
x j f (x j |m)dx j = m and

∫

R
mf (m|xi)dm= xi . Hence, part (A.12)

simplifies to βxi .

Finally, we rewrite the inner integral of part (A.13) as

∫k

−k
x j f (x j |m)dx j =

∫k

−k
(x j −m)f (x j |m)dx j +m

∫k

−k
f (x j |m)dx j

=
∫ k−m

σ

−k−m
σ

σµ
1

p
2π

1

σ
exp

(

−
µ2

2

)

σdµ+m

∫ k−m
σ

−k−m
σ

1
p

2π

1

σ
exp

(

−
µ2

2

)

σdµ

=σ

∫ k−m
σ

−k−m
σ

µexp

(

−
µ2

2

)

dµ+m

[

Φ

(
k−m

σ

)

−Φ
(
−k−m

σ

)]

using a change of variables from before. Using this for the inner integral, we can express (A.13) as

−β
{

σ

∫

R

∫ k−m
σ

−k−m
σ

µexp

(

−
µ2

2

)

dµ
1

p
2π

1

σ
exp

(

−
(m− xi)

2

2σ2

)

dm+
∫

R

m

[

Φ

(
k−m

σ

)

−Φ
(−k−m

σ

)]
1

p
2π

1

σ
exp

(

−
(m− xi)

2

2σ2

)

dm

}

Use the other change of variables from before, (A.13) is

=−β






σ

∫

R

∫ k−xi
σ −γ

−k−xi
σ −γ

1
p

2π
µexp

(

−
µ2

2

)

dµ
1

p
2π

exp

(

−
γ2

2

)

dγ+
∫

R

(σγ+ xi)

[

Φ

(
k− xi

σ
−γ

)

−Φ
(
−k− xi

σ
−γ

)]
1

p
2π

exp

(

−
γ2

2

)

dγ







=−σβ

∫

R







∫ k−xi
σ −γ

−k−xi
σ −γ

µ
1

p
2π

exp

(

−
µ2

2

)

dµ+γ

[

Φ

(
k− xi

σ
−γ

)

−Φ
(
−k− xi

σ
−γ

)]






1
p

2π
exp

(

−
γ2

2

)

dγ

−βxi

∫

R

[

Φ

(
k− xi

σ
−γ

)

−Φ
(
−k− xi

σ
−γ

)]
1

p
2π

exp

(

−
γ2

2

)

dγ

Putting all the pieces together, the expectation of the price level conditional on the signal xi and the thresh-

old strategy around k is

h(xi ,k,σ) =(1−β)

∫

R

[
∫

R

h(σµ+σγ+ xi ,k,σ)
1

p
2π

exp

(

−
µ2

2

)

dµ

−
∫ k−xi

σ −γ
−k−xi

σ −γ
h(σµ+σγ+ xi ,k,σ)

1
p

2π
exp

(

−
µ2

2

)

dµ




1

p
2π

exp

(

−
γ2

2

)

dγ

+βxi

(

1−
∫

R

[

Φ

(
k− xi

σ
−γ

)

−Φ
(−k− xi

σ
−γ

)]
1

p
2π

exp

(

−
γ2

2

)

dγ

)

−σβ

∫

R






γ

[

Φ

(
k− xi

σ
−γ

)

−Φ
(−k− xi

σ
−γ

)]

+
∫ k−xi

σ −γ
−k−xi

σ −γ
µ

1
p

2π
exp

(

−
µ2

2

)

dµ







1
p

2π
exp

(

−
γ2

2

)

dγ
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Now consider the limit as σ→ 0. For simplicity we write limσ→0 h(xi ,k,σ) as h(xi ,k,0). By the monotone

convergence theorem we have for xi 6= k,

h(xi ,k,0) =







xi if xi <−k

0 if xi ∈ (−k,k)

xi if xi > k

Moreover for xi = k, we have

h(k,k,σ) =(1−β)

∫

R

[
∫

R

h(σµ+σγ+k,k)
1

p
2π

exp

(

−
µ2

2

)

dµ

−
∫−γ

− 2k
σ −γ

h(σµ+σγ+k,k)
1

p
2π

exp

(

−
µ2

2

)

dµ

]

1
p

2π
exp

(

−
γ2

2

)

dγ

+βk

(

1−
∫

R

[

Φ(−γ)−Φ
(

−
2k

σ
−γ

)]
1

p
2π

exp

(

−
γ2

2

)

dγ

)

−σβ

∫

R

[

γ

[

Φ(−γ)−Φ
(

−
2k

σ
−γ

)]

+
∫−γ

− 2k
σ −γ

µ
1

p
2π

exp

(

−
µ2

2

)

dµ

]

1
p

2π
exp

(

−
γ2

2

)

dγ (A.14)

And in the limit, by the monotone convergence theorem,

lim
σ→0

h(k,k,σ) = h(k,k,0) = (1−β)

∫

R

[
∫

R

h(k,k,0)
1

p
2π

exp

(

−
µ2

2

)

dµ−
∫−γ

−∞
h(k,k,0)

1
p

2π
exp

(

−
µ2

2

)

dµ

]

1
p

2π
exp

(

−
γ2

2

)

dγ+βk

(

1−
∫

R

Φ(−γ)
1

p
2π

exp(−
γ2

2
dγ

)

Where the last line in (A.14) is zero. Rewriting the right hand side of the above yields

= (1−β)h(k,k,0)

∫

R

[

1−Φ(−γ)
] 1
p

2π
exp

(

−
γ2

2

)

dγ+βk

(

1−
∫

R

Φ(−γ)
1

p
2π

exp

(

−
γ2

2

)

dγ

)

= h(k,k,0)(1−β)

(

1−
∫

R

Φ(−γ)
1

p
2π

exp

(

−
γ2

2

)

dγ

)

+βk

(

1−
∫

R

Φ(−γ)
1

p
2π

(

−
γ2

2

)

dγ

)

as
∫

R
Φ(−γ) 1p

2π
exp

(

−γ2

2

)

dγ= 1
2 ,10

h(k,k,0) = h(k,k,0)(1−β)
1

2
+βk

1

2
⇒ h(k,k,0) =

β

1+β
k

For the value k to constitute a threshold equilibrium, an agent with the marginal signal has to be just

indifferent between adjusting and not adjusting, i.e., the optimal price conditional on observing xi = k must be

such that PC0(k,k) = 0. The optimal price in this case is given by

p∗i =βk+β
1−β

1+β
k = 2

β

1+β
k

which, upon inserting this into the payoff difference yields

PC0(k,k) =−W22

(

2
β

1+β
k

)2

(A.15)

10See Appendix A.4.
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Equating the latter with the menu cost z, yields

√

2z

−W22(1,1)
= 2

β

1+β
k (A.16)

Solving for k yields the critical signal

x̃
.= k =

1

2

1+β

β

√

2z

−W22(1,1)

which can be written in terms of the thresholds under perfect information, (10) and (8), as expressed in the

proposition. That x̃ indeed constitutes a threshold equilibrium follows from the fact that for xi > k, h(xi ,k,0) >
h(k,k,0) and conversely for xi < k. This implies that we must have PC0(xi ,k) > PC0(k,k) = z for xi > k so that

agents adjust their price and conversely for xi < k. Finally, uniqueness of the threshold equilibrium is obvious

from the expression for PC0(k,k) provided in (A.15): PC0(0,0)−z < 0 and PC0(∞,∞)−z > 0 (PC0(−∞,−∞)−z <
0) and since PC0(k,k) strictly increases (decreases) in k for k > 0 (k < 0) there exists exactly one value for k (−k)

where PC0(k,k) = z (PC0(−k,k) = z).

Appendix A.3. Proof of Proposition 3

Differentiate x∗ to yield

dx∗ =−(2z)
1/2 W−2

21 (−W22)
1/2

I∑

i=1

∂W21

∂αi
dαi −

1

2
(2z)

1/2 W−1
21 (W22)

−1/2
I∑

i=1

∂W22

∂αi
dαi (A.17)

and differentiate x̃ to deliver

dx̃=
1

2
(2z)1/2

(

−W−2
21 (−W22)1/2

I∑

i=1

∂W21

∂αi
dαi −

1

2
W−1

21 (W22)−1/2
I∑

i=1

∂W22

∂αi
dαi +

1

2
(W22)−3/2

I∑

i=1

∂W22

∂αi
dαi

)

(A.18)

For dx̃ > 0, it must hold that

−W−2
21 (−W22)1/2

I∑

i=1

∂W21

∂αi
dαi −

1

2
W−1

21 (W22)−1/2
I∑

i=1

∂W22

∂αi
dαi +

1

2
(W22)−3/2

I∑

i=1

∂W22

∂αi
dαi > 0 (A.19)

which can be rearranged as

1

2
(W22)

−3/2
I∑

i=1

∂W22

∂αi
dαi >W−2

21 (−W22)
1/2

I∑

i=1

∂W21

∂αi
dαi

1

2
W−1

21 (W22)
−1/2

I∑

i=1

∂W22

∂αi
dαi (A.20)

Note that the right hand side of the inequality is −dx∗ (2z)−1/2 and so dx∗ < 0 adds

1

2
(W22)

−3/2
I∑

i=1

∂W22

∂αi
dαi >W−2

21 (−W22)
1/2

I∑

i=1

∂W21

∂αi
dαi +

1

2
W−1

21 (W22)
−1/2

I∑

i=1

∂W22

∂αi
dαi > 0 (A.21)

Multiplying through with 2W21 (W22)1/2 and recalling the definition of β delivers the expression in the main

text. The inequalities for dx̃ < 0 but dx∗ > 0 follow analogously.
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Appendix A.4. Subsidiary Integral Calculation

We prove here that

∫

R

Φ(−γ)
1

p
2π

exp

(

−
γ2

2

)

dγ=
1

2

Note first that the left-hand side above is equivalent to (exploiting the symmetry of the standard normal)

∫

R

(1−Φ(γ))




e−

γ2

2

p
2π



dγ⇔ 1−
∫

R

Φ(γ)φ(γ)dγ.

Hence, we simply need to show
∫

R
Φ(γ)φ(γ)dγ= 1

2 . This is straightforward if tedious.

Consider the integral

I(µ,σ)
.=

∫

R

φ(γ)Φ
(γ−µ

σ

)

dγ.

Its derivative w.r.t. µ is given by

Iµ(σ,µ) =
∫

R

(−1

σ

)

φ(γ)φ
(γ−µ

σ

)

dγ

Now observe

2πφ(x)φ
(γ−µ

σ

)

= exp

{

−
1

2

(

γ2 +
1

σ2
(γ−µ)2

)}

= exp

{

−
(1+σ2)

2σ2

(

γ2 −
2µγ

1+σ2
+

µ2

1+σ2
+

µ2

(1+σ2)2
−

µ2

(1+σ2)2

)}

= exp

{

−
(1+σ2)

2σ2

(

γ−
µ

1+σ2

)2
}

×exp

{

−
1

2

µ

1+σ2

}

Hence, we have

Iµ(σ,µ) =
−1

σ

1
p

2π
exp

{

−
1

2

µ2

1+σ2

}
∫

R

1
p

2π
exp

{

−
1

2

1+σ2

σ2

(

γ−
µ

1+σ2

)2
}

dγ

Using τ2 = σ2

1+σ2 , and denote the normal distribution for s with variance u and mean v by f (s,v,u), we can write

Iµ(σ,µ) =
−1

σ

1
p

2π

σ
√

1+σ2
exp

{

−
1

2

µ2

1+σ2

}
∫

R

f

(

γ,
µ

1+σ2
,τ

)

dγ

=
−1

√

1+σ2
φ

(
µ

1+σ2

)

.

Using the fundamental theorem of calculus we have

I(µ,σ) =
∫∞

σ

1
√

1+σ2
φ

(

s
√

1+σ2

)

ds,

which, by using r = sp
1+σ2

and performing a change of variables, can be expressed as

I(µ,σ) =
∫∞

σ/(
p

1+σ2)
φ(r)dr =1−Φ

(

µ

(
√

1+σ2)

)

.

Hence, limµ→0 I(µ,σ) = 1−Φ(0) = 1
2 .
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Table 1: Cost of Adjustment, 5% Monetary Shock, Baseline Model

Labor Supply Markup

Elasticity 5% 15% 50% 100%

0.05

Ball and Romer (1990) 2.38 2.16 1.64 1.22

Threshold Equilibrium 8.66 6.77 3.72 2.20

(3.65) (3.13) (2.27) (1.81)

0.15

Ball and Romer (1990) 0.79 0.71 0.53 0.39

Threshold Equilibrium 2.87 2.23 1.22 0.72

(3.65) (3.14) (2.30) (1.86)

0.5

Ball and Romer (1990) 0.23 0.20 0.14 0.10

Threshold Equilibrium 0.85 0.65 0.35 0.20

(3.65) (3.17) (2.42) (2.04)

1

Ball and Romer (1990) 0.11 0.10 0.06 0.04

Threshold Equilibrium 0.42 0.31 0.16 0.09

(3.66) (3.22) (2.56) (2.25)

Replicates the private costs in Ball and Romer (1990, Table 1). The entries

indicate the size of the menu costs z necessary to leave the agent indifferent

between adjustment and non-adjustment as measured in percent of flexible

price revenue. Ball and Romer (1990) examine the equilibrium associated with

x∗ = 5%, i.e., the entry leaves the agent indifferent assuming all other agents

adjust. Threshold Equilibrium gives the menu cost that leaves the agent indif-

ferent given the global game equilibrium, x̃ = 5%. The entries in parentheses

give the ratio of the entries in the x̃ = 5% columns to those in the x∗ = 5%

columns.

Table 2: Cost of Adjustment, 5% Monetary Shock

Markup 5% 15% 50% 100%

Labor Supply Elasticity .175 .15 .1 .065

Ball and Romer (1990) 0.67 0.71 0.81 0.93

Threshold Equilibrium 2.46 2.23 1.84 1.69

β 0.0472 0.1279 0.3226 0.4843

The entries indicate the size of the menu costs z necessary to leave

the agent indifferent between adjustment and non-adjustment as

measured in percent of flexible price revenue. Ball and Romer

(1990) examine the equilibrium associated with x∗ = 5%, i.e., the

entry leaves the agent indifferent assuming all other agents ad-

just. The line labeled ‘Threshold Equilibrium’ yields the menu

cost that leaves the agent indifferent under the x̃ equilibrium,

when x̃ = 5%.
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Figure 1: Full Information Thresholds
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Figure 4: Threshold Contour Plot
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