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Abstract We propose a new method to estimate the empirical pricing kernel based on
option data. We estimate the pricing kernel nonparametrically by using the ratio of the
risk-neutral density estimator and the subjective density estimator. The risk-neutral den-
sity is approximated by a weighted kernel density estimator with varying unknown weights
for different observations, and the subjective density is approximated by a kernel density
estimator with equal weights. We represent the European call option price function by
the second order integration of the risk-neutral density, so that the unknown weights are
obtained through one-step penalized least squares estimation with the Kullback-Leibler
divergence as the penalty function. Asymptotic results of the resulting estimators are
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1 Introduction

The pricing kernel (PK) is an important link between economics and finance and it plays
a pivotal role in assessing the risk aversion over equity returns. The method introduced
by Aı̈t-Sahalia and Lo (2000) to construct empirical pricing kernels has been used fre-
quently in the literature. In their paper, a pricing kernel K is defined as a ratio of the
economic risk which contains the preferences of investors and statistical risk which pro-
vides information on the dynamics of the data generating process (DGP). The economic
risk is well assessed by Arrow-Debreu prices and can be estimated by the risk neutral
density q obtained from the derivative market. Thus, obtaining an accurate estimator of
q is a crucial step for pricing kernel estimation. Aı̈t-Sahalia and Lo (2000) present sev-
eral methods to estimate q by using different models or nonparametric estimators, e.g.,
a smooth local volatility part of the Black and Scholes (1973) method. Breeden and
Litzenberger (1987) have demonstrated that for a continuum of strikes the risk neutral
density is proportional with the quotient of the European call options with respect to the
strike price. Härdle et al. (2014) developed uniform confidence bands that proved to be
helpful for testing parametric specifications of pricing kernels and permitted extension to
estimating risk aversion patterns. Golubev et al. (2014) and Beare and Schmidt (2014)
proposed statistical tests of pricing kernel monotonicity. Beare (2011) has shown how
the theory of monotone rearrangements may be used to derive an explicit solution for the
cost minimizing measure preserving derivative written on some underlying asset. Beare
and Schmidt (2015) refer to the phenomenon of the nonmonotone shape of pricing kernel
estimates as the first order of stochastic dominance, in the sense that the returns of a
portfolio of contingent claims written on the index are significantly higher than the index
return. Moreover, Grith et al. (2013) proposed a systematic modelling approach to de-
scribing the evolution of the empirical pricing kernels, and investigated the relationship
of the model and the shape of the EPK to the economic conditions. Grith et al. (2015)
retained the expected utility framework in a one period model and illustrated the case
when the state is defined with respect to a reference point. They further investigated how
the model relates the shape of the EPK to the economic conditions.

In this paper, we take a fresh look at this problem and propose to estimate the pric-
ing kernel nonparametrically by controlling the ratio of the risk-neutral density and the
subjective density. The risk-neutral density is approximated by a weighted kernel density
estimator with varying unknown weights for different observations. By observing stock
prices or returns that investors expect to obtain at time to maturity, the subjective den-
sity can be approximated by the kernel density estimate of historical stock prices with
equal weights. We represent the European call option price function by the second order
integration of the risk-neutral density, so that the unknown weights are obtained through
one-step penalized least squares estimation with the Kullback-Leibler divergence as the
penalty function. Statistical risk provides an overview over statistical properties of the
DGP and is given by the distribution p of future prices conditional on current prices also
known as historical density. The historical density p can be estimated by using the past of
the stock time series St. Due to the large number of observations in the derivative option
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market, the risk neutral density q can be well estimated with large-sample asymptotic
properties established.

The paper is organized as follows. In Section 2 and 3 we formulate the problem and
construct the estimators. In Section 4 and 5 we present the main and auxiliary theoretical
results. In Section 6, we present the special case of KL-divergence of log-normals. Section
7 provides empirical results of a simulation study. The proposed estimation procedure is
illustrated by analyzing a Strike-Call price dataset in Section 8. As in earlier studies, the
PK is non-monotone and allows interpretation of time varying risk preferences.

2 Problem formulation

Let X1, ..., Xn be i.i.d. random variables distributed with a density p(x). Let further
(Z1, Y1), . . . , (Zm, Ym) be a sample of pairs of explanatory and response variables satisfying

Yi = f(Zi) + σεi, i = 1, . . . ,m, (2.1)

where εi are N(0, 1) i.i.d. random variables. The additive errors scheme (2.1) applies to
European call prices in an intraday context. In fact, for statistical analysis Renault (1997)
interprets the error as mispricings which could be exploited by arbitrage strategies. Denote
‖ϕ‖2

m = 1
m

∑m
i=1 |ϕ(Zm)|2 for any function ϕ on R. The problem is to find a probability

density q minimizing

Q(q)
def
= ‖f − Aq‖2

m + λKL(q||p), λ > 0 (2.2)

where A is the operator of second order integration and KL(•||•) is Kullback-Leibler
divergence

KL(q||p) def
=

∫
R
q(x) log

q(x)

p(x)
dx.

The penalized version of the least squares problem (2.2) leads to estimating q:

minimize− 2

∫
R
ω(x) q(x) dPn(x) +

∫
R
|q(x)|2 dx+ h2R(q) (2.3)

subject to q is a continuous density,

where Pn(x) is the cdf of {Xi}ni=1, ω stands for the Radon-Nikodym derivative dQ/dP , R
is a roughness penalization term and h is the smoothing parameter. Under the choice

R(q) =

∫
R
|q′| 2dx

the solution q of (2.3) satisfies the boundary value problem

−h2q′′(x) + q(x) = ω (x)dPn(x), −∞ < x <∞ (2.4)

q(x)→ 0, |x| → ∞
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and is given by

qn(x) =
1

nh

n∑
i=1

ω(Xi)K

(
x−Xi

h

)
provided that n−1

∑n
i=1 ω(Xi) = 1 and K(•) is a two-sided exponential kernel given as

K(u) =
1

2
exp(−|u|), (2.5)

for u ∈ R, see Vapnik (1995) and Vapnik (1998). For the fixed design X1, . . . , Xn we
approximate the solution of the minimization problem (2.3) by

qn,m = argminq∈Cn,X
Qn,m(q),

where

Cn,X
def
=

{
n∑
i=1

wiKh(x−Xi), n−1

n∑
i=1

wi = 1

}
,

with wi = ω(Xi), and

Kh(x)
def
=

1

h
K
(x
h

)
, x ∈ R

and

Qn,m(q)
def
= ‖f − Aq‖2

m −
λ

n

n∑
i=1

wi logwi. (2.6)

Further, instead of (2.6) we consider its empirical version:

Q̃n,m(q)
def
=

1

m

m∑
i=1

({Yi − (Aq)(Zi)}2 − λ

n

n∑
i=1

wi logwi.

The form of the penalty can be motivated by the fact that

n−1

n∑
i=1

wi logwi =

∫
R
ω(x) logω(x) dPn

P→
∫
R
ω(x) logω(x) dP = KL(q||p).

2.1 Finitely many constraints

The problem is

minimize L(f)
def
=

∫
Ω

m{x, f(x)} dx+
1

2
h2‖∇f‖2 (2.7)

subject to f ∈ W 1,2(Ω), Af = c,

where Ω = domain(X) and m(x, u) satisfies the assumptions

1. m{•, f(•)} ∈ L1(Ω) for all f ∈ W 1,2(Ω)
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2. m(x, •) is differentiable on R for all x ∈ Ω

3. mu{•, f(•)} ∈ L2(Ω) for all f ∈ W 1,2(Ω)

and A : L2(Ω)→ Rp is bounded linear operator.

Theorem 2.1. The function f0 ∈ W 1,2(Ω) solves (2.7) if and only if f0 ∈ W 2,2(Ω) and
there exists λ0 ∈ Rp such that (f0, λ0) solves the boundary value problem with constraints

−h2∇f(x) +mu(x, f(x)) + A∗λ(x) = 0, x ∈ Ω (2.8)

∂f

∂n
= 0, x ∈ ∂Ω

Af = c,

where n is the outward normal on ∂Ω.

3 Main results

Theorem 3.1. Let qn,m be the minimizer of Qn,m(q), q̃n,m be the minimizer of Q̃n,m(q)

and ∆
def
= q̃n,m − qn,m. If

‖f‖∞ + ‖AKh‖∞ <∞ (A1)

and
inf

q∈Cn,X

Qn,m(q) < λ/4 (A2)

then

PY

{
‖A∆‖2

m ≥ C

√
U

m
+ O(λ)

}
≤ n exp(−U2/B2) (3.1)

for some constants C > 0 and B = B(f,Kh, σ).

PROOF. We have
Qn,m(q)− Q̃n,m(q) = T1 + λT2,

where

T1
def
= m−1

m∑
i=1

{
|f(Zi)− (Aq)(Zi)|2 − |Yi − (Aq)(Zi)|2

}
and

T2
def
= n−1

n∑
i=1

log
p(Xi)

q(Xi)
+ n−1

n∑
i=1

log(nwi).

i Bounds for T1
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We have

T1 = − 1

m

m∑
i=1

ε2
i +

2

m

m∑
i=1

f(Zi)εi +
2

m

m∑
i=1

(Aq)(Zi)εi = T11 + T12 + T13

where εi ∼ N(0, σ2). Since we consider q being in the class of convex combinations Cn,X
and a linear functional of convex combinations achieves its maximum value at the vertices
we have:

sup
q∈Cn,X

|T13(q)| ≤ 2 sup
q∈Cn,X

∣∣∣∣∣ 1

m

m∑
i=1

(Aq)(Zi)εi

∣∣∣∣∣ = 2 max
j=1,...,n

∣∣∣∣∣ 1

m

m∑
i=1

(AKjh)(Zi)εi

∣∣∣∣∣ ,
where Kjh = Kh(x−Xj). Hence and due to lemma 4.1

PY ( sup
q∈Cn,X

|T13(q)| > U/
√
m) ≤ 2n exp

(
− U2

8σ2 maxj ‖AKjh‖2
m

)
.

Similarly, lemma 4.1 implies

PY (|T12| > U/
√
m) ≤ 2 exp

(
− U2

8σ2‖f‖2
m

)
and

PY (|T11 + σ2| > U/
√
m) ≤ exp

(
− U

2

4σ4

)
+ exp

(
−U
√
m

3σ2

)
.

For U �
√
m

PY

(
|T1| >

√
U

m

)
< n exp(−u2/B2)

where B2 = max{8σ2 maxj ‖AKjh‖2
m, 8σ

2‖f‖2
m, 4σ

4}.

ii Bounds for T2

First, let us define

T21
def
= n−1

n∑
i=1

log
qn(Xi;W )

pn(Xi)
− n−1

n∑
i=1

log nwi = n−1

n∑
i=1

({log(ξi)− logwi} ,

where

ξi =

{∑n
j=1wjKih(Xj)∑n
j=1Kih(Xj)

}
If function logw(•) can be assumed Lipschitz then

T21 = Op(h).
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Further,

T22 = n−1

n∑
i=1

log
qn(Xi;W )

pn(Xi)
− n−1

n∑
i=1

log
qn(Xi;W )

p(Xi)

= n−1

n∑
i=1

log p(Xi)− n−1

n∑
i=1

log pn(Xi)

and it is well known that T22 = O(n−1/2) almost surely, provided

E |X|L <∞, L > κ > 2, h � n−κ/(3κ+2), p1/2 ∈ W 2,2(R). (A3)

Let us now note that T2 = T21 + T22. Thus we have proved that with probability greater
than 1− n exp(−u2/B2)

sup
q∈Cn,X

|Qn,m(q)− Q̃n,m(q)| ≤
√
U

m
+ O(λh)

Hence,

0 ≤ Qn,m(q̃n,m)− Qn,m(qn,m) ≤ Qn,m(q̃n,m)− Q̃n,m(qn,m) +

√
U

m
+ O(λh)

≤ Qn,m(q̃n,m)− Q̃n,m(q̃n,m) +

√
U

m
+ O(λh)

≤ 2

√
U

m
+ O(λh)

with probability greater than 1− n exp(−U2/B2). On the other hand

0 ≤ Qn,m(q̃n,m)− Qn,m(qn,m) =
2

m

m∑
i=1

(A∆)(Zi)(Aqn,m − f)(Zi)+

+
1

m

m∑
i=1

(A∆)2(Zi) +
λ

n

n∑
i=1

log
qn,m(Xi)

q̃n,m(Xi)
.

Without loss of generality we can assume that 1
n

∑n
i=1 log p(Xi)

qn,m(Xi)
≥ 0 and due to (A2)

‖f − Aqn,m‖2
m < λ/4

If ‖A∆‖2
m ≥ 4λ then∣∣∣∣∣ 1

m

m∑
i=1

(A∆)(Zi)(Aqn,m − f)(Zi)

∣∣∣∣∣ ≤ ‖A∆‖m‖Aqn,m − f‖m ≤ λ1/2‖A∆‖m/2 ≤ ‖A∆‖2
m/4
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and
2

m

m∑
i=1

(A∆)(Zi)(Aqn,m − f)(Zi) + ‖A∆‖2
m ≥ ‖A∆‖2

m/2

Thus, either ‖A∆‖2
m ≤ 4λ or

1

2m

m∑
i=1

(A∆)2(Zi) +
λ

n

n∑
i=1

log
qn,m(Xi)

q̃n,m(Xi)
≤ O(λh) + 2

√
U

m
.

It remains to prove that

n−1
∑n

i=1
log

qn,m(Xi)

q̃n,m(Xi)
= Op(1).

Note that

n−1
∑n

i=1
log

p(Xi)

qn,m(Xi)
< 1/4 (3.2)

and

λ

n

n∑
i=1

log
p(Xi)

q̃n,m(Xi)
≤ −λ

n

n∑
i=1

log(nw̃i) + O(λh) (3.3)

≤ Q̃n,m(q̃n,m) + O(λh)

≤ Q̃n,m(qn,m) + O(λh)

≤ λ/4 +

√
u

m
+ O(λh)

with probability greater than 1 − n exp (−u2/B2). Combining (3.2) and (3.3) one gets
(3.1)

Let us define for any q ∈ Cn,X

T (q)
def
= Qn,m(q)− Q(q) =

1

n

n∑
i=1

log
q(Xi)

p(Xi)
−KL(p||q)

Clearly

sup
q∈Cn

|T (q)| = sup
q∈Cn

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣
≤ sup

q∈C̃n

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣ ,
where

C̃n
def
= convn(H) =

{
n∑
i=1

wiKh(x− ai),
n∑
i=1

wi = 1, a ∈ Rn

}
.
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and
H

def
= {Kh(x− a), a ∈ R} .

The following lemma holds

Lemma 3.1. If density p is such that 0 < a ≤ p(x) ≤ b for all x then with probability at
least 1− exp(−t)

sup
q∈C̃n

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣ ≤ EX

[
c1√
n

∫ b

0

log1/2 D(H, ε, dn) dε

]
+ c2

√
t

n
,

where c1 and c2 are constants that depend on a and b, D(H, ε, dn) is the covering number
of H at scale ε with respect to empirical distance dn

d2
n(ϕ1, ϕ2) = n−1

n∑
i=1

{ϕ1(Xi)− ϕ2(Xi)} .

We refer to Eggermont and LaRiccia (2001) for the proofs of Lemma 3.1.

4 Auxiliary results

Lemma 4.1. Let A = {aij, i, j = 1, . . . , N} be a N ×N matrix. Denote the values SA
and λA by

S2
A = 2 tr(A>A)2, λA = ‖AA>‖∞.

If ε1, . . . , εN are i.i.d. N(0, σ2) random variables and b = (b1, . . . , bN)> is a deterministic
vector then

P (2|b>Aε| > zσ‖b‖(2λA)1/2) ≤ exp
(
−z2/2

)
and

P (|ε>A>Aε− tr(A>A)| > zSA) ≤ exp
(
−z2/4

)
+ exp (−zSA/6λA) .

We refer to Spokoiny and Zhilova (2013) for the proofs of Lemma 4.1.

4.1 KL-divergence of log-normals

Let St be a stochastic process following a geometric Brownian motion (GBM) with drift
µ and volatility σ. St follows the stochastic differential equation

dSt
St

= µdt+ σdWt,

where Wt is a Wiener process or Brownian motion. Let p (x, µ, σ) be the probability
density function of a log-normal distribution with parameters µ and σ, then

p (x, µ, σ) =
1

xσ
√

2π
exp

{
− (log(x)− µ)2 /

(
2σ2
)}
.
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Similarly define q (x, r, σ) as the probability density function of a log-normal distribution
with parameters r and σ, then

q (x, r, σ) =
1

xσ
√

2π
exp

{
− (log(x)− r)2 /

(
2σ2
)}
.

Thus the log-likelihood ratio is

log
q (x, µ, σ)

p (x, r, σ)
= log {q (x, r, σ)} − log {p (x, µ, σ)}

= − (log(x)− r)2 /
(
2σ2
)

+ (log(x)− µ)2 /
(
2σ2
)

= (r − µ) {2 (log(x)− r) + (r − µ)} /
(
2σ2
)
.

The Kullback-Leibler divergence between p and q is

KL (q ‖p) =

∫
R
q (x, µ, σ) log

q (x, µ, σ)

p (x, r, σ)
dx

=

(
r − µ
2σ2

)∫ ∞
0

1

σ
√

2π
exp

{
− (log(x)− r)2 /

(
2σ2
)}
{2 (log(x)− r) + (r − µ)} dlog(x)

=

(
r − µ
2σ2

)∫
R

1

σ
√

2π
exp

{
− (y − r)2 /

(
2σ2
)}
{2 (y − r) + (r − µ)} dy

=

(
r − µ
2σ2

){
2σ2 + (r − µ)

}
= r − µ+ (r − µ)2 /

(
2σ2
)
.

5 Simulation studies

In this section, we use a simulated example to illustrate the proposed nonparametric es-
timation procedure. We first generate (Xt, 1 ≤ t ≤ n) with n = 500 i.i.d observations
from the log-normal distribution with density function p (x, µ, σ), where µ = log(2) and
σ = 0.5, and then generate (Zi, 1 ≤ i ≤ m) i.i.d. with m = 500 independently from
Uniform(0,5). The nonparametric function f (•) is simulated from the second order in-
tegration of log-normal probability density function q (x, r, σ) with r = 0 and σ = 0.5.

Then f (z) =
∫M
z

∫∞
u
q (s) dsdu =

∫M
z

[1− Φ {(logu− r) /σ}] du, where M = xmax. The
error term εi ∼ N (0, 1) and ϑ = 0.05. We let the responses (Yi, 1 ≤ i ≤ m) be generated
from the following model:

Yi = f (Zi) + ϑεi, i = 1, . . . ,m. (5.1)

Figure 1 shows the plot of the true mean function f (•) (solid line) and the scatter plot
of the simulated data points. Clearly, function f (•) has a decreasing pattern. The data
set is simulated according to the real Strike-Call price data applications, in which the call
price monotonically decreases as the strike price increases.
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Figure 1: The plots of f (z) (solid line) and {(Zi, Yi)}mi=1 (points) against z.

Then the estimated weights Ŵ = {ω̂ (Xt)}nt=1 are obtained by minimizing

Q̃n,m (q) = m−1

m∑
i=1

{Yi − (Aqn) (Zi)}2 − λn−1

n∑
t=1

log (nωt) , (5.2)

subject to
∑n

t=1 ωt = 1, where qn (z;W ) =
∑n

t=1 ωtKh (z −Xt) and ωt = ω (Xt). Then

Aqn (z;W ) = 1
h

∑n
t=1wt

∫M
z

(∫∞
s
K
(
u−Xt

h

)
du
)
ds. Here we use the Gaussian kernel func-

tion K (u) = ϕ (u) and let λ = 0.01, 0.1, 0.5, 1.

Figure 2 shows the plots of qn

(
x; Ŵ

)
(dashed thick line), q (x) (solid thick line), the

log-normal density function p (x) (solid thin line) and its kernel estimate pn (x) (dashed
thin line) against x with λ = 0.01, 0.1, 0.5, 1. The density estimate curves pn (x) are
close to the true density curves p (x) for all cases, so it demonstrates that p (x) is well
estimated by its kernel density estimator pn (x). When λ is small (λ = 0.01), the control
over the KL-divergence is loose and therefore the weighted kernel density estimate curve

qn

(
x; Ŵ

)
is close to the corresponding true density curve q (x). As λ increases from 0.01

to 1, qn

(
x; Ŵ

)
, the closer to p(x) is more enforced and consequently is getting closer to

p (x) and moving further from q (x).
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Figure 3 shows the plots of the estimated nonparametric function f̂ (z) = (Aqn)
(
z; Ŵ

)
(dashed line) and the true function f (z) (solid line) against z with λ = 0.01, 0.1, 0.5, 1.

The estimated function f̂ (z) is closer to the true function f (z) for smaller value of

λ. Figure 4 shows the empirical pricing kernel defined as EPK=qn

(
x; Ŵ

)
/pn (x) for

λ = 0.01, 0.1, 0.5, 1. We observe that the EPK function is a decreasing function for all λ.

6 Real data analysis

We use a Strike-Call dataset on November 16, 2011 to estimate model (5.1). The data
are from RDC of CRC649 Berlin. There are m = 1621 observations on this day. Let
(Zi, Yi, i = 1, . . . , 1621) be the strike and call prices. Figure 5 shows the scatter plot
of the call prices against the strike prices. Clearly, the option call price has a mono-
tone decreasing pattern. We use the realizations of historic stock price (DAX index)
(Xt, t = 1, . . . , n) from March 12, 2009 to November 16, 2011, so that n = 500. Figure 6
shows the plot of DAX index during this time period. The density function of price Xt is
estimated by pn (x) = n−1

∑n
t=1Kh (x−Xt). The risk-neutral density function is defined

as in (2.5) qn(z) = n−1
∑n

t=1w(Xt)Kh (z −Xt). The estimated weights Ŵ = {ŵ(Xt)}nt=1

are obtained by minimizing (5.2). Define the “moneyness” at time t as Mt = Xt/Z, i.e.,
the stock price are scaled against the observed strike prices so that e.g. “at the money”

correspond to Mt = 1. Figure 7 contains the plots of qn

(
x; Ŵ

)
(dashed line) and pn (x)

(solid line) against moneyness with tunning parameter λ = 0.1, 0.5. The graphs in the
right and left panels look similar, so the estimation of the risk-neutral density function is
not sensitive to the choice of different values for λ in this example.

Figure 8 displays the plots of the estimated nonparametric function f̂ (z) = (Aqn) (z)
(solid line) together with the data points at λ = 0.1, 0.5. One observes that both PK
estimated mean curves fit the data well. Figure 9 finally presents the plot of the empirical

PK estimates as the ratio of qn

(
x; Ŵ

)
and pn (x) against moneyness. Apparently, both

of the PKs have a decreasing trend, but prominent peaks are around Mt = 1.

7 Conclusions

In this paper, we propose a new method to estimate the pricing kernel nonparametrically.
Our new method further confirms the empirical pricing kernel (EPK) phenomenon that
the pricing kernel (PK) is non-monotone and allows interpretation of time varying risk
preferences. The formulation of the inverse problem opens new insight into statistically
fitting EPKs. The proposed method is numerically reasonable. The numerical studies are
implemented in the statistical software R and the programming packages will be provided
in quantlet. As a future topic, we will study the dynamic patterns of EPKs.
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Figure 2: The plots of qn

(
x; Ŵ

)
(dashed thick line), q (x) (solid thick line), p (x) (solid

thin line) and pn (x) (dashed thin line) against x with λ = 0.01, 0.1, 0.5, 1.
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Figure 3: The plots of f̂ (z) (dashed line) and the true nonlinear function f (z) (solid line)
against z with λ = 0.01, 0.1, 0.5, 1.
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Figure 4: The plots of the EPK against x with λ = 0.01, 0.1, 0.5, 1.
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Figure 6: Plot of DAX index.
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Figure 7: The plots of qn

(
x; Ŵ

)
(dashed line) and pn (x) (solid line) against moneyness

with λ = 0.1, 0.5 for the Strike-Call dataset
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Figure 8: The plots of f̂ (z) and data points with λ = 0.1, 0.5 for the Strike-Call dataset
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Figure 9: The plots of the empirical kernel pricing function against moneyness for the
Strike-Call dataset
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Grith, M., Härdle, W., and Krätschmer, V. (2015). Reference dependent preferences and
the EPK puzzle. Review of Finance, invited resubmission.
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