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Abstract

The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian

DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models

with parameter spaces of different dimensionality. We use the method to jointly sample from an

ARMA process of unknown order along with the associated parameters. We apply the method to

the technology process in a canonical neoclassical growth model using post war US GDP data and

find that the posterior decisively rejects the standard AR(1) assumption in favor of higher order

processes. While the posterior contains significant uncertainty regarding the exact order, it con-

centrates posterior density on hump-shaped impulse responses. A negative response of hours to a

positive technology shock is within the posterior credible set when noninvertible MA representa-

tions are admitted.
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1 Introduction

Despite recent advances in improving the fit of DSGE models to the data, misspecification re-

mains. In his Nobel Prize Lecture, Sims (2012, p. 1202) observes that “DSGEs could be made

to fit better by adding parameters allowing more dynamics in the disturbances.” Likewise, Del

Negro and Schorfheide (2009) identify three approaches to deal with misspecification in rational

expectations models: ignore it, generalize the stochastic driving forces, or relax the cross-equation

restrictions. Apart from Smets and Wouters (2007) who have the price-markup disturbance fol-

low an ARMA(1,1) process, Del Negro and Schorfheide (2009) who let government expenditures

follow an AR(2) instead of an AR(1) process, or Justiniano, Primiceri, and Tambalotti (2008)

who replace the ARMA(1,1) specification for the wage and price markup shocks in the Smets and

Wouters (2007) model with AR(1) shocks in a robustness exercise, the DSGE literature has not

yet provided a systematic framework to address the approach to misspecification of generalizing

stochastic driving forces. We fill this gap by providing a Bayesian approach to estimating the order

as well as the parameters of generalized ARMA representations of exogenous driving forces within

DSGE models.

To accomplish the task, we adopt the Reversible Jump Markov Chain Monte Carlo (RJMCMC)

methodology as pioneered by Green (1995).1 RJMCMC provides samples from a posterior dis-

tribution spanning several, not necessarily nested, models with parameter spaces of potentially

different dimensionality. In our case, each model is identified by a specific set of orders for the

lag polynomials of the autoregressive and moving average components of the disturbances, each

leading to a different parameter space. This approach provides a framework for the systematic

exploration of the fit of DSGE models using different structures for the shock processes which

provides a computationally feasible alternative to estimating all different possible combinations of

shock orders individually. Additionally, it allows us to quantify posterior model uncertainty and its

consequences for impulse responses and correlation structures while being agnostic regarding the

order of the underlying shock processes.2

1Markov Chain Monte Carlo (MCMC) methods have become increasingly popular for the estimation of DSGE
models in recent years. See Fernández-Villaverde and Rubio-Ramı́rez (2004), An and Schorfheide (2007) for a
methodological review, and Herbst and Schorfheide (2014) for a textbook treatment.

2If multiple shocks are kept independent while generalizing their individual autocorrelation patterns, the resulting
estimates admit a structural interpretation of the shocks that can guide the researcher in identifying those dimensions
along which the model requires the most additional internal propagation. It may, furthermore, be possible to construct
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The RJMCMC method rests on modifying the proposal ratios in the acceptance probability by

inflating parameter vectors to common dimensionality in order to circumvent the dimensionality

mismatch induced by sampling for ARMA processes of different orders. In our analysis of US post

war GDP data we find that RJMCMC provides point estimates of the ARMA orders with a reli-

ability comparable to traditional order selection criteria such as the Akaike Information Criterion

(AIC), the corrected Akaike Information Criterion (AICC), and the Schwarz Criterion (SC). While

the posterior mode models are AR(2) and ARMA (4,5) for first differenced and HP-filtered data

respectively, RJMCMC is of primary interest for its posterior distribution over different ARMA

orders and not for its point estimates of the orders. We find that the HP filtered GDP data is asso-

ciated with substantial posterior model uncertainty, as testified to by the dispersed posterior over

models provided by our RJMCMC analysis.

We then turn to a prototypical DSGE model, Hansen’s (1985) specification of the neoclassical

growth model, and relax the traditional AR(1) assumption imposed on the exogenous technology

process. After confirming that RJMCMC would correctly identify the ARMA order using syn-

thetic data generated from an AR(1) technology process, we turn to HP filtered US post war GDP

data and estimate the order and parameters of the technology process. We find that the data prefers

higher order exogenous processes—at the mode, ARMA(3,0), but with substantial posterior den-

sity associated with other higher order specifications, such as ARMA(2,2). The resulting posterior

impulse responses are hump-shaped, reflecting common wisdom in the macroeconomics litera-

ture3 and differing thus qualitatively from the responses to the traditional AR(1) process. From

a DSGE likelihood perspective, there is, without a commensurate prior specification, no reason

to prefer invertible or “fundamental” representations in the presence of MA terms; in sampling

from the covariance equivalent representations for draws of the order with nonzero MA order, we

find a downward shift in the amplitude of the impulse responses as well as an overall increase in

the posterior uncertainty regarding the impulse responses of endogenous variables to a technology

shock. Strikingly, we cannot exclude the possibility of a negative response of hours to a positive

technology shock.

model selection criteria based on the comparison of the spectrum of variables of interest derived from estimates of
the posterior with the spectrum using only pure white noise shocks giving a measure of how much structure has to be
added to the model outside of economic theory, an idea along the lines of Watson (1993).

3See especially, Cogley and Nason (1995).
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Our approach can be considered a Bayesian Model Averaging (BMA) method for providing

impulse responses and moments under model uncertainty, in that we weigh these statistics from

different models with their respective posterior probabilities. While there are certainly alternatives

to our approach, for example selecting the model with the highest maximized likelihood or us-

ing model selection criteria like the Akaike Information Criterion, BMA allows us to incorporate

model uncertainty into the inference of any statistic of interest. The RJMCMC algorithm allows

us to explore the posterior adaptively, which would allows for a more efficient means of sam-

pling across models than a brute force BMA approach of generating samples from the posterior of

each model (for us, ARMA order combinations p and q) and then weighting according to Bayes

factors. The BMA paradigm was put forth by Leamer (1978) and interest in this approach has

since increased with the advent of more powerful MCMC samplers. For an overview see Hoeting,

Raftery, Madigan, and Volinsky (1999) who also document an improved out-of-sample forecasting

performance using BMA, which is also found by Madigan and Raftery (1994) in the context of

graphical models. Kass and Raftery (1995) provide a discussion of Bayesian model selection and

averaging. A recent application of RJMCMC to instrumental variable regression is presented by

Koop, Leon-Gonzalez, and Strachan (2012) and Raftery, Madigan, and Hoeting (1997) discuss the

merits of BMA in the context of linear regression models. In a DSGE context, Wolters (2015) uses

BMA to provide meta forecasts using multiple estimated DSGE models and Strachan and Van Dijk

(2013) use BMA with VARs to assess the empirical support for structural breaks and the long-run

and equilibria restrictions implied by a prototypical DSGE model. Our analysis is close in spirit

to theirs, yet whereas they apply BMA to estimate VARs restricted commensurate with a DSGE

model or provide forecasts using estimated DSGE models, we apply BMA to estimate the DSGE

model itself.

This paper is organized as follows: We first introduce our methodology and shortly illustrate

the method by constructing a sampler for a univariate autoregressive model of unknown order.

Afterwards, we present the results of a small Monte Carlo study designed to gauge the power of

the method for identifying univariate autoregressive moving-average models using synthetic data

derived from estimated ARMA models of post war US GDP data. Lastly, we apply the method to

the neoclassical growth model, using synthetic AR (1) as well as post war US data, and analyze the

posterior model uncertainty and its consequences for posterior impulse responses and correlations.
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2 Reversible Jump MCMC for ARMA Processes

2.1 Reversible Jump Markov Chain Monte Carlo

In this paper, we adapt and apply the Reversible Jump Markov Chain Monte Carlo (RJMCMC)

methodology pioneered by Green (1995). RJMCMC generalizes the Metropolis-Hastings algo-

rithm (Hastings 1970) to allow for moves between parameter spaces of varying dimensionality

while maintaining detailed balance.4 This transdimensionality allows for inference on a posterior

distribution spanning several, not necessarily nested, models. In the following, we will illustrate

the mechanics of RJMCMC starting with a short description of conventional Metropolis-Hastings

samplers to fix ideas before turning to the construction of a sampler for univariate autoregressive

models of unknown order using an RJMCMC approach.5

2.2 Conventional Metropolis-Hastings Samplers

Markov Chain Monte Carlo (MCMC) methods in general provide samples from some probability

distribution of interest by constructing a Markov chain whose stationary distribution is this distri-

bution of interest. A Markov chain with the sequence of states ς1, ς2, . . . is specified in terms of

the distribution for the initial state ς1 and the transition kernel K(·) that provides the conditional

distribution of a state ςi+1 given the current state ςi. That is, the probability that ςi+1 is in some set

A ⊆ Rd given that the current state of the chain is ςi is given by

K(ς,A) = P(ςi+1 ∈ A|ςi = ς)(1)

A distribution π is invariant for some Markov chain if the transition kernel of the chain satisfies∫
K(ς,A)π(ς)dς =

∫
A
π(ς)dς(2)

4A more extensive treatment of Metropolis-Hastings samplers can be found in Chib and Greenberg (1995). See
also Tierney (1998) for a comparison of RJMCMC and conventional Metropolis-Hastings kernels. Another popular
MCMC method is the Gibbs sampler which is a special case of Metropolis-Hastings samplers and ultimately RJMCMC
samplers. See Gelfand and Smith (1990) for a review and comparison of Gibbs samplers as well as importance sam-
plers and stochastic substitution and Troughton and Godsill (1998) for application to autoregressive models. Geweke
(1998) provides an overview over Bayesian methods and their applications in economics.

5Several authors have applied RJMCMC to the problem of estimating univariate autoregressive (moving average)
models, e.g., Brooks, Giudici, and Roberts (2003), Brooks and Ehlers (2004), and Ehlers and Brooks (2008).Relatedly,
different approaches to statistical models of varying dimensionality have emerged; such as birth-death Markov Chain
Monte Carlo, based on continuous time birth-death processes, as initiated by Stephens (2000) and applied to the
analysis of autoregressive moving-average models by Philippe (2006). A summary and comparison of these methods
can be found in Cappè, Robert, and Rydèn (2003).
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for all subsets A of the state space. The task in MCMC is to construct a kernel such that the dis-

tribution of interest π is invariant with respect to the Markov chain defined by K(). The expression

in (2), however, is not practically useful for the construction of an appropriate kernel, as verifying

(2) would involve integration over the unknown distribution π being sought.

One widely used approach to overcome this hurdle are Metropolis-Hastings samplers:6 accept-

reject samplers for which proposals for a new state of the chain are drawn from some distribution

γ to be chosen by the researcher and then accepted with an appropriately derived probability α.

Here, the stronger condition of reversibility or detailed balance is imposed, which guarantees that

π is invariant for the Markov chain. This condition holds if a sequence of two states (ς, ς ′) has the

same distribution as the reversed subchain (ς′, ς) whenever ς, ς′ ∼ π. I.e., if∫
A
π (ς) K (ς,B) dς =

∫
B
π

(
ς′

)
K

(
ς′,A)

dς′(3)

for all subsets A,B ⊆ Rd. Condition (3) is more easily verified and can thus provide a starting

point for the construction of a sampler.

A general Metropolis-Hastings algorithm can be written as follows: Let again ς denote a state

of the Markov chain, in the case of Bayesian inference in the context of model estimation, the state

is just the vector of model parameters and the distribution of interest is the posterior distribution

π(ς) ∝ L(ς)ρ(ς)(4)

where ς denotes the vector of model parameters, L is the likelihood of the data given the model

and its parameters and ρ is the prior over the model parameters. To obtain N samples from the

posterior distribution, the following algorithm is run

Metropolis-Hastings
1. Set the (arbitrary) initial state ς0 of the Markov chain
2. For i = 1 to N

(a) Set ς = ςi−1

(b) Propose a new state from some proposal distribution γ(ς ′|ς)
(c) Accept draw with probability

α(ς, ς′) = min (1, χ)
with

χ =
L(ς′)
L(ς)︸︷︷︸

Likelihood Ratio

× ρ(ς′)
ρ(ς)︸︷︷︸

Prior Ratio

× γ(ς|ς′)
γ(ς′|ς)︸��︷︷��︸

Proposal Ratio

(d) If the draw is accepted set ςi = ς
′. If the draw is rejected set ςi = ς

6Laid out in Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and generalized in Hastings (1970).
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This algorithm defines a transition kernel such that the Markov chain has the desired invariant

distribution. The sequence of states of the chain is then a sample from this distribution of interest.

The acceptance probability α corrects for differences between the proposal distribution γ and the

distribution of interest.7

The kernel in the above is given by

K(ς,B) =
∫
B
γ(ς′|ς)α(ς, ς′)dς′︸��������������������︷︷��������������������︸

Probability of moving to set B

+

[
1 −

∫
B
γ(ς′|ς)α(ς, ς′)dς′

]
�ς︸��������������������������������︷︷��������������������������������︸

Probability of rejecting the move and ς∈B

(5)

where �ς = 1 if ς ∈ B and zero otherwise giving the probability of moving to some subset B of

the parameter space conditional on the chain currently being at ς. The crux when constructing

the kernel is to define the appropriate acceptance probability α and the proposal distribution γ so

as to satisfy the detailed balance condition and thereby guarantee the convergence of the Markov

chain to the desired probability distribution. Indeed, plugging in the formulation of the kernel

from (5) into (3) gives an expression from which, given the proposal distribution γ the appropriate

acceptance probability α can be readily derived using Peskun’s (1973) recipe.

2.3 Reversible Jump MCMC: AR(p) Order and Parameter Sampling

We will derive our transdimensional random walk sampler implementation of the RJMCMC with

a univariate zero-mean normally distributed AR(p) model of unknown order for illustration. Our

derivation follows the exposition of Waagepetersen and Sorensen (2001). Such an AR(p) model is

defined as

yt = Pp
1yt−1 + Pp

2yt−2 + . . . + Pp
pyt−p + εt, εt ∼ N

(
0, σ2

)
(6)

Pp
i are the coefficients of the lag polynomial of order p associated with the i’th lag and εt is a

zero-mean stochastic disturbance. Denote by Pp �
{
Pp

1 , P
p
2 , . . . , P

p
p

}
the vector of parameters of

the AR(p) model.8 We would like to construct a posterior distribution over the orders, p, and

associated parameters, Pp, given observations on yt.

It is sensible to interpret the order of the lag polynomial p as a model indicator. We will

use the terms model indicator and polynomial or lag order interchangeably. The aim is now to

7Note, that in the case of a standard random walk Metropolis-Hastings sampler with symmetric proposals, i.e. a
Metropolis sampler, the proposal ratio reduces to one.

8The part of the parameter vector associated with the standard deviation of the disturbance ε t, σwill be left implicit
in the exposition of this section to maintain the focus on the order, p.
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construct a sampler for the joint posterior distribution over the different models indexed by p and

their parameters. The strategy closely resembles that for Metropolis-Hastings samplers. Indeed,

Metropolis-Hastings samplers are a special case in the RJMCMC framework. It is expositionally

convenient to express the state of the Markov chain as

ς = (p, Pp)(7)

explicitly including the order of the autoregressive polynomial p in the state.

The detailed balance condition poses the main obstacle to the transdimensional sampling’s

construction of a joint posterior distribution over potentially nonnested models with parameter

spaces of varying dimensionality. Recall the detailed balance condition (3),∫
A
π (ς) K (ς,B) dς =

∫
B
π

(
ς′

)
K

(
ς′,A)

dς′(8)

Unlike in the foregoing section, the dimension of ς can change. I.e., the state space of the Markov

chain spans parameter spaces with differing dimensionality—for a sampler for AR(p) models of

unknown order, when p changes so does the number of parameters. Here, the usual strategy for

the derivation of the acceptance probability will fail. Green (1995) modifies the proposals in such

a way that the integrals on both sides of the detailed balance condition are over spaces of the same

dimensionality by introducing an auxiliary proposal variable u together with a mapping g pp′ that

maps the auxiliary proposal u and the current state of the chain to the new proposed state. The

mapping gpp′ is chosen such that the dimensionality of the integrals on both sides of the equation

is inflated to some higher common dimensionality.

In order to be able to easily verify adherence to detailed balance for a move from a state

(p, Pp) to (p′, Pp′) the vectors of Markov chain states and the random auxiliary proposal variables

(Pp, u) and (Pp′ , u′) must be of equal dimension. This dimension matching condition ensures that

π(Pp|p)γpp′(Pp, u) and π(Pp′ |p′)γp′p(Pp′ , u′) are “joint densities on spaces of equal dimension,”

(Waagepetersen and Sorensen 2001, p. 54) allowing an application of a change of variables in

the detailed balance equation to facilitate the construction of the transition kernel of the Markov

chain. Here, γpp′(Pp, u) is the proposal density for the auxiliary variable u going from an AR

model of order p to one with order p′ which may also depend on the current parameter vector

Pp. The proposed new order p′ is drawn from some γp(p′|p) and the joint proposal density is

γ(ς) = γpp′(Pp, u)γp(p′|p).

7



In our implementation of the method, we use the following differentiable bijection for g pp′[
Pp′

u′

]
= gpp′(P

p, u) =

[
A(p, p′)p′×p Ip′×p′

Ip×p 0p×p′

] [
Pp

u

]
(9)

where

A(p, p′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ Ip×p

0(p′−p)×p

⎤⎥⎥⎥⎥⎥⎦ if p′ > p[
Ip′×p′0p′×(p−p′)

]
if p′ < p[

Ip′×p′
]

if p′ = p

(10)

This mapping leads to the transdimensional analog of a full-site updating random walk sampler.

Proposals for “newly born” parameters, i.e., those Pp′
i for i = p + 1, . . . , p′, are centered around

zero. If p′ < p the parameter vector is truncated and proposals for these parameters are centered

around their previous values. For p′ = p this mapping gives a standard random walk sampler.

The detailed balance condition holds if9∫
Ap

π (ς) Q
(
ς,Bp′

)
dPp =

∫
Bp′
π

(
ς′

)
Q

(
ς′,Ap

)
dPp′(11)

for all subsets Ap and Bp′ of the parameter spaces associated with autoregressive polynomials of

order p and p′ respectively and where

Q
(
ς,Bp′

)
=

∫
Bp′

γ(ς′|p, Pp)αpp′(ς, ς
′)dς′

is the first part of the kernel in (5), i.e. the part of the conditional distribution of ς ′ associated with

acceptance of the proposal.

Implementing the change of variables with the mapping gpp′ , the detailed balance condition is

satisfied if

π (ς) γp(p
′|p)αpp′γpp′(P

p, u) = π
(
ς′

)
γp(p|p′)αp′pγp′p(gpp′(P

p, u))(12)

where the details of the derivation can be found in the appendix.

Following Peskun (1973), we set the acceptance probability, αpp′ , as large as possible,10

αpp′ = min
(
1, χpp′(ς, ς

′)
)

(13)

with

χpp′
(
ς, ς′

)
=

L(ς′)
L(ς)︸︷︷︸

Likelihood Ratio

ρ(ς′)
ρ(ς)︸︷︷︸

Prior Ratio

γp(p|p′)γp′p(gpp′(Pp, u))

γp(p′|p)γpp′(Pp, u)︸��������������������������︷︷��������������������������︸
Proposal Ratio

(14)

Having chosen an appropriate acceptance probability to maintain detailed balanced, we can now

implement the procedure. The resulting sequence of states approximates the joint posterior over

9See also Waagepetersen and Sorensen (2001).
10Which, as noted by Green (1995), is “optimal in the sense of reducing the autocorrelation of the chain.”
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all models indexed by their order p and the corresponding parameter vectors.

RJMCMC Algorithm
1. Set the initial state ς0 of the Markov chain
2. For i = 1 to N

(a) set ς = ςi−1

(b) Propose a visit to model p′ with probability γp(p′|p)
(c) Sample u from γpp′(Pp, u)
(d) Set (P′, u′) = gpp′(Pp, u)
(e) Accept draw with probability

α = min
(
1, χpp′(ς, ς

′)
)

χpp′ is defined as in (14)
(f) If the draw is accepted set ςi = ς

′. If the draw is rejected set ςi = ς

The application to moving average models follows by analogy and the extension to autoregres-

sive moving average (ARMA) models is straightforward. One simply defines the model indicator

as a two-element vector, proposing not only visits to some model with autoregressive order p ′ but

also for a new order for the MA-polynomial q′.

For many applications, it is desirable to restrict the parameter spaces of ARMA processes to

ensure stationarity and/or invertibility.11 To constrain sampling to these invertible and stationary

regions of the parameters spaces of each model, we reparametrize the AR (and MA) polynomial

in terms of its (inverse) partial autocorrelations (PACs). Details are in the appendix.

3 RJMCMC ARMA Order and Parameter Estimation: Monte
Carlo Evidence

We examine the performance of the RJMCMC method for ARMA processes of unknown order

introduced in the foregoing section by carrying out two Monte Carlo experiments. For both ex-

periments, we compare the model chosen by the posterior mode of our RJMCMC algorithm with

the choices that follow from using the Akaike Information Criterion (AIC), the corrected Akaike

Information Criterion (AICC), and the Schwarz Criterion (SC). We orient the Monte Carlo exper-

11For the DSGE application in sections 4 and 5, we will require stationarity of the exogenous driving forces. In
section 5, we will examine the consequences of imposing or not imposing invertibility on MA components, should
they exist, on impulse responses.
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iments around the same post war US per capita real GDP data12 that will inform our DSGE model

in the following section by applying our RJMCMC algorith to obtain 3,000,000 draws from the

posterior distribution of first-differenced and demeaned quarterly observations of the logarithm of

US per capita real GDP as well as 7,000,000 draws from the posterior distribution of the cyclical

component of US GDP extracted using a Hodrick-Prescott filter with the smoothing parameter

set to 1600 for the period from 1947:1 - 2013:3. The first Monte Carlo is carried out by taking

every 30,000th draw from the posterior for first differences and the second with every 70,000th

draw from the posterior for HP-filtered data, giving 100 different models each, and then for each

generating 250 observations using the corresponding model and parameter values.

Figure 1: Posterior over the orders p, q for first differenced data

For first-differenced data, the model at the mode is an AR(2), with the posterior mean parame-

ters conditional on the AR(2) model being

yt = 0.3184yt−1 + 0.1297yt−2 + εt; εt ∼ N(0, 0.9025)

12 We take 1947:1-2013:3 real GDP from the NIPA tables, expressed on a per capita basis using the BLS series on
the civilian noninstitutional population. Both data sets were downloaded from the St. Louis Federal Reserve’s FRED
database.
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The posterior over models can be found in figure (1). Note that there is a substantial amount of

posterior uncertainty regarding the model with textbook representations such as Blanchard and Fis-

cher’s (1989, p. 9) ARMA(2,2) estimated on first differenced log GNP comfortably in the posterior

distribution over models.

Figure 2: Posterior over the orders p, q for two-sided HP-filtered data

With HP-filtered data, the model at the mode is an ARMA(4,5), with the posterior mean pa-

rameters conditional on posterior mode model given by

yt =0.6027yt−1 + 0.5304yt−2 + 0.0861yt−3 − 0.4196yt−4 + . . .

+ εt + 0.3786εt−1 − 0.2556εt−2 − 0.5812εt−3 − 0.2706εt−4 − 0.2154εt−5

εt ∼ N(0, 0.7551)

Figure (2) shows the posterior distribution over the orders p, q for the HP-filtered data. Clearly,

there is significant posterior uncertainty regarding the model reflected in the dispersion of posterior

density spread over many more models than was the case with first differenced data. This is

consistent with relatively high orders for the lag polynomials preferred at the posterior mode with
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many neighboring models mimicking the covariance structure of the model model.

We implement RJMCMC by generating 1,500,000 draws from the posterior, discarding the

first 1,000,000 as burn-in, and identifying the model at the mode in (p, q). The first state of the

chain was set to white noise with unit standard deviation, i.e. p = q = 0 where p denotes the

autoregressive order, q the moving average order, and σ = 1. Our metric for model choice is in

accordance with a 1− 0 loss function, selecting the model at the mode of the posterior distribution

over (p, q). It should be noted that one of the strengths of our method is the ability to quantify

posterior uncertainty over models directly, such that model uncertainty can be incorporated in the

calculation of posterior credible sets over impulse responses, correlations structures, or the like,

providing more than just a point estimate of the model order.

We compare the model choice of our method with the choices that follow from minimizing the

Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICC), and the

Schwarz Criterion (SC).13 These are defined as

AIC = 2k − 2 ln(L̂), AICC = AIC +
2k(k + 1)
n − k − 1

, SC = −2 ln(L̂) + k ln(n)

with k being the number of model parameters and n the number of observations. L̂ denotes the

maximized likelihood value of a model, i.e., for given ARMA orders p and q.

3.1 Priors and Proposals

Table 1 summarizes the priors and proposals used in the Monte Carlo study. We choose a uniform

Variable Prior Proposal
p U(0,10) LaplaceD(p,2)
q U(0,10) LaplaceD(q,2)

AR PAC TN(0,0.25) TN(PAC,0.0025)
MA inverse PAC TN(0,0.25) TN(PAC,0.0025)

σ: Standard Deviation εt IG(1,1) TN(σ,0.0025)

Table 1: Prior and Proposal Distribution for Monte Carlo Experiment

prior over the AR and MA orders, restricting the highest allowed order to 10 for both the AR and

MA polynomials. Proposals for the AR and MA orders are taken to follow a discretized Laplace

13Calculations for the three standard measures were carried out using the R package auto.arima.
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distribution, LaplaceD(μ, b), with location parameter, μ, and shape parameter, b, such that

γp(p
′|p) ∝ exp(−b|p − p′|) with p′, p ∈ [0, 1, . . . , 10](15)

γq(q
′|q) ∝ exp(−b|q − q′|) with q′, q ∈ [0, 1, . . . , 10](16)

For the (inverse) partial autocorrelations, our prior is a truncated normal distribution, TN(μ, σ,−1, 1),

with location parameter, μ, and dispersion σ, and truncations at 1 and -1, imposing invertibility

and stationarity. With these proposal distributions, we center the (inverse) partial autocorrelations

around their previous values and new (inverse) partial autocorrelations are centered around zero.
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Figure 3: Implied prior over the orders p, q

All three standard information criteria penalize for the number of parameters in the model.

This feature is also present in the posterior of our RJMCMC method with proper priors over the

(inverse) partial autocorrelations. Increasing the order of, say, an autoregressive model and setting

the new parameter to zero gives a model identical to the previous one with lower order; hence,

does not change the likelihood. Yet, the posterior with the additional parameter is penalized as

the prior probability assigned to the value of the new parameter is smaller than one, yielding a

posterior probability lower than with the original, lower order. Even though the prior on the orders

is uniform the prior resulting from the combination of the prior over the orders and the prior over

13



the parameters can be thought of as behaving implicitly like a prior of exponential form as shown

in figure (3).

3.2 Likelihood

For the ARMA (p, q) model introduced in (A-12), we employ the Kalman filter to evaluated the

log likelihood, lnL
(
{yt}Tt=1 ; ς

)
, as a sequence of conditional log likelihoods

lnL
(
{yt}Tt=1 ; ς

)
=

T∑
t=1

lnL
(
yt|

{
y j

}t−1

j=1
; ς

)
= −1

2

T∑
t=1

[
lnωt +

υ2
t

ωt
+ ln (2π)

]
(17)

where the last equality follows from the assumption of normality; the sample size is T = 100; υ t is

the innovation in the current observation, υt � yt − E
[
yt|

{
y j

}t−1

j=1

]
; and ωt the conditional variance

of this innovation, ωt � E
[
υ2

t |
{
y j

}t−1

j=1

]
.

The innovation and its conditional variance are recovered from the Kalman filter recursion14

where we follow Harvey (1993, p. 96) in setting up the recursion for ARMA(p,q) processes.15 The

state equation is

wt+1 = Awt + Rεt, εt ∼ N(0, σ2)(18)

and the observation equation is given by

yt = Zwt(19)

where

Z =
[
1 01×m−1

]
, A =

[
Pp,q

m−1 Im−1

Pp,q
m 01×m−1

]
, Pp,q

m−1 =
[
Pp,q

1 . . . Pp,q
m−1

]′
, R =

[
1 Qp,q

1 . . . Qp,q
m

]′(20)

for m = max(p, q + 1).

3.3 Results

We report the proportion of correctly identified models in table 2. The RJMCMC method outper-

forms the set of traditional information criteria in all cases except for the model at the posterior

mode of HP-filtered data. An increase in the number of the draws from the posterior could further

improve the performance of our implementation.

With the generally higher order processes obtained from the posterior obtained using HP-

filtered data all methods identify the correct model only in very few cases. This is not surprising

14See, e.g., Anderson and Moore (1979).
15See de Jong and Penzer (2004) for an overview of alternate state space formulations of ARMA models.
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Method First Differences HP-Filter
RJMCMC 0.23 0.05

AIC 0.08 0.03
AICC 0.09 0.02

SC 0.18 0.01

Table 2: Proportion of Correctly Identified Models

as the autocorrelation structure of ARMA models of higher orders may be very close even if the

orders of the lag polynomials differ and the likelihood is therefore rather flat across models. This

was reflected likewise in the posterior distribution over models in the estimation using post war

US in figure (2). However, RJMCMC enables the characterization of the resulting uncertainty re-

garding model selection choices and the posterior therefore provides the researcher with a tool to

gauge the extent of model uncertainty.

Of course, the ability of the method to estimate the parameters of the model along with the

order of the model is of importance. Figure 4 reports the recursive means of the parameter draws

of the model parameters conditional on p = 2 and q = 0 from a chain from experiment 1 where

the model was correctly identified. These values clearly converge close to the values underlying

the data generating process.
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Figure 4: Recursive Parameter Means from the Conditional Posterior

In conclusion, our method exhibits roughly the same or better performance as classical methods

concerning order identification while providing a complete posterior distribution over parameters

and model orders that can be used for the posterior analysis of statistics of interest. We are inter-

ested in posterior statistics of DSGE models such as impulse responses and correlation structures

and will now turn to a DSGE setting and apply the RJMCMC method there.
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4 Neoclassical Growth Model

As a baseline model to examine how the RJMCMC model can be applied to a DSGE model, we

consider Hansen (1985) specification of the neoclassical growth model. In this simple model, the

social planner’s problem is to maximize the discounted lifetime expected utility of a representative

household given by

E0

∞∑
t=0

βt [ln (ct) + ψln (1 − lt)
]
, 0 < β < 1(21)

with ct representing consumption and lt hours; β ∈ (0, 1) is the subjective discount factor of the

household and ψ weights the utility of leisure, 1− lt, in the household’s utility function. The social

planner faces the resource constraint

ct + it = yt(22)

where investment, it, contributes to the accumulation of capital, kt, through

kt = (1 − δ) kt−1 + it(23)

with the depreciation rate, δ, and where production, yt is neoclassical and given by

yt = eztkαt−1l
1−α
t(24)

with zt being stationary stochastic productivity. Hansen (1985) assumed a highly autocorrelated

AR(1) process—with the autoregressive parameter set to 0.95— following Kydland and Prescott

(1982). Relaxing this assumption will be the focus of our investigation.

The first order conditions of the social planner’s problem are given by

1
ct
= βEt

⎡⎢⎢⎢⎢⎣ 1
ct+1

⎛⎜⎜⎜⎜⎝1 − δ + αezt+1

(
lt+1

kt

)1−α⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦(25)

ψ

1 − lt
=

1
ct

(1 − α) ezt

(
kt−1

lt

)α
(26)

An equilibrium is defined by the equations (22) through (26) along with a specification for the

stochastic productivity process, zt.

L 1
3 Steady state employment 1/3 of total time endowment

α 0.36 Capital share
δ 0.025 Depreciation rate for capital
R 1.01 One percent real interest rate per quarter

Table 3: Model Calibration
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In this exercise, we will take the parameters of Hansen’s (1985) calibration of all parameters

outside the specification of the stochastic productivity process, zt, as given. This will allow us to

concentrate on the contribution of the RJMCMC algorithm in estimating the order and parameters

of the exogenous process. The calibrated parameters reported in table 3 deliver standard values for

parameters, imposing , e.g., that about one third of agents’ time endowment is spent in employment

activities, capital contributes a little more than one third to production. As we will consider arbi-

trary ARMA processes for zt, the model does not fit canonical DSGE linear problem statements,

e.g., Klein (2000), which allow for straightforward calculation of the likelihood function. While

we could redefine the model to include the entire state vector induced by the ARMA exogenous

process as endogenous variables to bring the model into the canonical form, doing so would sig-

nificantly increase the computation costs involved in the QZ decomposition for the state transition

and the Sylvester equation for the impact matrix of shocks. In the appendix, we provide an exten-

sion of multivariate DSGE linear solution methods to arbitrary vector ARMA exogenous driving

forces.

5 Estimation Results for the Neoclassical Growth Model Model

We carry out two exercises using the neoclassical growth model model as presented above. First,

in order to check whether the method could pick up the correct underlying process for a technology

shock in this model, we generated 250 observations of synthetic data using the AR(1) process as

reported by Hansen (1985) in his original study. Second, we estimate the order and parameters of

the technology shock process for the model using US GDP data, treated with the HP filter as in

Hansen’s (1985) original study.

5.1 Priors and Proposals

The priors and proposals for the shock process orders and parameters are reported in table 4.

The priors remain the same as in the Monte Carlo study, while the dispersion parameters of the

proposals were tuned using short pilot runs to increase the efficiency of the RJMCMC algorithm.

17



Variable Prior Proposal
p U(0,10) LaplaceD(p,2.2)
q U(0,10) LaplaceD(q,2.2)

AR PAC TN(0,0.25) TN(PAC,0.0016)
MA PAC TN(0,0.25) TN(PAC,0.0016)

σ IG(1,1) TN(σ,0.0025)

Table 4: Priors and Proposals for RBC Model Estimation

5.2 Synthetic AR(1) Data

For this exercise we generated 250 realizations for the technology shock according to the AR(1)

specification and calibration in Hansen (1985)

zt = 0.95zt−1 + εt(27)

We then fed the resulting series for zt into the linearized RBC model and applied our method

to the resulting synthetic data on output, yt, generating 650.000 draws discarding the first 100.000

draws as burn in. Standard visual measures over the chains indicated convergence. Figure 5 shows

the posterior distribution over the orders for the disturbance. The method places an overwhelming

majority of the posterior weight on the AR(1) model—obviously correctly identifying the AR(1)

data generating process for the productivity process with observations on output, yt.

This result gives us further confidence that, if the real world process for the productivity shock

were AR(1), it would be correctly identified by the RJMCMC method we propose.

5.3 US GDP Data: Estimates

We now address what US postwar GDP data can reveal about the productivity shock in Hansen’s

(1985) model. We estimated the productivity shock process using HP-filtered quarterly US GDP

per capita as in Hansen (1985) taking his original calibration and value of 1600 for the smoothing

parameter in the HP filter as given.16 In applying the RJMCMC method introduced in section 2,

we generated 4.000.000 draws discarding the first 1.000.000 draws as burn in. The HP filter was

applied to the DSGE model when evaluating the likelihood, thus treating the data and the model

with the same filter.17

16See footnote 12 for details on the data series.
17See section A.6 for details.

18



Figure 5: Posterior over the Orders for the Shock Process, Synthetic AR(1) Data from (27)

Figure 6 shows the posterior over (p, q) for this exercise. The model at the mode is ARMA(3,0)

and the baseline AR(1) specification of Hansen (1985) is clearly rejected. There is much more sub-

stantial uncertainty regarding the correct shock process than in the Monte Carlo exercises above.

The prior posterior plots in figure (7) are indicative that our results are not being overly driven by

our choice of priors, likewise confirmed by comparing the posteriors over orders in figure 6 to the

implied priors in figure 3.

Figure 8 reports recursive means of the first AR parameter for three chains with differing initial

states for the orders of the ARMA polynomial for the technology shock, calculated both conditional

on the model at the mode of the posterior as well as unconditional means. Inspection suggests that

all three chains have converged. It is not clear, however, whether these standard graphical or other

formal measures of convergence, e.g., Brooks and Gelman (1998), apply without adaptation in

transdimensional analyses, see e.g., Fan and Sisson (2011). In any case, the posterior statistics,

such as impulse responses, that we will examine are not indicative of a lack of convergence.
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Figure 6: Posterior over the Orders for the Shock Process
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Figure 8: Convergence Diagnostics

Table 5 reports point estimates for the shock process parameters taken from the posterior distri-

bution conditional on (p, q) = (3, 0). Additionally, the first two autocorrelations of the exogenous

process, zt, implied by these point estimates are given. The first autocorrelation is higher than,

though consistent with, the choice of Hansen (1985) following Kydland and Prescott (1982) to

model the technology process with a near unit root.

Parameter Mean Median Hansen
AR(1) 1.1689 1.1681 0.95

(0.04)
AR(2) -0.0732 -0.0725 N/A

(0.06)
AR(3) -0.1224 -0.1215 N/A

(0.04)
σ 0.5873 0.5733 0.712

(0.08)
ρ(1) 0.9804 0.9810 0.95
ρ(2) 0.9528 0.9542 0.9025

Table 5: Posterior Point Estimates and Autocorelations

5.4 US GDP Data: Correlation Structure

We now examine the variance and correlation structures implied by our posteriors and compare

these with the data and the statistics implied by our baseline AR(1) model implied by Hansen
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(1985).18 The posterior matches the structure of the second moments of output quite well. As we

estimated with real per capita GDP data, this is reassuring and indicates that the procedure does

indeed provide a substantial improvement in fit.

Data Hansen Posterior Mode Model Posterior Mode 90% Posterior Credible Set
2.8491 3.2574 2.8332 2.8182 2.1074 — 4.0965

Table 6: Standard Deviation of Output, in %

The standard deviations of output are in table 6. Both the standard deviation of model at the

posterior mode of the ARMA order and parameter space and the posterior mode of the standard

deviations line up very close to the statistic in the data, whereas the statistic of Hansen (1985) shows

greater a difference from the value in the data. The 80% posterior credible set shows the extent of

posterior uncertainty, which here is great enough to encompass all the point values reported.
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Figure 9: Comparison of Autocorrelations of Output

18Following Hansen (1985), we calculate the second moments for his model using an HP filtered (with the smooth-
ing parameter, λ, set to 1600) version of model.
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The first six autocorrelations tell a more certain story, however, and can be found in figure

9. Again, both the autocorrelations of the model at the posterior mode of the ARMA order and

parameter space and the posterior mode of the autocorrelations match the statistic in the data very

closely. The AR(1) structure imposed by Hansen (1985) forces a compromise, with the initial

autocorrelation are somewhat lower and the later values somewhat higher than in the data.

The fit as implied by the point estimates of our posterior with respect to our observable series

output is reassuring in that our application of the RJMCMC method is successfully doing what it

should. With a mean zero normally distributed process, the second moments describe the stochastic

properties of the process and our posterior brings the second moments of output from the RBC

model closer to the data by selecting appropriate ARMA processes.

5.5 US GDP Data: Impulse Responses

With a posterior distribution over both models—i.e., orders p and q—and their parameters for

the ARMA technology process, we plot impulse responses taking posterior uncertainty about the

model into account. In the presence of MA components, this requires us to take a stand on which

covariance equivalent representation we choose.19 We will first examine the invertible or fun-

damental impulse responses associated with the posterior distribution. Then, we will allow the

possibility of nonfundamental representations by sampling with a noninformative prior from the

admissible (i.e., real valued) covariance equivalent representations and examine the resulting im-

pulse responses.

In figure 10, we plot the impulse responses to a one standard deviation technology shock. We

plot the invertible impulse associated with the model at the posterior mode of the ARMA order

and parameter space against the pointwise posteriors (mode and 80% credible set) over all impulse

responses weighted by posterior probabilities. To guarantee invertibility, we sample from the in-

verse partial autocorrelations analogously to our sampling from the partial autocorrelations for the

AR components that guarantees stationarity. We also include the impulse response with Hansen’s

(1985) AR(1) technology assumption in the plot. The data driven selection of the specification

of the shock process implies a different dynamic behavior of the model compared to Hansen’s

19See Lippi and Reichlin (1994), Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007), and Alessi,
Barigozzi, and Capasso (2011) for more on different MA representations in macroeconomic modeling.
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calibration. Our RJMCMC procedure identifies hump-shaped impulse responses, a salient feature

of the data identified in many empirical studies; e.g., Cogley and Nason (1995) identify a hump

shaped response of output to transitory technology shocks using both an SVAR and a VEC model.

In essence, the sluggishness of output in the data that is captured by frictions in more sophisticated

models, see especially Sims (1998) for an early assessment, is relegated to the exogenous process

by our procedure.

We now move beyond imposing fundamentalness in the sampled MA components. In admit-

ting nonfundamental or noninvertible MA representations, we acknowledge that the covariance

structure associated with our posterior distribution potentially implies several possible different

structural representations. For an invertible or fundamental moving average representation, the

roots, λqi , of the MA polynomial

γi (1/λ) � λqi + γi,1λ
qi−1 . . . + γi,q(28)

must all be contained within the unit circle. That is, there exists no λ such that γ i (λ) = 0 where

|λ| ≥ 1.20 We follow Lippi and Reichlin (1994) and engage in a root-flipping procedure to construct

admissible covariance equivalent representations. We proceed as follows.

Sampling From Admissible Covariance Equivalent Representations
1. For a given draw of order q > 0 for the MA component of the exogenous process, factor the

MA polynomial as
1 + γi,1L . . . + γi,qL

qi = (1 − λ1L) (1 − λ2L) . . .
(
1 − λqi L

)
(29)

2. Enumerate all possible combinations of root flips, discarding any combination that would
flip only one of complex conjugate pair of roots21

3. Draw an integer n ∈ {0, 1, . . . , ñ} from a uniform distribution, where ñ is the number of
admissible combinations of root flips

4. Flip the roots according to the combination enumerate with n, where a draw of 0 indicates
that no root is flipped (i.e., the invertible or fundamental representation is drawn.

For example, if n = 10 is drawn and the number 10 was associated with flipping roots λ2 and

λ3, the MA polynomial for calculating impulse responses becomes

γi (L) = (−λ2) (−λ3)

(
1 − 1

λ2
L

) (
1 − 1

λ3
L

)
(1 − λ1L) (1 − λ4L) . . .

(
1 − λqiL

)
(30)

Drawing the covariance equivalent representation from a uniform distribution over all admissible

covariance equivalent representations puts equal weight on each admissible representation, reflect-

20See, e.g., Hamilton (1994).
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Figure 10: Impulse Responses to a One Standard Deviation Technology Shock
Invertibility of MA Components Imposed
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ing our flat prior over the different representations over which DSGE theory is noninformative.

Figure 11 contains the pointwise posteriors (mode and 80% credible set) over all impulse re-

sponses weighted by posterior probabilities and drawn, potentially, from nonfundamental covari-

ance equivalent representations as outlined above. We plot these pointwise posteriors against the

invertible representation of the model at the posterior mode over ARMA orders and their parameter

values and against the impulse response with Hansen’s (1985) AR(1) technology assumption. The

admission of non-fundamental representations increases our uncertainty over the dynamic response

of variables to a technology innovation, spreading the bounds of the 80% credible sets apart. Most

of this spread is downward so that the number of periods for which the 80% credible set covers

exclusively positive responses to a technology shock is greatly reduced.

Admitting non-fundamental moving average representations places a negative response of hours

to a positive technology shock is contained in the credible set. Hence even this simplest real busi-

ness cycle model with an estimated technology shock process can recreate this stylized observation

of Galı́ (1999) and Francis and Ramey (2005). The conclusion, therefore, that the stochastic growth

model is unable to generate this response to technology shocks would require a strong prior against

the noninvertible moving average representations, e.g., against news shocks and policy announce-

ment shocks. Though the majority of the posterior mass still lies in a region where the response of

hours to technology is conventional, in line with the results in Chari, Kehoe, and McGrattan (2008)

and Uhlig (2004).

In sum, the posterior mode model and the posterior distribution over impulse responses, both

fundamental and admitting the possibility of non-fundamental moving average representations, as

markedly different than those implied by the AR(1) assumption in Hansen’s (1985) original study.

The data clearly favors hump-shaped impulse responses and cannot rule out a drop in hours in

response to a positive technology shock.

6 Conclusion

In this paper we present a novel approach to addressing misspecification in DSGE models. We

relax the assumptions usually placed on the structure of exogenous processes, standard practice be-

ing AR(1) processes, and estimate generalized, ARMA(p, q) processes of unknown orders. Since
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Figure 11: Impulse Responses to a One Standard Deviation Technology Shock
Invertibility of MA Components Not Imposed
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theory provides no guidance on autocorrelation patterns of exogenous variables and the order of

the these processes in DSGE models is seldom if ever estimated, the usual choice of the AR(1)

structure on exogenous processes often lacks any empirical support. Our method treats the ARMA

orders of shock processes as additional parameters to be estimated, enabling the researcher to

identify those shock process structures which bring the model closer to the data.

The impulse responses implied by the estimated ARMA process for the technology shock using

US GDP data with Hansen’s (1985) specification of the canonical stochastic neoclassical growth

model are markedly different than those generated under the original calibration. Our posterior

clearly identifies hump-shaped impulse responses and cannot rule out a drop in hours in response

to a positive technology shock.

Our method has the advantage that it will ultimately enable the analysis of a joint posterior over

different specifications of the exogenous processes including their parameters as well as parame-

ters of the model, as we are investigating in work in progress. This allows for the quantification

of posterior uncertainty regarding the model parameters and all parameters of the exogenous pro-

cesses including their orders, while maintaining the interpretability of these processes as structural.

If one interprets the richer shock structure preferred by our method as a means of controlling for

misspecification and, insofar as this misspecification is taken to be policy invariant, the generalized

shocks should improve the accuracy of policy experiments while at the same time improving the

fit of the model, as indicated in Del Negro and Schorfheide (2009).
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A Appendices

A.1 Detailed Derivation of Inflated Proposal Mapping

To choose an appropriate mapping gpp′ , it is useful to break the mapping into two parts according

to the desired parameters Pp and the auxiliary parameters u. The mapping gpp′ is given by

(Pp′ , u′) = gpp′(P
p, u) = (g1pp′(P

p, u), g2pp′(P
p, u))(A-1)

and its inverse

(Pp, u) = g−1
pp′(P

p′ , u′) = gp′p(P
p′ , u′) = (g1p′p(P

p′ , u′), g2p′p(P
p′ , u′)(A-2)

Start with g1pp′ . Suppose now that the current state of the Markov chain is at ς = (p, Pp).

Now with probability γp(p′|p), a move to the model with order p′ is proposed. Conditional on this

proposal, we draw u from some proposal distribution γ pp′(u). Then, we introduce a deterministic

mapping g1pp′ that maps the current state and the auxiliary proposal u to the proposed new state

such that (p′, Pp′) = (p′, g1pp′(Pp, u)). Note that u is not part of the state of the chain.

Additionally, we have to find g2pp′ . In order to be able to easily verify adherence to detailed

balance for a move from a state (p, Pp) to (p′, Pp′) = (p′, g1pp′(Pp, u)) the vectors of Markov chain

states and the random auxiliary proposal variables (Pp, u) and (Pp′ , u′) must be of equal dimension

and requiring gpp′ to be a differentiable bijection lets us use a simple change-of-variables in the

detailed balance equation. I.e., the kernel of the chain is now defined in terms of the auxiliary

variable u together with the model indicator and the parameter vectors.

Armed with this structure it is now straightforward to derive the appropriate acceptance prob-

ability. The detailed balance condition holds if22∫
Ap

π (p|y) π (Pp|p, y) Q
(
ς,Bp′

)
dPp =

∫
Bp′
π

(
p′|y) π (

Pp′ |p′, y
)
Q

(
ς′,Ap

)
dPp′(A-3)

for all subsets Ap and Bp′ of the parameter spaces associated with autoregressive polynomi-

als of order p and p′ respectively. The posterior distribution π(ς|y) is factorized as π(ς|y) =

π(p|y)π(Pp|p, y) and

Q
(
ς,Bp′

)
=

∫
Bp′
γ(ς′|ς)α(ς, ς′)dς′

= γp(p
′|p)

∫
�(g1pp′(P

p, u) ∈ Bp′)αpp′(P
p, g1pp′(P

p, u)γpp′(P
p, u)du

22See also Waagepetersen and Sorensen (2001).
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The left hand side of (A-3) is then∫
Ap

π (ς|y) Q
(
ς,Bp′

)
dPp =

∫ ∫
�(Pp ∈ Ap, g1pp′(P

p, u) ∈ Bp′)π (p|y) π (Pp|p, y)×(A-4)

γp(p
′|p)αpp′(P

p, g1pp′(P
p, u)γpp′(P

p, u)dPpdu(A-5)

and the right hand side reads∫
Bp′

π
(
ς′|y) Q

(
ς′,Ap

)
dPp′ =

∫ ∫
�(Pp′ ∈ Bp′ , g1p′p(P

p′ , u′) ∈ Ap)π
(
p′|y) π (

Pp′ |p′, y
)
×(A-6)

γp(p|p′)αp′p(P
p′ , g1p′p(P

p′ , u′))γp′p(P
p′ , u′)dPp′du′(A-7)

where γ(ς′|ς) is again factorized as γp(p|p)γpp′(Pp, u). The fact that gpp′ is a differentiable bijection

together with the dimension matching conditions enables a change of variable in (A-6) leading to∫ ∫
1(g1pp′(P

p, u) ∈ Bp′ , P
p ∈ Ap)π

(
p′|y) π (

g1pp′(P
p, u)|p′, y

)
γp(p|p′)

×αp′p(g1pp′(P
p, u), Pp)γp′p(g1pp′(P

p, u), g2pp′(P
p, u))|g′pp′(P

p, u)|dPpdu(A-8)

where dPp′du′ = |g′pp′(P
p, u)|dPpdu and |g′pp′(P

p, u)| is the determinant of the Jacobian of gpp′ .

By inspection of (A-4) and (A-8), the reversibility condition (A-3) is satisfied if

π (p|y) π (Pp|p, y) γp(p
′|p)αpp′(P

p, g1pp′(P
p, u))γpp′(P

p, u) =

π
(
p′|y) π (

g1pp′(P
p, u)|p′, y

)
γp(p|p′)αp′p(g1pp′(P

p, u), Pp)×
γp′p(g1pp′(P

p, u), g2pp′(P
p, u))|g′pp′(P

p, u)|(A-9)

Choosing the acceptance probability as large as possible, we have

αpp′ = min
(
1, χpp′(ς, ς

′)
)

(A-10)

with

χpp′
(
ς, ς′

)
=

L(ς′)
L(ς)︸︷︷︸

Likelihood Ratio

ρ(ς′)
ρ(ς)︸︷︷︸

Prior Ratio

γp(p|p′)γp′p(gpp′(Pp, u))

γp(p′|p)γpp′(Pp, u)
|g′pp′ (P

p, u) |︸�������������������������������������������︷︷�������������������������������������������︸
Proposal Ratio

(A-11)

With our mapping gpp′ , in (9), |g′pp′(P
p, u)| is equal to one and (A-11) reduces to (14).23

A.2 Imposing Stationarity and Invertibility on ARMA(p,q) Sampling

To constrain sampling to these invertible and stationary regions of the parameters spaces of each

model, we follow Barndorff-Nielsen and Schou (1973), Monahan (1984) and Jones (1987) and

reparametrize the AR (and MA) polynomial in terms of its (inverse) partial autocorrelations (PACs).

23The posterior π is here written factorized as the product of likelihood and prior L(ς)ρ(ς) for correspondence with
the general formulation of the detailed balance condition ( 3).
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If the (inverse) partial autocorrelations are between -1 and 1 the process is (invertible) stationary.

First, we generalize the AR(p) model to an ARMA(p,q) as follows

yt = Pp,q
1 yt−1 + Pp,q

2 yt−2 + . . . + Pp,q
p yt−p + εt + Qp,q

1 εt−1 + . . . + Qp,q
q εt−q, εt ∼ N

(
0, σ2

)
(A-12)

In order to recover the coefficients of the AR polynomials, the following algorithm is run

Recovering AR Coefficients from PACs
1. Introduce pk =

(
p(k)

1 , . . . , p
(k)
k

)
, k = 1, . . . , p

2. Draw r = r1, . . . , rp, for ri ∈ (0, 1) partial autocorrelations
3. Set p(1)

1 = r1

4. Run the recursion
p(k)

i = p(k−1)
i − rkp(k−1)

k−i , i = 1, for . . . , k − 1

with p(k)
k = rk for k = 2, . . . , p

5. Set Pp = p(p)

The MA coefficients are recovered analogously, where the inverse partial autocorrelations

substitute for the partial autocorrelations, ri, in the foregoing. Ultimately, instead of proposing

AR(MA) parameters directly, (inverse) partial autocorrelations are proposed in their place from

which the parameters are then recovered. This will obviously necessitate the formulation of priors

over (inverse) partial autocorrelations instead of parameters.

A.3 Class of DSGE Models with VARMA(p,q) Processes

We will consider linear(ized) DSGE models that can be expressed compactly as

0 = Et

[
AXt+1

nx×1
+ BXt + CXt−1 + D Zt

nz×1

]
(A-13)

where the vector Xt collects the endogenous variables and the vector Zt the exogenous variables.

Instead of the standard assumption of independent AR(1) processes for the elements of the vector

Zt,24 we shall allow each element in Zt to be driven by an independent ARMA(p,q) process, whose

orders p and q along with whose parameters we shall estimate using the RJMCMC algorithm

developed in section 2.

The method laid out in section 2 extends straigthforwardly to multiple autoregressive moving

averages of finite order.25 Specifically, we assume that each exogenous process can be represented

24Notable exceptions are Cúrdia and Reis (2010) and Chari, Kehoe, and McGrattan (2007), who let their vector of
disturbances follow a vector AR(1) process, and Del Negro and Schorfheide (2009) and Smets and Wouters (2007),
who let two of their seven disturbances follow ARMA(1,1).

25We will examine multiple ARMA processes instead of VARMA (vector autoregressive moving averages) both to

35



as a finite order ARMA26

zi,t = ρi,1zt−1 + ρi,2zi,t−2 . . . + ρi,pizi,t−pi + γi,0εi,t + γi,1εi,t−1 . . . + γi,qiεi,t−qi , εi,t ∼ N
(
0, σ2

i

)
(A-14)

We assume that the processes in (A-14) are stationary and invertible, as we summarize in the

following

Assumption A.1. The roots of the polynomial

ρi (λ) � λpi − ρi,1λ
pi−1 + ρi,2λ

pi−2 . . . + ρi,pi(A-15)

are all inside the unit circle. That is, there exists no λ such that ρ i (λ) = 0 where |λ| ≥ 1.

Expressed in vector form, the exogenous processes can be collected as

Zt = P1Zt−1 + P2Zt−2 . . . + PpZt−p + I εt
nz×1
+ Q1εt−1 . . . + Qqεt−q, εt ∼ N (0,Σ)(A-16)

where p is the highest autoregressive order (p = max ({pi})) and q the highest moving average order

(q = max ({qi})) among the exogenous processes. The covariance matrix Σ is diagonal, collecting

the variances of the individual processes along the diagonal—Σ � diag
(
σ2

1, σ
2
2, . . . , σ

2
nz

)
. The

stationarity and invertibility of the individual processes in assumption A.1 transfers to the vector

process (A-16), as we state formally as

Lemma A.2. The latent roots of the λ matrix

Inzλ
p − P1λ

p−1 + P2λ
p−2 . . . + Pp(A-17)

That is, there exists no λ such that det (P (λ)) = 0 where |λ| ≥ 1.

Proof. Follows directly from assumption A.1. �

A.4 Recursive Solution for DSGE Models with VARMA(p,q) Processes

We will solve for a recursive solution for the endogenous variables in the model (A-13) using a

method of undetermined coefficients approach. Given (A-16) and (A-13), the state variables of the

model are {
Xt−1, Zt, Zt−1, . . . , Zt−( p̃−1), εt, εt−1, . . . , εt−(q−1)

}
(A-18)

maintain the structural interpretation of the shock and to avoid the proliferation of parameters and reparameterizations,
see Monahan (1984), needed to guarantee stationarity in vector processes.

26 We adopt the convention that sums that terminate with an index smaller than that with which they began are
empty sets. For example, if pi = 0 in (A-14) for some i;

∑−0
j=1 ρi, jzt− j = ∅ such that zi,t in this case would be

zi,t = γi,0εi,t + γi,1εi,t−1 . . . + γi,qiεi,t−qi
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where p̃ = max (p, 1),27

While we could redefine the model (A-13) to include the entire state vector (A-18) as endoge-

nous variables to bring the model into the canonical form of, say, Sims (2001) or Klein (2000),

doing so would significantly increase the computation costs involved in the QZ decomposition for

the state transition and the Sylvester equation for the impact matrix of shocks. The solution for the

endogenous variables is, accordingly, given by

Xt = ΛXt−1 + Φ0Zt + Φ1Zt−1 . . . + Φ p̃−1Zt−( p̃−1) + Θ0εt + Θ1εt−1 . . . + Θq−1εt−(q−1)(A-19)

where {
Λ,Φ0,Φ1, . . . ,Φ p̃−1,Θ0,Θ1, . . . ,Θq−1

}
(A-20)

are the unknown coefficients that we solve for.

We will make the following two assumptions that correspond to the Blanchard and Kahn’s

(1980) order and rank conditions to guarantee a unique stable solution. The order condition as-

sumes a full set of latent roots with half inside and half outside the unit circle

Assumption A.3. Order

There exist 2nx latent roots of Aλ2+Bλ+C—that is, nx+rank (A) finite λ ∈ R : det Aλ2 + Bλ + C = 0

as well as nx − rankA infinite λ—of which nx lie inside the unit circle and nx outside.

We then assume that a solution, or solvent, can be constructed containing these stable roots

Assumption A.4. Rank

There exists an Λ ∈ Rnx×nx such that AΛ2 + BΛ +C = 0 and |eig(Λ)| < 1.

Thus, Λ is the unique solution to the matrix quadratic equation AΛ2 + BΛ + C = 0 whose

eigenvalues coincide with the stable latent roots of the quadratic λ matrix Aλ2 + Bλ + C.28

Under the order and rank assumptions, as well as the stationarity assumption on the exoge-

nous processes, the model (A-13) has a unique, stable solution, as we summarize in the following

proposition

27This follows directly from (A-16) expressed in first order vector form

[
Z′t Z′t−1 . . . Z′t−( p̃−1) ε′t ε′t−1 . . . εt−(q−1)

]′
= PP

[
Z′t−1 Z′t−2 . . . Z′t−p ε′t−1 ε′t−1 . . . εt−q

]′
+ QQεt

for appropriate PP and QQ matrices. The left hand side of the foregoing is then the current exogenous state vector.
The case p = 0 is permitted through p̃, which ensures Zt remains on the left hand side of the foregoing despite the
indexing convention laid out in footnote 26.

28See Lancaster (1966), Dennis, Jr., Traub, and Weber (1976), and Higham and Kim (2000) for detailed analysis of
matrix polynomials and λ matrices, as well as Lan and Meyer-Gohde (2014) for an application to DSGE models.
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Proposition A.5. Let assumptions A.3, A.4, and A.2 hold. There exists a unique, stable solution

(A-19) to (A-13). The coefficient Λ in (A-19) is the solvent of assumption A.4, the coefficients{
Θ0,Θ1, . . . ,Θq−1

}
for q > 0 solve

0
nx×nz

=A (ΛΘ0 + Φ0Q1 + Θ1) + BΘ0

0
nx×nz

=A (ΛΘ1 + Φ0Q2 + Θ2) + BΘ1

...

0
nx×nz

=A
(
ΛΘq−2 + Φ0Qq−1 + Θq−1

)
+ BΘq−2

0
nx×nz

=A
(
ΛΘq−1 + Φ0Qq

)
+ BΘq−1(A-21)

and the coefficients
{
Φ0,Φ1, . . . ,Φp−1

}
solve

0
nx×nz

=A (ΛΦ0 + Φ0P1 + Φ1) + BΦ0 + D

0
nx×nz

=A (ΛΦ1 + Φ0P2 + Φ2) + BΦ1

...

0
nx×nz

=A
(
ΛΦp−2 + Φ0Pp−1 + Φp−1

)
+ BΦp−2

0
nx×nz

=A
(
ΛΦp−1 + Φ0Pp

)
+ BΦp−1(A-22)

for p > 0 and Φ0 solves

0
nx×nz

=AΛΦ0 + BΦ0 + D

otherwise.

Proof. Insert the solution (A-19) for Xt once and for Xt+1 twice in (A-13), substitute (A-16) lagged

forward once for the Zt+1 that arises when Xt+1 is replaced with (A-19), and then collect coefficients

on the state variables (A-18). As the solution (A-19) must hold for all values of the state variables,

the coefficients just collected must all be zero. The resulting equations are those stated in the

proposition. �

We can also calculate an infinite moving average representation for the solution, which will

prove useful in the estimation exercise, allowing us to calculate the likelihood spectrally and to

apply the closed form frequency domain representation of the HP filter (Hodrick and Prescott 1997)

to treat the model with the filter while estimating. Taking the unique stable solution derived above
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as given, we define the following λ matrices for the exogenous processes

P (λ) � Inz − P1λ − P2λ
2 . . . − Ppλ

p(A-23)

Q (λ) � I + Q1λ . . . + Qqλ
q(A-24)

and for the endogenous transfer function

Φ (λ) � Φ0 + Φ1λ . . . + Φ p̃−1λ
p̃−1(A-25)

Θ (λ) � Θ0 + Θ1λ . . . + Θq−1λ
q−1(A-26)

Replacing λ with the lag or backshift operator L,29 we can express Xt as an infinite moving

average, as we summarize in the following proposition

Proposition A.6. Let assumptions A.3, A.4, and A.2 hold. The unique, stable solution (A-19) to

(A-13) for Xt in proposition A.5 has a unique infinite moving average representation given by

Xt =

(
I

nx×nx

− ΛL
)−1 [
Φ (L) P (L)−1 Q (L) + Θ (L)

]
εt(A-27)

Proof. Invertibility of
(

I
nx×nx

− ΛL
)

follows from proposition A.5 and that of P (L) from lemma A.2.

Uniqueness follows from the uniqueness of the homogenous representation from assumptions A.3

and A.4 and of the uniqueness of the inhomogenous representation from proposition A.5. �

A.5 Solving for the Coefficients in the Recursive Solution for DSGE Models
with VARMA(p,q) Processes

For the sequence of coefficients {Φi} p̃−1
i=0 that measure the impact of the exogenous processes in

Zt on Xt we need to solve (A-22) or (A-23) if p = 0. This set of equations can be rewritten by

recursive substitution as30

Φp−i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑i

j=1

(
− (B + AΛ)−1 A

) j
Φ0Pp−i+ j for i = 1, 2, . . . p − 1∑i

j=1

(
− (B + AΛ)−1 A

) j
Φ0Pp−i+ j − (B + AΛ)−1 D for i = p

(A-28)

where the invertibility of B + AΛ follows from assumptions A.3 and A.4.31 Thus, given Φ0 from

the i = p case we can recover the remaining matrices Φi.

For i = p, (A-28) is

Φ0 =

p∑
j=1

(
− (B + AΛ)−1 A

) j
Φ0Pj − (B + AΛ)−1 D(A-29)

29See, e.g., Sargent (1987).
30Starting with the last equation of (A-22). It is already in this form. Then proceed to the second-to-last equation

and eliminate Φp−1 in this equation using the last equation. Proceed thusly to the first equation.
31See Lan and Meyer-Gohde (2014).
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or

Φ0 +

p∑
j=1

(
− (B + AΛ)−1 A

) j
Φ0

(
−Pj

)
= − (B + AΛ)−1 D(A-30)

which is linear in Φ0, being a p’th generalized Sylvester equation of the form

x + βxγ1 + β
2xγ2 . . . + β

pxγJ = δ(A-31)

where x � Φ0 and β � − (B + AΛ)−1 A.32

Proposition A.7. A generalized Sylvester equation of the form

x + βxγ1 + β
2xγ2 . . . + β

J xγJ = δ(A-32)

can be solved recursively for x
na×nb

as follows

x̃i,•

⎛⎜⎜⎜⎜⎜⎜⎝
J∑

j=0

γ jU
j
i,i

⎞⎟⎟⎟⎟⎟⎟⎠ = δi,• −
⎛⎜⎜⎜⎜⎜⎜⎝

na−i∑
k=1

J∑
j=0

{U j}i,na+k x̃na+k,•γ j

⎞⎟⎟⎟⎟⎟⎟⎠ , for i = na, na − 1, . . . , 1(A-33)

where x̃ � Q†x, QUQ† = β with U upper diagonal and Q unitary is the complex Schur decompo-

sition33 of β, † indicates conjugate transposition, and c,d references the c’th row and d’th column of

a matrix.

Proof. With the Schur decomposition QUQ† = β, (A-31) can be rewritten as

x + QUQ†xγ1 +
(
QUQ†

)2
xγ2 . . . +

(
QUQ†

)J
xγJ = δ(A-34)

The matrix Q is unitary, so Q† = Q−1 reducing the foregoing to

x + QUQ†xγ1 + QU2Q†xγ2 . . . + QUJQ†xγJ = δ(A-35)

multiplying through with Q† and using the definition x̃ � Q†x gives

x̃ + Ux̃γ1 + U2 x̃γ2 . . . + UJ x̃γJ = Q†δ(A-36)

As U is upper diagonal, so is any power of U; thus given all rows of the matrix x̃ after some i, the

i’th row of x̃, x̃i,• solves
J∑

j=0

U j
i,i x̃i,•γ j = δi,• −

⎛⎜⎜⎜⎜⎜⎜⎝
na−i∑
k=1

J∑
j=0

{U j}i,na+k x̃na+k,•γ j

⎞⎟⎟⎟⎟⎟⎟⎠(A-37)

recognizing that Ui,i is a scalar gives (A-33) which can be solved by multiplying on the right by

the inverse of
(∑J

j=0 γ jU
j
i,i

)
. �

Given Φ0, the remaining sequence of coefficients {Φi}p−1
i=1 can be recovered recursively from

(A-22) starting with Φp−1 and working backwards to Φ1. Likewise, given Φ0, the sequence of

32For completeness, γ j � −Pj, for j = 1, 2, . . . , p and δ � − (B + AΛ)−1 D.
33See, e.g., Golub and Van Loan (1996).
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coefficients {Θi}q−1
i=0 an be recovered recursively from (A-21) starting with Θq−1 and working back-

wards to Θ0.

A.6 DSGE Likelihood with VARMA(p,q) Processes

One difficulty in implementing likelihood methods lies in the evaluation of the likelihood func-

tion. As we will consider applying the HP filter to the model when it was applied to the data, the

Kalman filter is less desirous here due to the availability of a closed form frequency domain repre-

sentation for the HP filter, see King and Rebelo (1993). We follow an alternative approach based

on the Toeplitz structure of the covariance of stationary time series that uses the iterative method of

Meyer-Gohde (2010) for evaluating the likelihood function by treating the sample as a single draw

from a multivariate normal distribution,34 where the derivation of the sequence of autocovariances

is done spectrally to enable us to apply the HP filter to the model while evaluating the likelihood

function.

Consider now a linear combination of elements of Xt. I.e., the observables, given by

Yt = Υ
X

ny×nx

Xt(A-38)

To evaluate the likelihood function, we will need to calculate the sequence of autocovariance ma-

trices associated with the observables, Yt,

Γ0 � E
[
YtY

′
t

]
, Γ1 � E

[
YtY

′
t−1

]
, . . .Γn � E

[
YtY

′
t−n

]
(A-39)

Using the moving average representation of the observables

Yt = Υ
X
(

I
nx×nx

− ΛL
)−1 [
Φ (L) P (L)−1 Q (L) + Θ (L)

]
εt(A-40)

The autocovariances can be recovered, see, e.g., Sargent (1987), Hamilton (1994), and Uhlig

(1999), through

Γn =

∫ π

−π
G(ω)eiωndω(A-41)

the inverse Fourier transformation of the spectral density of Yt, G(ω) given by

G(ω) =

[
ΥX

(
I

nx×nx

− Λe−iω
)−1 [
Φ

(
e−iω

)
P

(
e−iω

)−1
Q

(
e−iω

)
+ Θ

(
e−iω

)]]

× Σ
[
ΥX

(
I

nx×nx

− Λeiω
)−1 [
Φ

(
eiω

)
P

(
eiω

)−1
Q

(
eiω

)
+ Θ

(
eiω

)]]′
(A-42)

As we will also consider applying the HP filter to the model as well as to the data, we can use

34Similarly to Leeper and Sims (1994) and Schmitt-Grohé and Uribe (2010).
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closed form representation of the HP filter in the frequency domain, see King and Rebelo (1993),

given as

HP(λ, ω) =
4λ (1 − cos(ω))2

1 + 4λ (1 − cos(ω))2
(A-43)

where λ is the HP smoothing parameter and ω a frequency. In this case, the autocovariances of the

HP filtered observables can be recovered through

Γn =

∫ π

−π
HP(λ, ω)2G(ω)eiωndω(A-44)

Given the assumptions of linearity and stationarity behind proposition A.5 and that of the nor-

mality of the innovations εt, T observations on Yt are normally distributed with mean zero and

non-singular block Toeplitz covariance matrix

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ0 Γ′1 . . . Γ′T−2 Γ
′
T−1

Γ1 Γ0 . . . Γ′T−3 Γ
′
T−2

...
. . .

...
ΓT−2 ΓT−3 . . . Γ0 Γ′1
ΓT−1 ΓT−2 . . . Γ1 Γ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A-45)

with the autocovariance matrices, Γn, given by (A-41) or (A-44) depending on whether the HP

filter was used and the log-likelihood of a vector of parameters ς given the data is thus

L(ς|Y) = −0.5pTln (2π) − 0.5ln (det (Ψ(ϑ))) − 0.5Y ′Ψ(ϑ)−1Y(A-46)

where X = [Y ′1Y
′
2 . . .Y

′
T ]′.

Given (A-45), only two potentially challenging quantities need to be calculated: ln (det (Ψ(ϑ)))

and X′Ψ(ϑ)−1X, which we calculate using the recursive block-Levinson type algorithm of Meyer-

Gohde (2010).
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