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Abstract

Interactions between players with private information and opposed interests are

often prone to bad advice and inefficient outcomes, e.g. markets for financial or health

care services. In a deception game we investigate experimentally which factors could

improve advice quality. Besides advisor competition and identifiability we add the

possibility for clients to make a voluntary payment, a bonus, after observing advice

quality. We observe a positive effect on the rate of truthful advice when the bonus

creates multiple opportunities to reciprocate, that is, when the bonus is combined

with identifiability (leading to several client-advisor interactions over the course of the

game) or competition (allowing one advisor to have several clients who may reciprocate

within one period). Moreover, identifiability significantly increases truth-telling under

competition.
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1 Introduction

Moral hazard on the financial market is detrimental for consumers. Empirical evidence from

the US shows that mutual funds offering higher broker commissions attract the most invest-

ments. However, higher commissions are related to lower investment performance (Christof-

fersen et al., 2013). Clients in Germany lose 50 billion euros per year due to misleading

financial advice (‘Die Welt’, 2012). An audit study focusing on the Indian life insurance

market reports that life insurance agents recommend strictly dominated products which

yield high commissions in up to 90% of the cases (Anagol et al., 2013). These market inef-

ficiencies are due to asymmetric information (uninformed clients) and commission steering

by funds (see Inderst and Ottaviani, 2012). In similar fashion, the health care sector which

accounts for 15% of GDP in OECD countries (OECD, 2016) suffers from moral hazard and

efficiency losses caused by information asymmetries.

Which factors could contribute to experts providing better advice and, in turn, to increased

market efficiency?1 We design a laboratory experiment to analyze the stylized relationship

between expert advisors and clients in a controlled setting. As our experimental framework

we use a deception game (Gneezy, 2005). We augment it with market forces (competition,

the possibility to build reputation) and the possibility for the client to make a bonus payment

(at the end of the transaction after feedback about quality of advice has been provided).

The key innovation of our design is to test whether a voluntary component can be a remedy

against moral hazard, on its own and in interaction with instruments that have been studied

before (competition and reputation). Huck et al. (2012) use a binary-choice trust game to

analyze experience goods markets. They conclude that reputation based on quality provided

in the past enhances trust and that competition reinforces this effect. Dulleck et al. (2011)

analyze the richer framework of credence goods.2 They find little effect of reputation and no

1See Angelova and Regner (2013) for the connection between advice quality and efficiency in the market

of financial intermediaries.

2Experience goods can be seen as a subset of credence goods. Their common feature is the possibility
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effect of competition on undertreatment.

We use a 2x2x2 (competition, identifiability, option to pay a bonus) between-subjects design

and model advice as an experience good. Its quality is unknown ex-ante but ex-post the

client finds out whether the advice was good or bad. Since the client’s outside option is

less attractive than bad advice, he should follow even if he knows that the advisor will lie.

In the binary trust game employed by Huck et al. (2012), the trustor also finds out about

quality but he can credibly punish the trustee by choosing the outside option. Likewise, in

the credence goods game of Dulleck et al. (2011) the buyer has a credible outside option.

However, opportunistic behavior of the seller is not detectable. Thus, our study addresses

types of advice where taking the outside option is not plausible: for instance, a medical

treatment that needs to be taken or advice for a required investment. This distinguishes our

setting from online purchases where a credible outside option commonly exists (buying at

the local shop, albeit at a higher price).

Without competition, we find a significant increase in the rate of truthful advice when a

bonus can be given and advisors are identifiable. With competition, the rate of truthful

advice is higher when a bonus can be given or when advisors are identifiable. Our results

are in line with Huck et al. (2012) as the combination of competition and reputation con-

cerns reduces opportunistic behavior in a setting where cheating is detectable. Results from

our bonus treatments indicate that a voluntary component can also lead to a reduction of

advisors’ cheating. Multiple opportunities to reciprocate are a necessary condition. This

can be achieved in the time or client dimension. Identifiability leads to several client-advisor

interactions over the course of the game and competition allows one advisor to have several

clients who may reciprocate within one period.

The next section discusses the related literature. In section 3 we explain our experimental

set-up, relate it to existing studies, and state our behavioral predictions. In section 4 we

of undertreatment, i.e. providing a lower quality than required. Besides, credence goods also allow for

overtreatment and overcharging.
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present the results and discuss them. Section 5 concludes.

2 Related literature

We begin with a review of experience/credence goods studies, focusing on the two exper-

iments that are closest to ours, and then proceed with the literature on deception that is

relevant in our context.

Huck et al. (2012), henceforth HLT, use a repeated binary-choice trust game to analyze the

effects of reputation and competition in a market for an experience good. They vary the

extent with which trustors are informed about past behavior of trustees. There is either

no, private (i.e. only about trustees a trustor has interacted with in the past) or public

information (i.e. about all past interactions of all trustees). Moreover, trustors are either

exogenously matched with a trustee (no-competition-treatment) or they can choose their

preferred trustee based on her reputation (competition-treatment). HLT find that reputa-

tion enhances trust (but no difference between private and public information) and that

reputation combined with competition eliminates the trust problem almost completely.3

Dulleck et al. (2011), henceforth DKS, study the effect of institutions (liability, verifiabil-

ity), market forces (competition, reputation), and combinations of these on the provision of

credence goods. In DKS’s setting clients are uncertain about the quality they need. Sellers

know what clients need but can offer either a low or high quality product (at a low or high

cost) and charge either a low or a high price. After the transaction, buyers do not learn which

quality they got.4 With credence goods sellers can exploit clients in three ways, and DKS

3Also Huck et al. (2016a) study markets for experience goods. They focus on the effects of price regulation

and price competition. Buyers have full information about the quality provided by each seller in the past.

Since we do not deal with price regulation and have implemented private and not public information, our

study is only marginally related to theirs.

4This is the way DKS model credence goods. Namely, with credence goods, clients are not sure which
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allow for all of them: undertreatment (providing a lower quality than needed), overtreatment

(providing higher quality than needed), and overcharging (charging more than the good is

worth). Reputation in DKS increases trade and decreases overcharging but does not de-

crease undertreatment and overtreatment, and has no effect on efficiency. Competition in

DKS drives down prices and leads to maximal trade but has no effect on overtreatment,

undertreatment, overcharging, and efficiency. When both competition and reputation are

present, trade increases compared to the baseline but there is no further effect. DKS identify

undertreatment as the main source of inefficiencies in their experiment.5

While all the previous studies use laboratory experiments, Schneider (2012), Rasch and

Waibel (2013), and Balafoutas et al. (2013) test for inefficiencies in credence good markets

directly in the field. Schneider (2012) takes a test vehicle to auto repair garages to check

whether undertreatment, overtreatment, and overcharging occur and whether concern for

reputation affects any of these (he signals either a motivation for a long lasting relation or

a one-shot interaction). He finds that reputation does not improve outcomes. Rasch and

Waibel (2013) complement the data from a field experiment similar to the one by Schneider

(2012) with proxies for reputation and competition. According to their results, high com-

petition decreases overcharging, while low concern for reputation increases it. Balafoutas et

al. (2013) take a different perspective by looking at which customer characteristics lead to

more overcharging in a field experiment with taxi rides.

Variations of the deception game (Gneezy, 2005) have already tested the efficacy of different

remedies against cheating. For instance, in the monetary dimension, Peeters et al. (2008)

look at rewards, while Sánches-Pagés and Vorsatz (2009) consider punishments, both after

quality they need, and after buying the good, they do not know which quality they got and whether they

paid an appropriate price for it.

5Two studies build on the analysis of DKS. Kerschbamer et al. (2016) focus on the role of social preferences

in explaining why credence goods markets with verifiability do not reach efficient outcomes. Mimra et al.

(2013) extend DKS by investigating the role of public vs. private information about experts and compare

the effect of fixed versus endogenously chosen competitive prices. Huck et al. (2016b) find that competition

partially offsets the negative overtreatment effect of insurance in a credence good market.
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feedback about the quality of the message/advice. Angelova and Regner (2013) in contrast,

focus on the role of voluntary payments offered to advisors not only after feedback about the

transaction (bonus), but also before advice is given (upfront payment), and the combination

of the two, the bonus and the upfront voluntary payment. The effect of information on

truth-telling is tested by Ismayilov and Potters (2013) and Behnk et al. (2014): the former

focus on the ex-ante disclosure of advisor’s payoffs, while the latter study the effect of the

(possible) disclosure of payoffs after the transaction. Van De Ven and Villeval (2015) measure

the effect of scrutiny by a third party on the propensity of the sender to lie.

To the best of our knowledge, ours is the first study that investigates the effect of voluntary

payments, competition, and concern for reputation in a repeated deception game. The only

other study that uses a partner design in a repeated deception game allowing for reputation

building is Vanberg (2015). However, his focus is not on exploring the effect of reputation

on truth-telling.

3 Experiment

We implemented an experimental deception game to study the effect of market forces (com-

petition, reputation) and voluntary payments on the quality of the message (which we call

advice). Subjects were randomly assigned a role of an advisor or client, which they kept

throughout the entire experiment. The experiment consisted of 15 rounds. At the beginning

of each round, only the advisors learned which state of the world was realized. State here

is another word for the allocation of options to payoffs (in our case payoff pairs). Options

were called A, B, C, and D. The payoff pairs were (10, 5); (5, 10); (5, 2); (5, 2) with the

payoff for the advisor listed first and that for the client – second. In the different states of

the world, different payoff pairs were allocated to the same option. For instance, in one state

of the world, option A gave 10 tokens to the advisor and 5 to the client; in another state,

the same option yielded 5 to the advisor and 2 to the client. One possible state realization,
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as advisors saw it, is given in Table 3.

Table 1: A possible state realization

Option Payoff for advisor Payoff for client

A 10 5

B 5 10

C 5 2

D 5 2

Clients were informed about the possible payoff pairs, so that they were aware of the align-

ment of interests, as well as their own and the advisor’s possible payoffs. However, clients

were not informed what state of the world was realized, i.e., which payoff pair was assigned

to which option. They had to choose one option, based solely on the advisor’s recommen-

dation. There were four possible recommendations the advisor could give. For example,

recommendation 1 read: “With option A you will earn the most.” Instead of showing the

recommended option to the client, she was asked whether she wanted to follow the recom-

mendation. If the answer was yes, the recommended option was implemented as her decision.

If it was no, one of the other three options was randomly selected to be implemented as her

decision. At the end of each round, both clients and advisors received feedback about which

option was selected and their resulting payoffs. Advisors were also told whether the client

followed the recommendation or not.6 Payoffs from the chosen option were added to their

initial endowment of 2.5 tokens (paid in each round) to form the final payoff from the round.

Two out of 15 rounds were randomly selected and paid out in the end of the experiment.

One group of 10 subjects (5 advisors and 5 clients who only met subjects from the same

group) qualified as one independent observation. When matching was exogenous (and this

was treatment dependent), we chose a random stranger matching protocol. Within the 15

periods of the game, each advisor met each client 3 times, but we made sure that the same

advisor did not meet the same client in two subsequent rounds. So far, this design closely

follows the one in Angelova and Regner (2013), henceforth AR. Now, we will introduce the

6Of course, advisors were able to infer whether the client followed the advice based on their own payoff.
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diverting features.

In all treatments advisors were first asked to pick a fee they would like to charge for their

recommendation from the set of five possible fees: 0, 0.5, 1, 1.5, 2. After that they selected

a recommendation based on the realized payoff table. Depending on the treatment, the fee

was shown to either one particular client or to all clients within one matching group. In all

treatments, the size (10 subjects), and the composition (5 clients and 5 advisors) of each

matching group, as well as the matching protocol (endogenous or exogenous, if exogenous,

then random, always clients with advisors) were common knowledge. An on-screen history

box facilitated keeping track of one’s own past interactions. It contained the period, the fee,

the quality of the recommendation from the point of view of the client (good, medium, bad),

and whether the client followed the advice. A final common feature of all treatments was

that if a transaction did not take place, both the client and the advisor received their initial

endowment (or outside option) of 2.5 ECU for this round.

In treatments Base and Bon, advisors and clients were randomly matched in pairs. Each

advisor picked a fee, which was shown to her own client. If the client was willing to pay

the fee, she would receive the advice, otherwise both the client and the advisor would earn

their 2.5 tokens from this round. If the client got a recommendation, she would decide

whether she wanted to follow it. After that, everyone received feedback about own earnings.

Additionally, in Bon, clients would be able to offer a bonus to the advisor up to the amount

of the client’s total earnings in this round. The history of the round was summarized in the

info box which in treatment Bon additionally listed the bonus paid/received.

In treatments Comp and CompBon, clients were informed about all fees in a random order.7

Based on the fees clients chose their preferred advisor for each interaction. While each client

would choose maximally one advisor, each advisor could be selected by a number of clients

7Fees would be displayed in one row, but subjects knew that their order was determined by chance in

each round, such that it was not possible to detect a particular advisor based on the position of her fee in

the row.
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between zero and five. It was common knowledge that independently of the number of

interactions, each advisor would charge the same fee and send the same recommendation

to all her clients.8 The total payoff of an advisor from a given period is equal to the sum

of payoffs from all interactions in that period. At worst, an advisor would not be chosen

for an interaction; her period-payoff in this case would be equal to her initial endowment.

This initial endowment serves as the safe outside option that advisors have independently

of the treatment. The history box for advisors was augmented with two additional pieces of

information: the number of clients served and how many of them followed the advice.

In treatments ID and IDBon, each advisor received a unique identification number. The

history box was augmented by a column containing that identification number. It enabled

clients to identify advisors they already interacted with. Clients did not receive any informa-

tion about the quality of advice provided to other clients. Hence, the only information clients

had about a particular advisor was based on their previous experience with that advisor. A

public reputation score like on ebay was not available. Opting for this alternative seemed

more realistic given the economic situations we are interested in.

Finally, in treatments with competition and identifiability (IDComp, IDCompBon), clients

would pick an advisor based both on fees for advice and their previous experience with a

particular advisor.

Table 2: Treatments

Without competition With competition

Baseline Base Comp

Identifiability ID CompID

Bonus Bon CompBon

Identifiability & Bonus IDBon CompIDBon

See Table 2 for an overview of the treatments. We ran two sessions per treatment. Each

session consisted of 30 subjects, such that per treatment there were 60 subjects (30 advisors,

8Since clients are not identifiable to advisors, it does not make sense to allow for discriminatory advice.

8



30 clients).

Table 3 summarizes the main design features of our study compared to the three experiments

that are most related to ours: DKS, HLT, and AR. The first two rows show percent changes

in principal’s9 pay when entering the game relative to the outside option (i.e., the safe pay

principals receive when they choose not to interact). The increase or decrease in pay relative

to the outside option is a measure for the attractiveness to enter the game. To compute

changes in pay, we took into account the outside options, the payoffs of principals when they

enter the game and get fully exploited, and the payoffs of principals when they enter the game

and receive the maximal possible payoff (under the assumption that payoffs of principals and

their counterparts are non-negative). The outside option in DKS is 1.6, in HLT it is 20, in

AR there is no outside option, and in our study it is 2.5. Maximal exploitation of the buyer

in DKS means charging her the maximal possible price that leaves her with a non-negative

payoff, which means that the buyer gets 0 under full exploitation (the payoff function of the

buyer is 10–price, and prices are discrete numbers going from 1 to 11). In HLT, it is the

payoff of the trustor when she trusts but the trust is not honored, hence 5. In our study

it is the client’s payoff when the most favorable option for the advisor is implemented and

the client is charged the maximal fee, hence 5 minus 2 plus 2.5. The maximal payoffs for

principals when they enter the game are 8 in DKS, 30 in HLT, and 12.5 in our study. Thus,

considering, e.g., the client in our study, when fully exploited, she gets 5.5 and the outside

option is 2.5. Hence, her minimum pay relative to the outside option is 5.5−2.5
2.5
· 100 = 120%.

The maximum pay relative to the outside option is 12.5−2.5
2.5

· 100 = 400%. The rest of the

table is self-explanatory. In the following we will discuss the differences between our study

and the other three.

In comparison to DKS it is far more attractive to enter the game in our study: even if fully

exploited, payoffs of the client increase by 120% when she enters the game. This is not the

case in DKS where buyer’s earnings decrease by 100%. A further difference to DKS is that

in our study advice is modeled as an experience and not as a credence good. That is, clients

9I.e. buyers in DKS, trustors in HLT, and clients in AR and our study.
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Table 3: Design features of DKS, HLT, AR, and our study

DKS HLT AR Our study

Principals’ min. pay relative to outside option* –100% –75% – +120%

Principals’ max. pay relative to outside option* +400% +50% – +400%

Competition in fees only yes no no yes

Competition in reputations only no yes no no

Competition in reputations and fees yes no no yes

Cheating detectable no yes yes yes

Undertreatment yes yes yes yes

Overtreatment yes no no no

Overcharging yes no no yes

Bonus no no yes yes

Periods 16 30 15 15

Size of matching groups 8 8 10 10

Reputation via private info yes yes no yes

Reputation via public info no yes no no

Notes: *Principals’ (buyers in DKS, trustors in HLT, clients in AR/our study) minimum pay is

their payoff when fully exploited in the interaction with the agent. Likewise, maximum pay is the

highest possible payoff principals can make.

know what quality they need and learn at the end of each period whether they got this

quality (in DKS cheating is not detectable). Hence, our design rules out overtreatment but

allows for undertreatment and overcharging. Giving truthful advice corresponds to a high

quality good. Telling a lie is equivalent to undertreatment and charging a positive fee for a

lie is equivalent to overcharging. While DKS also analyze the role of institutions (liability,

verifiability), we allow for voluntary payments to study the role of reciprocity.

Also in HLT entering the game is much less attractive than in our study: if exploited, the
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trustor’s earnings decrease by 75%. Moreover, in HLT the trustor can maximally increase

earnings by 50% when entering the game. In our study, the increase in pay in that case

amounts to 400%. Hence, the trustor in HLT has much more power than our client, since

the trustor can credibly threat not to enter the game. A further difference to HLT is that

competition in our study takes place along two dimensions: clients choose an advisor based

both on fee for advice and quality of advice given in the past. We lack a treatment, in which

advisors are selected only given the information about their past behavior, and HLT lack a

treatment in which advisors are selected only given their fees.

Finally, the differences between AR and our study are that AR are missing an outside option,

a treatment with competition, and a treatment where advisors are identifiable.

3.1 Procedures

The experiment was conducted with students from the University of Jena. They were invited

to the laboratory of the Max Planck Institute of Economics using the online recruitment

system for economic experiments ORSEE (Greiner, 2004). The experiments were computer-

based, using z-Tree (Fischbacher, 2007). Subjects earned 19.07 Euros on average and spent

between 90 and 120 minutes (30 minutes of which on the instructive part) in the laboratory.

Upon arrival in the laboratory, subjects were randomly assigned to a cubicle, where they

individually read the instructions (see appendix). During the experiment, eye contact was

not possible. Although participants saw each other at the entrance of the lab, there was no

way for them to guess with whom of the other 29 students they would be matched later on.

All subjects had participated in at least one experiment before.
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3.2 Behavioral Predictions

The stage game can be viewed as a simultaneous move game, in which player 1 (advisor)

has four strategies: A, B, C, and D, and player 2 (client) has two strategies: F (follow) and

NF (not follow). The payoffs in the column NF are given by the average payoff from the

three not recommended options. Table 4 shows the normal form of the game:

Table 4: Normal form of the stage game

Advisor

Client
F NF

A (10; 5) (5; 4.7)

B (5; 10) (6.7; 3)

C (5; 2) (6.7; 5.7)

D (5; 2) (6.7; 5.7)

Since strategy D is equivalent to strategy C, we disregard it in the following analysis. The

game has two Nash equilibria in pure strategies, (A,F ) and (C,NF ), as well as an infinite

number of Nash equilibria in mixed strategies. In any equilibrium, the minimal payoff for

both players is always positive and can be earned on top of the outside option, whereas when

players do not interact, they get only the outside option. Hence, both players always prefer

to interact.

Notice that in both equilibria in pure strategies advisors are predicted to lie (i.e., recommend

anything but option B) to their clients. However, similar experiments (e.g., Gneezy, 2005;

Cai and Wang, 2006; Sánchez-Pagés and Vorsatz, 2007; Hurkens and Kartik, 2009; Erat and

Gneezy, 2012; Danilov et al., 2012; Angelova and Regner, 2013) frequently find less lying

than predicted, a behavioral pattern known as “overcommunication phenomenon”. Social

preferences are the widely accepted explanation for this behavior. More specifically, people

may be lying less than theory predicts because of an aversion to cheat, an aversion to feeling

guilty because of disappointing the counterpart, or out of reciprocity/fairness concerns.
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Treating the precise nature of social preferences as a black box, we assume that whether

advice is given honestly depends on three factors: advisors’ pro-sociality φ, the situational

context λ, and the scope for reputation concerns.

It may be easiest to interpret pro-sociality (0 ≤ φ ≤ 1) as an individual’s self-image about

being honest.10 The higher φ, the likelier it is that honest advice is given. If φ = 1 the advisor

always gives honest advice. This would correspond to an advisor with an immaculate self-

image about being honest. In the extreme case of a purely selfish individual φ = 0 and

honest advice is never given.

Moreover, the behavior of advisors may be affected by the context of the situation (λ > 0). In

a transparent baseline situation, λ = 1. External factors that result in a higher chance to give

truthful advice are expressed by λ > 1. Such an increased tendency to advice honestly could

depend on a variety of external factors.11 In our experimental design mutual opportunities to

reciprocate serve as the instrument to create a favorable situational context when the option

to give a bonus exists. Hence, our design varies the situational context, in the dimension

of reciprocity, that is, λ = 1 in treatments without bonus and λ > 1 in treatments with

bonus. We allow advisors’ reaction to a change of the situational context to be individually

heterogenous but assume that the reaction to a change of λ is equally distributed over φ and

treatments. Thus, on average a change of λ results in a change of behavior.

10Models of self-image concerns provide a theoretical basis for honest behavior, see the literature on cog-

nitive dissonance (Festinger, 1957), identity (Akerlof and Kranton, 2000), self-concept maintenance (Mazar

et al., 2008), self-signaling (Bénabou and Tirole, 2011).

11For instance, pre-play communication between the agents, in particular making a promise, has been

found to reduce cheating (Charness and Dufwenberg, 2006; Beck et al., 2013). The relative monetary costs

of lying seem to matter (Erat and Gneezy, 2012). Opportunities to reciprocate, especially if they are mutual,

lead to more truthful advice in Angelova and Regner (2013). In related settings (charitable giving, public

goods games), reduced anonymity leads to more pro-social behavior. In contrast, a non-transparent situation

that provides moral excuses for dishonest behavior would result in λ < 1 (see the moral wiggle room literature

following Dana et al., 2006).
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Combining the effects of pro-sociality and situational context, an advisor’s tendency to lie

in the stage game can be expressed by l = (1−φ)
λ

. When φ = 1, an individual will always give

truthful advice, irrespectively of the situational context λ. For φ < 1, a favorable situational

context (λ > 1) decreases the tendency to lie in comparison to the baseline (λ = 1). The

binary variable h(l) expresses whether an advisor is honest (1) or not (0). Its value depends

on whether an advisor’s tendency to lie is above a threshold level 0 < l∗ < 1:

h(l) =

0, if l > l∗

1, otherwise

Finally, reputation concerns may affect the decision to advice truthfully or not. Following

the standard set up of a Kreps et al. (1982) reputation model, we distinguish two types of

dishonest advisors (h(l) = 0). Strategic ones maximize their profit over the repeated game.

They invest in reputation by imitating honest advisors as long as their future benefits from

this reputation warrant the investment. In contrast, myopic dishonest advisors do not look

beyond the current round. They never give truthful advice as they always maximize their

stage game profits. In accordance with the standard reputation model we assume that honest,

strategic dishonest and myopic dishonest advisors are represented at substantial levels and

that pro-sociality is randomly distributed across treatments. Thus, when reputation concerns

matter strategic dishonest advisors have an incentive to imitate honest advisors by giving

truthful advice as long as their future payoffs make it worthwhile, while myopic ones behave

like in the stage game and do not give truthful advice.

3.2.1 Treatments without competition

We begin with treatment Base. Advisors behave according to h(l(φ, λ = 1)).

H1: In Base the rate of truthful advice is positive.
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Even though dishonest advisors can be identified by the client in treatment ID, they have

nothing to lose (in a monetary sense) from cheating since clients have no (rational) reason

to stop interacting or following12 the advice. Hence, there is no incentive to invest in a

reputation. Consequently, advisors with l > l∗ will not give truthful advice. Furthermore,

the situational context in ID is the same as in Base. Therefore, we do not expect more

truthful advice in ID.

H2: The rate of truthful advice in ID is not greater than in Base.

In treatment Bon, the possibility to give a bonus provides a one-sided opportunity (for the

client) to reciprocate. It can be seen as a situational context that induces honest behavior via

the channel of reciprocity (λBon > 1). Pro-social clients may reciprocate receiving truthful

advice by giving a bonus. Hence, an advisor’s tendency to give truthful advice increases, the

more he expects to meet a reciprocating client.

Angelova and Regner (2013) find a sustainable positive effect of the combination of upfront

voluntary payment and bonus afterwards. However, they also report a positive effect but

a decay over time if the bonus stands alone. In our design the bonus is the only voluntary

component as the upfront fee is charged by the advisor and not voluntarily offered by the

client. Hence, we cautiously expect a tendency among advisors to be more truthful.

H3: The rate of truthful advice in Bon is greater than in Base.

In treatment IDBon, honest advisors can be identified. A reciprocal relationship between

an advisor and a client (truthful advice, bonus paid) in one interaction can now extend to

subsequent meetings. The advisor has a chance to reciprocate the paid bonus by giving

truthful advice when they meet again. In this way mutual opportunities to reciprocate arise.

As a consequence, the negative effect of the situational context on the tendency to lie is

amplified and we expect a higher tendency to advise truthfully than in the other treatments

12We assume that advisors and clients coordinate on the equilibrium in which advisors recommend the

option paying them 10 and clients follow the advice. In this equilibrium clients get maximally exploited.
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without competition (λIDBon > λBon > 1).

H4: The rate of truthful advice in IDBon is greater than in Base, ID or Bon.

3.2.2 Treatments with competition

In treatments with competition, advisors’ profit increases with the number of clients they

attract. This structurally changes the situation for advisors as now an incentive to strate-

gically invest in reputation exists when advisors are identifiable. Giving truthful advice to

two or more clients is at least as profitable as cheating one client.

However, in treatment Comp the question is how to ensure the interaction with as many

clients as possible? Since advisors are not identifiable, there is no immediate incentive to give

truthful advice. All those content clients cannot identify ‘their’ honest advisor in subsequent

periods. The standard prediction in such a setting would be that clients compete in fees,

trying to undercut each other in order to attract clients. Alternatively, an advisor could try

to select a fee that stands out, i.e. is used only by him, give truthful advice and pick this

‘focal point’ fee again in the following periods in an effort to make himself recognizable to

his clients from the previous period. By design, the set of possible fees to choose from is

relatively small and pursuing this strategy does not appear to be very promising. Instead, it

is rather likely that the ‘focal point’ fee of such an advisor will be chosen by one or more of

the other four advisors. In this case, clients will not be able to recognize their advisor and

the incentives to tell the truth vanish. However, we cannot exclude that some advisors try

this strategy.

In CompBon pro-social clients can reciprocate truthful advice within one interaction by

giving a bonus. Thus, the situational context is more favorable than in Comp (λCompBon > 1).

Moreover, in the competitive environment advisors are able to advise more than one client.

As these clients might reciprocate truthful advice with a bonus, the incentive for telling the

truth is amplified. Thus, we expect an increased tendency to advice truthfully.
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H5: The rate of truthful advice in CompBon is greater than in Comp.

If advisors are recognizable, clients are able to condition their future choice of an advisor

on their experience with that same advisor. If advice was satisfactory, clients will pick the

same advisor again. If not, that advisor will be avoided. Consequently, now advisors have a

strong incentive to give truthful advice. Being honest means more clients, which translates

into more money, a reward for being honest, and higher costs for not giving truthful advice.

Moreover, the more dishonest the other advisors are, the more clients will the honest one

get. Since advisors make much more money from the interaction with a client and not from

the fee they charge, there might be a tendency to lower fees (even down to zero) in order to

have as many interactions as possible.

Given these incentives to build a reputation, strategic advisors tell the truth as long as

they consider their long-term benefits to be bigger than their short-term costs. In contrast,

myopic advisors do not understand the strategic implications and do not give truthful advice.

Consequently, we expect significantly higher rates of truthful advice in CompID than in

Comp. In the last round of interaction, we expect a substantial end-game effect as strategic

advisors have no incentive anymore to invest in a reputation.

H6: The rate of truthful advice in CompID is greater than in Comp.

In CompIDBon advisors are identifiable when competing for clients and clients can pay a

bonus. Thus, mutual opportunities to reciprocate exist between advisor and client, because

they could meet again in a subsequent period. In the extreme, an advisor-client relation-

ship lasts for all 15 periods. This environment fosters reciprocity concerns among advisors

(λCompIDBon > λCompBon > 1). We expect that this reciprocity effect further strengthens the

positive effect of reputation concerns on the tendency to give truthful advice.

H7: The rate of truthful advice in CompIDBon is greater than in Comp, CompBon or

CompID.
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4 Results

In this section we present the choices of advisors and clients, and test for the effects of

our treatments on their behavior. Finally, we take a closer look at the dynamics in the

competition treatments.

4.1 Choices of advisors and clients

Table 5 provides an overview of the average choices of advisors and clients. Advisors post a

fee of around 1, on average. Competition significantly lowers mean posted fees from 1.13 (in

treatments without competition) to 0.74 (in treatments with competition), Wilcoxon-Mann-

Whitney-Test, p < .01. Mean posted fees do not statistically differ from mean accepted fees

in all treatments with competition but Comp, where the mean accepted fee is higher than

the mean posted fee, Wilcoxon signed-rank test, p < .07.

In Base clients took the outside option in 9% of all transactions. This is the highest observed

rate. In treatments with competition essentially no client decided to take the outside option.

The rate of truthful advice in Base is 27%, the lowest rate of all treatments. It is highest

with identifiability of advisors and competition in the same treatment (74% in CompID

and 75% in CompIDBon). Figure 1 depicts the rates of truthful advice over time. The

left panel shows treatments without competition, the right panel those with competition.

In all treatments without competition we observe a downward tendency over time. In the

competition treatments behavior is stable until the last three periods.

In Base clients decide to follow in 77% of all interactions with an advisor. This is the lowest

rate we observe across treatments. In IDBon as well as in all the competition treatments

the follow rate is above 90%. In 34% of all Bon interactions clients paid a bonus and if

they did, on average, this bonus was 1.34. In contrast, 68% of all CompIDBon interactions
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Figure 1: Truthful advice over time by treatment

included a bonus and the average bonus was 1.71. Figure 2 illustrates the rate of bonus

payments and their average size over time. We observe a substantial end-game effect in

periods 14 and 15. The average bonus in period 15 drops down to 0 in Bon, 0.2 in IDBon

and 0.3 in the treatments with competition. Before that the average bonus appears stable in

treatments CompBon and CompIDBon. The large majority of clients paid a bonus at least

once: over 90% in Bon, IDBon, and CompIDBon, and 77% in CompBon. Moreover, many

clients frequently paid a bonus. The percentage of clients who paid a bonus more than half

of the time was 60% in IDBon and CompBon, 80% in CompIDBon, and 27% in Bon.
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Figure 2: Percentage of bonus-payers and average bonus over time
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4.2 Treatment comparisons

In order to test for treatment effects we set up a panel that contains all 3,600 interactions

between advisors and clients. Table 6 reports the results of two logit mixed effects regressions

with random terms associated with matching groups and advisors.13 The dependent variable

is whether truthful advice has been given (1) or not (0). Explanatory variables are the fee

posted by the advisor and dummy variables for the treatments. In order to control for the

apparent negative time trend we include a dummy for the period and a dummy for the last

period.

Specification 1 compares the treatments Bon, ID and IDBon to Base. We find a positive

correlation between the posted fee and truthful advice (significant at the 1%-level). Neither

the dummy for Bon nor the dummy for ID are significant. The dummy for IDBon is positive

and highly significant. The coefficient of IDBon (2.39) is greater than the one of ID (0.81)

or Bon (0.71) (p < 0.05). The period dummy as well as the dummy for the last period are

negative and significant at the 1%-level.

Specification 2 compares the treatments CompBon, CompID and CompIDBon to Comp.

Again, the posted fee and truthful advice are positively correlated (1%-level). All treatment

dummies are significant at the 1%-level. While the coefficient of CompIDBon (2.79) is greater

than the one of CompBon (1.47) (p < 0.05), it is not significantly greater than the one of

CompID (2.58). We do not find evidence for a negative time trend, only for a drop in the

last period (significant at the 1%-level).

While the positive but non-significant effect of ID on truthful advice is in line with hypothesis

2, no significance of the Bon dummy rejects hypothesis 3. We find a positive effect of IDBon,

thus supporting hypothesis 4. With competition all treatment dummies are positive and

significant. Hence, hypotheses 5 and 6 are supported. However, the CompIDBon treatment

does not result in a significant increase of the rate of truthful advice in comparison to

13All reported results are robust to using standard random-effects logit models.
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Table 6: Determinants of truthful advice

1: Without competition 2: With competition

Posted fee 0.88*** (0.1) 1.10*** (0.1)

Bonus 0.71 (0.7) 1.47*** (0.6)

Identifiability 0.81 (0.7) 2.58*** (0.6)

Identifiability + Bonus 2.39*** (0.7) 2.79*** (0.6)

Period -0.16*** (0.02) -0.00090 (0.02)

Last Period -1.01*** (0.4) -2.68*** (0.3)

Constant -1.77*** (0.6) -1.35*** (0.5)

Observations 1800 1800

Standard errors in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Logit mixed effects regressions with random terms associated with matching groups

and advisors; dependent variable: truthful advice (1 if given, 0 if not)

CompID. Hypothesis 7 is only partly supported.

To summarize, when there is no competition we find the hypothesized positive effect of a

bonus only in combination with identifiability. It seems that additional interaction between

client and advisor is necessary, that is, over periods as they know they meet again and not

only within a period. Under competition, as expected, identifiability as well as the bonus

increase the rate of truthful advice. However, we do not find an additional positive effect

when identifiability and bonus are combined.

We proceed with a test of treatment effects on the clients’ decision to follow advice. Table 7

reports a set of logit mixed effects regressions. The dependent variable is whether the client

followed the advice (1) or not (0). Hence, observations are dropped when the client decided

against taking advice in the first place. Explanatory variables are the fee charged by the

advisor, dummy variables for the treatments as well as the period and a last period dummy.

Specification 1 presents results for the treatments without competition. Specification 2 adds
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a dummy whether in the previous period the client had a good experience, that is, whether

she followed good advice. Specifications 3 and 4 show respective results for the competition

treatments.

In the treatments without competition, both specifications yield similar results. The follow

rate is positively correlated with the posted fee (significant at the 5% level). In Bon and

IDBon the follow-rate is higher than in Base (significant at the 5% and 1% level, respec-

tively). While the coefficients of IDBon are greater than the ones of ID (p < 0.01), they are

not significantly greater than the ones of Bon. The more experienced a client gets, the less

likely she is to follow the advice (the coefficient for ‘period’ is negative and significant at the

5% level at least). Whether the client made a good experience with her interaction in the

previous period does not affect her decision to follow the advice in the current period.

In the treatments with competition, again the higher the fee the higher the follow-rate

(significant at the 1% level). In CompBon the follow-rate does not differ from that in Comp.

Clients in CompID are slightly more likely to follow the advice than in Comp (significant at

the 10% level). However, in CompIDBon clients follow the advice significantly more often

than in Comp (significant at 5%). The coefficients of CompIDBon are not greater than the

ones of CompID or CompBon, though. In contrast to the treatments without competition,

the more experienced clients get, the more likely they are to follow advice (significant at 1%).

In the last period, the follow rate drops significantly (p < 10%). Finally, having received

good advice in the previous period appears highly important as it is positively correlated to

the decision to follow (significant at the 1% level).

To sum up, fees are positively related to the follow rates independently of the treatment.

Clients are more likely to follow the advice in those treatments, in which advisors are identi-

fiable and bonus payments are possible at the same time. Without competition, the follow-

rates decrease over time, while with competition, they increase. Positive experience with

truthful advice from the previous period increases the probability to follow the advice in the

current period only in the treatments with competition.
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Table 7: Determinants of the decision to follow

Without competition With competition

(1) (2) (3) (4)

Posted fee 0.28** 0.27** 2.63*** 2.56***

(0.1) (0.1) (0.5) (0.5)

Bonus 0.80** 0.87** 1.33 1.60

(0.3) (0.4) (1.0) (1.0)

Identifiability -0.010 0.063 2.03* 1.73*

(0.3) (0.3) (1.0) (1.0)

Identifiability + Bonus 1.19*** 1.21*** 2.76** 2.81**

(0.4) (0.4) (1.1) (1.1)

Period -0.073*** -0.057** 0.16*** 0.15***

(0.02) (0.02) (0.04) (0.05)

Last Period 0.14 0.083 -1.27* -1.36*

(0.3) (0.3) (0.7) (0.7)

L.GoodAdviceFollowed 0.033 1.36***

(0.2) (0.4)

Constant 1.83*** 1.64*** 1.23 0.62

(0.3) (0.3) (0.8) (0.8)

Observations 1678 1469 1778 1641

Standard errors in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Logit mixed effects regressions with random terms associated with matching groups

and clients; dependent variable: advice followed (1 if yes, 0 if no)
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4.3 Dynamics in the competition treatments

Table 8: Market shares in the competition treatments

Comp CompBon CompID CompIDBon

Highest market share 25% 27% 53% 49%

2nd highest market share 21% 24% 20% 25%

3rd highest market share 20% 20% 13% 16%

2nd lowest market share 17% 16% 9% 7%

Lowest market share 15% 12% 5% 3%

In the following, we compare advisors’ market shares across the competition treatments, see

Table 8. We calculated the market share (i.e. the number of clients served divided by the

total number of clients in the matching group) for every advisor in every period. Next, we

ranked the market shares from highest to lowest for each period and each matching group,

such that for every period-matching group combination five market share categories (highest

to lowest) result. Finally, we averaged the entries in each category over the periods and

matching groups.

In the treatments where advisors are not identifiable, market shares are quite equal. This

is not surprising because by design in these treatments clients can choose an advisor only

based on posted fees, and identifying the possibly honest advisor from the previous period

is unlikely. In contrast, when advisors are identifiable, market shares become very unequal.

For instance, in CompID market shares range from 53% (being the highest) to 5% (being

the lowest). Obviously, some advisors manage to attract and keep the majority of clients.

What is the key to a large market share in the ID treatments?

For every matching group in the ID treatments we identified the advisor with the highest

market share and analyzed her strategy regarding posted fees and advice quality. It turns

25



out that two things are crucial for a large market share: first, to be selected to advise as

many clients as possible already in period 1, and second, to keep advising truthfully.

Even if advisors in the ID treatments intend to give truthful advice, failing to attract clients

in the beginning, puts them at risk of an empty store for the rest of the game, given that

competitors remain honest, and thus their clients have no reason to switch. In early periods,

the only way to attract clients is by choosing the ‘right’ fee, that is, the fee that will be

selected by most clients. Table 9 gives an overview of the percentage of clients who chose

the lowest or the highest fee, both for period 1 and the entire game. Looking at period 1, in

the ID treatments most clients (50–57%) pick the lowest posted fee(s). Indeed, in both ID

treatments, in period 1, the average accepted fee is significantly below the average posted

fee.14 Hence, the secret of attracting clients in the ID treatments seems to post a low fee

in period 1. Notice, however, that for the ID treatments the column referring to the entire

game is not very informative because a client may be choosing a high fee not because she

likes expensive fees but because this may be the only way to remain affiliated with the same

advisor.

Table 9: Do clients select the lowest fee?

Percentage of clients who selected lowest vs. highest fee

in period 1 in all periods

Comp 37% vs. 17% 28% vs. 32%

CompBon 40% vs. 17% 43% vs. 26%

CompID 57% vs. 20% 54% vs. 24%

CompIDBon 50% vs. 17% 44% vs. 28%

What is the key to keeping those clients? It is to give truthful advice period after period.

Successful advisors maintain long term interactions with the same two or three (seldom four

or five) clients. Most advisors give truthful advice until the very last period of interaction.

14In CompID, in period 1 the mean posted fee is 1.18, the mean accepted fee is .85; both differ significantly

at the 3% level (Wilcoxon signed-rank test). In CompIDBon, in period 1 the mean posted fee is .87, the

mean accepted fee is .72; both differ significantly at the 5% level (Wilcoxon signed-rank test).
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In contrast, dishonest advice in one period leads to an immediate loss of clients, even if

advisors have been honest for a number of periods before that. Similarly, most clients switch

to a different advisor if their (although truthful) advisor starts increasing the fee (too much)

compared to the own fee in previous periods and the fees of the other competitors in the

same period.

In treatments without identification (Comp and CompBon), the only tool to attract clients

is the posted fee. But what is the ‘right’ fee? In these treatments, in period 1 there is a

tendency to choose the lowest posted fee (37–40%) and not the highest posted fee (17%),

see Table 9. However, the remaining around 43%–46% of clients select any posted fee in

between. Also, there is no significant difference between mean posted and mean accepted

fees in period 1. Considering the entire game, the percentage of clients willing to pay the

highest posted fee is higher than in period 1: 32% in Comp and 26% in CompBon. Indeed,

in Comp, the mean accepted fee is significantly above the mean posted fee, when considering

the entire game. It seems that in later periods in Comp, clients start to believe that higher

fees give them a higher chance to receive truthful advice. The regressions in Table 6 show

indeed a positive correlation between posted fees and truthful advice. At least in treatment

Comp clients realize this relationship. However, a large amount of clients chooses anything

between the highest and the lowest fee. So all in all, there is no consensus among clients

which is the most attractive fee and, hence, advisors cannot really employ any clear strategy

to attract clients.

4.4 Discussion

Keeping in mind that the experimental paradigms are different across DKS, HLT and our

study, we compare behavior in the baseline treatments (i.e. B/N in DKS vs. control in

HLT vs. Base in our study), as well as behavior when both competition and reputation

concerns apply (i.e. CR/N in DKS vs. pi-c in HLT vs. CompID in our study). In the

baseline treatments, HLT report that trust is being honored in 28% of the cases, in our
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study the rate of truthful advice is 27% and in DKS sellers provide appropriate quality in

47% of the cases.15 With competition and reputation, HLT document an honor rate of 92%,

we find truthful advice in 74% of the cases, while DKS report appropriate quality in 36% of

the cases. Cheating being perfectly detectable in HLT and our study seems to be the most

probable explanation for this difference to DKS.

The use of the bonus is relatively prevalent: across treatments between 34% and 68% of all

transactions include a positive bonus. In treatments IDBon, CompBon and CompIDBon

more than half of all clients paid a bonus in more than half of their transactions. For

the bonus option to have an effect on the truthfulness of advice, multiple opportunities to

reciprocate appear to be necessary. We find a significant increase of the rate of truthful

advice only if clients interact with advisors not just within one period (Bon) but several

times over the course of the game (IDBon, CompIDBon) or several clients can reciprocate

within one period (CompBon). The condition of opportunities to reciprocate being mutual

is consistent with the findings of Angelova and Regner (2013).

Given that adding a bonus or identifiability to competition increases the rate of truthful

advice significantly, it appears puzzling why adding both does not lead to a further increase

in the rate of truthful advice. A possible explanation is a ceiling effect. Since in CompID

the rate of truthful advice is already 74%, possibly only myopic selfish advisors remain and

thus adding the opportunity to pay a bonus does not lead to a further increase of advisors

switching to truthful advice.

Finally, our setting differs from the trust game in HLT and the game in DKS in that cheating

in our deception game is more pronounced. By choosing not to recommend the best option

for the client, an advisor in our game explicitly tells a lie. If there is a moral cost to lying,

subjects in our study could be expected to behave pro-socially more often than subjects in

15Appropriate quality in DKS is 100% minus the rate of undertreatment. In order to provide an adequate

comparison with our study where overtreatment is ruled out, we just consider the rate of undertreatment in

DKS.
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the other studies. Moreover, they could be more sensitive to incentives that lead them to

lie less. However, the small differences between the results of HLT and our study do not

indicate that moral costs of lying are substantial.

5 Conclusions

In a deception game (Gneezy, 2005), we study experimentally possible remedies against

moral hazard, i.e. misleading advice given to clients. We introduce competition among

advisors, the possibility for them to build a reputation, and a channel through which clients

can reciprocate if they got truthful advice: a voluntary bonus paid after feedback about

advice quality.

Without competition, mutual opportunities to reciprocate lead to the provision of signif-

icantly more truthful recommendations. They exist when the option to give a bonus is

coupled with advisor identifiability allowing interactions over time not only within one pe-

riod. In the competition treatments, the bonus or identifiability significantly increases the

rate of truthful advice. However, we find no further increase when competition, bonus and

identifiability are combined, possibly due to a ceiling effect.

Comparing our results to related studies of experience/credence goods, the combination of

competition and reputation concerns also leads to the lowest rate of opportunistic behavior

in Huck et al. (2012), while it has no effect in Dulleck et al. (2011). It seems that cheating

being perfectly detectable – a common feature of our study and Huck et al. (2012) – is a

pre-condition for a positive effect of reputation and competition.

Being able to rely on market forces like competition and reputation in order to foster efficiency

seems reassuring. However, in real life settings implementing competitive environments and

reputation mechanisms may not always be possible, especially at the same time. Whenever

they are not available, our results suggest that one of them combined with a voluntary
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payment can be similarly effective against moral hazard.

Thus, our result of a bonus effect points at a possible safeguard against opportunistic behav-

ior in market environments where asymmetric information and conflicting interests would

otherwise lead to inefficient outcomes. The voluntary component activates reciprocal con-

cerns and, combined with the possibility of reputation building or having multiple clients,

decreases cheating by advisors, increases the follow rate of clients, and leads to more effi-

ciency.

One limitation of our study is that cheating by advisors is modeled to be perfectly detectable.

While this can be a realistic feature in some situations, it is not in others. For instance, the

low returns from an investment can be due either to the recommendation of an unsuitable

financial product or the weak economy. So, accounting for noise by adding a stochastic

component which can turn good advice into a bad outcome or bad advice into a good

outcome, would extend the scope of our set-up.

Another limitation of our study is that we preclude discriminatory advice and do not allow

clients to be recognizable for advisors. In reality, however, advisors are free to give different

advice to different clients, whom they typically are able to identify. So, if clients are iden-

tifiable and discriminatory advice is allowed, then advisors can retaliate for truthful advice

in the past that was not generously rewarded (with, e.g., a bonus) and reward generous

(bonus) payments in the past with truthful advice now. In such a set-up, clients would also

have incentives to build reputations in order to obtain good advice. Since the opportunities

to reciprocate increase, we would expect that the rates of truthful advice will also increase.

This aspect remains for future research.
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6 Appendix

6.1 Data

Table 10: Outcomes by treatment

Treatment A, F C, NF B, F A, NF B, NF C, F no transaction interactions

Base 235 0 80 74 18 1 42 450

ID 255 0 119 37 14 2 23 450

Bon 222 0 106 67 23 2 30 450

IDBon 152 0 232 29 7 3 27 450

Comp 190 0 215 20 15 1 9 450

CompBon 115 0 301 11 12 5 6 450

CompID 69 0 365 3 8 0 5 450

CompIDBon 61 0 380 1 6 0 2 450

6.2 Experimental Instructions

Baseline: main text (black)

Identifiability treatments (ID, IDBon, CompID, CompIDBon): additional red text

Bonus treatments (Bon, IDBon, CompBon, CompIDBon): additional green text

Competition treatments (Comp, CompBon, CompID, CompIDBon): additional purple text
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Instructions

Welcome and thank you for your participation! In this experiment you can earn some money
depending on your decisions and those of the other participants.
It is therefore very important that you read these instructions thoroughly and carefully.

Please note that communication among participants is prohibited throughout the entire 
experiment. If you have any questions, please raise your hand. We will approach you to clarify 
your request in private. Please by no means ask your question(s) aloud. If you infringe upon these 
rules, we are unfortunately obliged to terminate the experiment. Please turn off your mobile 
phones now. 

These instructions are identical for all participants.

General Procedure

The experiment takes about 90 minutes. Each decision task will also be explained to you briefly on
screens. While you make a decision, other participants make decisions as well which possibly
influence your payoffs. 

You can earn money in  this  experiment.  Your  payoff  will  be calculated in  ECU (Experimental
Currency Units) and converted into EURO at the following exchange rate:

1 ECU = 0.50 EURO

In this experiment, 2 out of 15 periods will be chosen randomly. You will be paid
 according to your earnings in these specific rounds, in cash, at the end of today’s
 session. Additionally, you receive a show-up-fee of € 2.50 for your participation.

After filling out a questionnaire the experiment is over and you receive your payment.

Here is an overview:

 Reading the instructions, answering control questions

 Decision tasks (15 periods)

 Questionnaire

 Payment and end of the experiment
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Detailed Procedure

The experiment consists of 15 periods. In each period two participants interact: one advisor and
one client. At the beginning of the experiment you will learn which role was randomly assigned to
you. You will keep this role until the end of the experiment. In each period another participant of
your group will  be  randomly and anonymously assigned to you. In each group there are 10
participants: 5 clients and 5 advisors. Nobody will learn about the identity of the other participant.
Each advisor  receives  a  number  that  unambiguously  identifies  him/her  throughout  the
experiment. There are advisor 1, advisor 2, advisor 3,  advisor 4,  advisor 5. The numbers of the
advisors are fixed, meaning that number 5 always represents the same advisor. In each period the
client  is  informed  about  the  number  of  the  advisor  currently  advising  him.  Clients  are  not
numbered.

Decision situation in each period

In each period, the advisor as well as the the client receive an initial endowment of 2.50 ECU. In
each period four payoff-pairs are available where the first number is the payoff for the advisor and
the second number the payoff for the client (all declarations are in ECU):

(Payoff advisor, payoff client)
(10, 5) ;  (5, 10) ; (5, 2) ; (5, 2)

In each period each of these pairs is assigned a name. There are four names: 
Option A, option B, option C and option D. In each period the names are randomly assigned to
the payoff-pairs. That  means that  the  payoff-pair  (10,  5)  will  sometimes be called  option  A,
sometimes option B, sometimes option C, and sometimes option D. Hence, the best option for
example, for the advisor is sometimes A, sometimes B, sometimes C and sometimes D.

In each period only the advisor learns which option is assigned to which payoff-pair. As an
example, in one period the advisor might see the table on the bottom left and in the next period he
sees the table in the bottom right. Accordingly, option B is the most profitable one for the client in
the first round and option D in the next round.

Option Payoff advisor Payoff client Option Payoff advisor Payoff client
A 10 5 A 5 2
B 5 10 B 5 2
C 5 2 C 10 5
D 5 2 D 5 10

The advisor can recommend an option to the client. In such a case, the recommendation of the
advisor is the only information the client receives about the different options. 
There are four possible recommendations:

 Option A will earn you the most money.

 Option B will earn you the most money.

 Option C will earn you the most money.
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 Option D will earn you the most money.

The  client  then  decides  whether  to  follow  the  recommendation  or  not.  If  she  does,  the
recommended option will be implemented as her decision. If not, the computer randomly chooses
one of the three not recommended options. The selected option determines the payoff for the
client and for the advisor.

Fee

The advisor sets a fee for his recommendation. There are five possible fees to choose from: 0
ECU;  0,5 ECU; 1 ECU; 1,5 ECU; 2 ECU. The client will decide if she wants to pay the fee or not.
The client only receives the recommendation, if she pays the fee. If the client does not want to pay
the fee, both client and advisor receive only 2.5 ECU for that period. None of the four options is
paid out then. 
The advisor is always asked for a recommendation and a fee. The recommendation will be shown 
to the client only if she pays the fee. The option chosen by the client determines the payment for 
the client as well as the advisor.

Bonus

After the client learns about her earnings, she will decide how much bonus to pay to the advisor.
The bonus can be any number between 0 and the client's profit of that period (initial endowment
minus  the  fee  plus  the  payoff  from  the  selected  option).  The  amount  of  the  bonus  will  be
subtracted from the client's earnings and added to the advisor's earnings.  Advisors who advise
several clients can potentially receive bonus payments from each of the clients.

Overview of the course of events in one period:

1) The advisor sets a fee and makes her recommendation.

2) The client is informed about the fees of all the advisors and the respective advisor numbers. 
Then she decides whether she would like to receive advice in exchange for paying the fee.
a) If she chose to get a recommendation, the client decides whether to follow that 

recommendation.
b) If she chose not to get a recommendation, both client and advisor receive ECU 2.5.

3) Both client and advisor learn how much they earned in this period.
4) The client decides which bonus to pay to the advisor.

Table with your previous interactions

In the lower part of your screens you see a summary of your interactions so far (see example on
the next page). The headline (italic) and the content of the columns (roman) are as follows:

 Period: all previous periods except the current one

 Advisor number: 1, 2, 3, 4 or 5

 Fee: Amount which the advisor asked for his recommendation: '0', '0.5', '1', '1.5', or '2'
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 Recommendation: Quality of the recommendation  evaluated by the client:  either 'good'

(corresponds to 10 ECU for the client) or 'medium' (corresponds to 5 ECU for the client) or
'bad' (corresponds to 2 ECU for the client) or '--', if the client did not pay the fee and thus no
interaction took place

 followed: 'yes' in case the client followed the recommendation, 'no' in case she did not pay

the fee and thus no interaction took place

 Bonus: the amount that the client voluntarily gave to the advisor

Both advisor and client will see a table with their respective interactions. As an example, you can
see the decision screen of the client in period 11 with the table of the previous interactions (quality
of the recommendation evaluated by the client):

As an advisor you will see a table illustrating your perspective. It additionally contains the number
of your clients and how many of them followed your recommendation.

Payment (2 out of 15 periods)

Your payoff of one period is calculated as explained above. Client and advisor receive the profits
of the realized payoff table. 
The advisor possibly receives the fee and the bonus, which is/are subtracted from the clients
payment. Additionally, both receive the initial endowment of 2.5 ECU. If an advisor advises several
clients, he receives a fee from each interaction and gets a payoff from the option implemented by
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each client. However, only two out of the 15 periods are payoff-relevant. These two periods will be
determined randomly at the end of the experiment. Your payment will be paid to you in cash after
answering the final questionnaire. Additionally, you will receive your show-up-fee of 2.5 EURO for
your participation.
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