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Abstract

Why do investors entrust active mutual fund managers with large sums of money

while receiving negative excess returns on average? Our explanation is that investors

have a coarser information set than fund managers which leads them to systemati-

cally misinterpret managers’ skill. When investors are unable to correctly quantify

risk because they have no knowledge of factor investing on beyond-market-risk factors,

Fake Alpha strategies based on factor investing look like skill from the investors’ per-

spective. As running such strategies is relatively cheap for the managers, the investors’

coarser information set misleads them to invest beyond the point of zero excess returns

in equilibrium. We confirm our theory by analyzing the sample of US equity active

managed mutual funds and find significant evidence of decreasing returns to scale at

the fund level as well as negative excess returns to investors in equilibrium states.
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1 Introduction

Suppose the average active mutual fund investor is making a systematic error quantifying

risk. How could he then be able to correctly evaluate the performance of a fund? We think

he cannot, which might be the reason why e.g. Fama and French (2010) empirically observe

negative risk adjusted average net returns to investors for active managed mutual equity.

Extending the Berk and Green (2004) model by introducing investors who have a coarser

information set compared to fund managers and are therefore unable to correctly quantify

risk, we can show that negative net returns to investors in equilibrium might be simply a

result of all agents behaving rational under these circumstances.

In line with the model, we empirically find that the average net alpha measured against

the CAPM1 is significantly negative in equilibrium states. In order to establish this empirical

result, we introduce a new way of measuring a fund’s size by standardizing the time series

of size observations for each fund by its sample mean. Not only does this reduce the cross

sectional variation of the size between funds, but we show that the measure facilitates at the

same time the identification of equilibrium states. This allows us to jointly analyse equilib-

rium observations across different funds at different points in time. Using this standardized

quantity, we also obtain a significant negative relationship between a fund’s size and the net

alpha to investors which is the second main implication of our model. Drilling deeper, we

decompose the CAPM alpha in two components: First, the Fake Alpha component, which

accounts for the beyond-market-risk premia part. We obtain it by using a multi-factor model,

e.g. Fama and French (1993) (FF3) or Carhart (1997) (CH4), and then estimate the part

of the CAPM alpha which is linked to loadings on factors other than the market factor.

Second, the True Alpha component, which is equal to the difference between the CAPM

alpha and the Fake Alpha, and henceforth represents the part of the CAPM alpha not linked

to any beyond-market-factor risk premia. We provide evidence that fund managers consider

1The CAPM is originally developed by Sharpe (1964), Lintner (1965), and Mossin (1966).
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Fake Alpha and True Alpha as substitutes: Using the Industry Size measure for market

competitiveness as introduced by Pástor et al. (2015) on the one hand, and the varying risk

premia sizes of the beyond-market-risk factors on the other hand, we find that whenever

Industry Size and hence competitiveness rises it gets relatively expensive for the managers

to generate True Alpha. In this situation, fund managers seem to increase their exposures

towards the beyond-market-risk factors to generate Fake Alpha instead. This relationship

is also confirmed the other way around, meaning whenever risk premia on beyond-market-

risk factors increase and hence it gets relatively cheap to generate Fake Alpa, the managers

excessively load on the beyond-market-risk factors. At the same time they focus less on

the True Alpha part. This could be suggestive of managers being aware about the investors’

coarser information set, but since being rewarded proportional to the managers’ assets under

management (AUM) their behavior is perfectly rational.

Our model is built upon two pillars: First, we assume that investors chase CAPM alphas.

This is empirically backed by findings of Berk and van Binsbergen (2016) and Barber et al.

(2016) who show that amongst all major asset pricing models it is most likely that investors

built their investment decisions looking on CAPM alphas. Second, we assume that investors

not only chase CAPM alphas, but they are also unaware of any beyond-market factor risk.2

This enables a manager to easily generate CAPM alphas by loading on beyond-market-risk

factors. Based upon those two pillars, we assume investors Bayesian-learn a manager’s skill

by observing past returns and provide flows to a fund up to the point where they expect zero

excess returns, given their coarser information set. From an ex-post perspective although

(i.e. looking at it from an outside planer’s perspective) investors obtain negative excess

returns in equilibrium. Thus, ultimately, investors’ ignorance of factor strategies leads them

to overestimate manager’s skill, and eventually, to overinvest into the fund in equilibrium.

2There is an ongoing debate whether premia on several beyond-market factors are compensation for
risk or exist due to market restrictions. Chu et al. (2016) find that e.g. the momentum premium severely
decreases if short sale restrictions are relaxed. Our argument would also hold if instead of assuming that
investors are unaware of beyond-market factor risk, we would assume that investors have no sense for market
restrictions.
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As equilibrium states are hard to identify for investors in the first place, and even from

an outside perspective they are empirically rare in our sample, we neglect the possibility

that investors learn about their mistake. We elaborate carefully on whether or not this

no-learning assumption makes sense and find empirical support for our view.

The paper adds to the literature in several ways: First, we connect the empirical findings

of Berk and van Binsbergen (2016) and Barber et al. (2016), who show that of all major

assets pricing models the CAPM is the one that is most likely used by investors of equity

mutual funds to determine their investment decision, with the strand of literature following

Fama and French (1993), which collectively shows that various multi-factor models explain

empirical equity prices more accurately than the CAPM. Second, we find strong empirical

evidence for decreasing excess returns to scale on the fund level thereby supporting one basic

insight of the Berk and Green (2004) model. This is new empirical evidence as recent work

by Pástor et al. (2015) depicts no significant results for decreasing returns to scale. We

use part of their econometric methodology to address several biases on the empirical side.

However, looking at the standardized size of a fund instead of the absolute (deflated) assets

under management we find a robust decreasing returns to scale pattern. Third, we show how

to reconcile the implications from Berk and Green (2004) with empirical results of Fama and

French (2010), who point out that net alphas are of remarkable negative size on average, by

including investors who are unable to correctly quantify risk. Fourth, by decomposing the

CAPM alphas in a Fake Alpha component that accounts for risk premia earned by loading on

beyond-market-risk factors and the residual True Alpha component, we provide a novel way

to show that those two components exhibit important differences regarding their relationship

with overall market conditions. Hence, it might make sense to treat them separately when

examining the mechanisms of the active managed mutual fund industry.

Our results are in line with an attenuated version of a thesis stated by John Cochrane

(2010), who claims that ”There is no alpha. There is just beta you understand and beta

you do not understand...”, as it seems, like the only beta an average mutual fund investor

4



understands is the market beta. Within our model, even if the managers didn’t have any

skill at all, investors would still provide flows to their funds in the long-run equilibrium,

since they confuse skill with risk premia on omitted factors. We explicitly add the term

attenuated, since our empirical results do not clearly support the first part of the thesis that

there is no alpha at all. However, obviously, the overall level of skill you need to explain

the size of the active management industry is smaller assuming investors who are not able

to correctly quantify risk, than the level of skill you need to explain the industry size in a

purely neoclassical framework.

The paper is organized as follows: We introduce our theoretical model in Section 2. In

Section 3 we explain the data we use to test the model as well as our estimators. In this

section we also point out econometric issues that might bias our empirical results later on as

well as how we address those. In Section 4 we analyze the results, starting of with examining

the returns to scale relationship before looking at the level of alphas in equilibrium states

and finally elaborating on whether or not there is support for our no-leaning assumption in

the data. We conclude in Section 5.

2 The Model

To clarify our arguments we develop a simple model that captures the relationship be-

tween fund flows and alphas. In general, the model is a derivation of the work by Berk

and Green (2004) with an additional investment opportunity on the manager’s side that is

unknown to investors. To simplify notation, let us consider a universe with a single fund only

but numerous investors. In general, we think of the entire investment/allocation process in

rounds. One round comprises the following three steps in the outlined order:

1. Investors learn about parameters by observing costs and returns.

2. Investors make their investment decision, i.e. they provide flows to the fund.

3. The manager allocates the received flows into different investment strategies.
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The first step is skipped in the initial loop, instead investors start by setting their beliefs

about parameters. Returns are realized between the rounds. Note that to explain the

mechanisms of the model in the following, we do not go through the above steps in the

outlined order, but rather follow a more illustrative path by first explaining the general

setting, to then referring to the manager’s perspective (step 3), before finally focusing on

the investors’ decision problem (steps 1 and 2).

2.1 General Setting

We assume that the capital flows in and out of a fund are linked to the fund’s past net

performance measured against the CAPM . As compensation for the management services

the manager charges a fix proportional fee on the total assets under management qt. Further,

there exists a true pricing kernel TP which is driven by the market-risk factor and at least

one additional state variable. The manager can choose to invest the provided funds in either

a true active strategy a, a factor strategy f , or the market portfolio (indexing) i. By the term

factor strategy we refer to strategies based on beyond market-risk factors that are included

in the true pricing kernel, e.g. on HML or on SMB if we assume the true pricing kernel to

be FF3. In absence of of any cost or fee, we denote the excess of market return of the active

strategy and the factor strategy respectively by

Ra,t = κa + ea,t (1)

Rf,t = κf + ef,t (2)

where κa, κf are positive constants with κa > κf , and ea,t, ef,t are white noise variables with

mean zero and precision ωa, ωf respectively.3 The total excess of market-risk payoff to the

3Precision is defined as the inverse of the variance of a random variable.
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investors equals

TEPCAPM,t = qa,tRa,t + qf,tRf,t − Ca(qa,t)− Cf (qf,t)− bqt, (3)

with qa,t and qf,t being the amount invested in the active strategy and the factor strategy

respectively at the beginning of period t, b being the fix proportional management cost, and

qt = qa,t + qf,t + qi,t, (4)

defining the total assets under management. The difference between the total assets under

management and the sum of the investments in the active and the factor strategy is defined as

qi,t, denoting the amount which is indexed. Indexing comes along with zero expected CAPM

excess return and zero cost, therefore it is not part of Equation (3). The costs Ca(qa,t) and

Cf (qf,t) of running the active and the factor strategy are defined as

Ca(qa,t) = aa[qa,t]
pa , (5)

Cf (qf,t) = af [qf,t]
pf (6)

with aa, af > 0, pf > 1, and pa > pf . Thereby, investing in either one of the two strategies

is associated with positive cost which is convex in the amount invested in the respective

strategy. Also, note that due to pa > pf the cost of investing in the active strategy increases

faster compared to the cost of the factor strategy (for large amounts invested).

Dividing Equation (3) by the total amount invested qt leads to a relative excess of market

return for investors of

αCAPM,t =
qa,t
qt
Ra,t +

qf,t
qt
Rf,t −

[Ca(qa,t) + Cf (qf,t)]

qt
− b. (7)
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2.2 Manager’s Choice of the Investment Strategy

Facing the decision problems of the agents within the model, we start off looking at

the manager’s perspective (step 3), who has to decide upon his allocation of the received

flows across the three strategies, thereby maximizing his expected revenue bqt. He does

so by maximizing the expected αCAPM . This is a direct consequence of the assumption

that investors, whose actions are described in the next paragraph, are chasing αCAPM . For

simplicity, we assume that the manager does know κa and κf from Equations (1) and (2) as

well as aa, af , pa, and pf from Equations (5) and (6).4 Assuming that the total investment

amount qt is large enough to make the maximization problem unbounded in this dimension

(i.e. qa,t + qf,t ≤ qt), the expected CAPM excess return to investors from the manager’s

perspective in the optimum is characterized by

E(αCAPM,t|KM) =
q̂aκa
qt

+
q̂fκf
qt
− [Ca(q̂a) + Cf (q̂f )]

qt
− b, (8)

with

q̂a =

[
κa
paaa

] 1
pa−1

, (9)

q̂f =

[
κf
pfaf

] 1
pf−1

(10)

denoting the optimal amount invested in either strategy and KM being the manager’s in-

formation set.5 Optimal amounts are characterized such that the manager invests in either

strategy up to the point where the expected return of the last invested dollar equals the

marginal cost of the respective strategy. Any additional funds are indexed at zero cost and

zero expected excess return.

4None of our core results change if we let them Bayesian-learn these parameters using past results.
5We neglect the case qt ≤ q̂a + q̂f for simplicity here. If we did not, a simple rule that the manager

primarily invests in the strategy with higher marginal net return would be the most rational assumption.
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2.3 The Investors’ Problem

The investors, on the other side, have to decide how much to invest in the fund. They are

not aware of the manager’s factor investing option, hence they have a coarser information

set and assume the return generating process to be

Raf,t = κaf + eaf,t, (11)

with eaf,t being normally distributed with zero mean and precision ωaf . Investors do not

know κaf and a priori assume it to be normally distributed with mean φ0 and precision γaf .

In line with the investors’ knowledge about available investment strategies, they assume the

cost to scale by the following function

Caf (qaf,t) = aaf [qaf,t]
pa , (12)

with aaf > 0 and pa > 1 (as well as pa > pf , see Equations (5) and (6)). Also, investors know

pa as they have some sense about the cost scaling for (true) active investments, however they

are not aware of the value of aaf which they instead assume to be normally distributed with

unknown mean and known precision τaf . Similarly as for κaf , they expect the unknown mean

of aaf a priori to be normally distributed with expected value θ0 and precision ψaf . Note that

the cost function assumed by the investors, Caf (·), is of the same power-law family (linked

via pa) as the manager’s active cost function, Ca(·), which is justified by the assumption that

investors solely know about active investing and are clueless about factor investing as well

as about the associated cost. Intuitively, this means that investors associate the manager’s

past returns with a steeper cost function then he actually is facing. This misperception leads

them to conclude that the manager is more skillful than he is, which eventually results in

over-investment into the fund as we will show later on.

According to their coarser information set, investors are only able to observe past ag-
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gregated non-index investments, qaf,t−1, past aggregated returns, Raf,t−1, as well as past

aggregated cost, Caf (qaf,t−1), but they have no knowledge about the individual components,

i.e by looking backwards they observe the left-hand sides of the following equations, but not

their compositions on the right-hand sides:

qaf,t−1 = qa,t−1 + qf,t−1, (13)

Raf,t−1 =
qa,t−1Ra,t−1 + qf,t−1Rf,t−1

qa,t−1 + qf,t−1

, (14)

Caf (qaf,t−1) = Cf (qf,t−1) + Ca(qa,t−1). (15)

Based on this setting, the net CAPM excess return from the investors’ perspective looks

like

αCAPM,t =
qaf,tRaf,t

qt
− Caf (qaf,t)

qt
− b. (16)

We assume positive αCAPM generating opportunities to be in short supply, i.e. whenever such

opportunities exist, there is always a matching demand by investors and due to the negative

relationship of investment amount and alpha, the result is that those positive opportunities

should be competed away immediately. Hence, in equilibrium the expectation of αCAPM,t

from the investors’ perspective has to be zero

E(αCAPM,t|KI,t)
!

= 0, (17)

where KI,t denotes the investors’ information set at the beginning of period t which includes

all information from the previous period t− 1.

Using condition (17) leads to the optimal investment amount from the investors’ per-
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spective

q̂t =

 [φt]
pa

pa−1

[paθt]
1

pa−1

−
θt

[
[φt]

pa
pa−1

]
[paθt]

pa
pa−1

 1

b
(18)

with φt and θt being Bayesian-updated according to the recursions

φt =

[
γaf + [t− 1]ωaf
γaf + tωaf

]
φt−1 +

[
ωaf

γaf + tωaf

]
Raf,t−1, (19)

and

θt =

[
ψaf + [t− 1]τaf
ψaf + tτaf

]
θt−1 +

[
τaf

ψaf + tτaf

] [
Caf (qaf,t−1)

[qaf,t−1]pa

]
. (20)

Proofs see Appendix.

Combining Equation (19) with (9), (10), and (14) it is easy to show that in the long-run

equilibrium the posterior mean of κaf converges to

φ? =
q̂aκa + q̂fκf
q̂a + q̂f

. (21)

Looking at Equation (20) it is straight forward that the long-run posterior mean of aaf

converges to

θ? =
aa[q̂a]

pa + af [q̂f ]
pf

[q̂a + q̂f ]pa
. (22)

Using Equation (19) and (20) together with (18) results in the long-run equilibrium optimal
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investment amount

q? =

 [φ?]
pa

pa−1

[paθ?]
1

pa−1

−
θ?
[
[φ?]

pa
pa−1

]
[paθ?]

pa
pa−1

 1

b
. (23)

It is important to note that the equilibrium values themselves are all expectations of –

possibly very noisy – random variables, which makes it unlikely that investors effectively

learn about the true costs of both the active and the factor strategy.

Solving the investors’ problem using the true information set KM would lead to a long-run

optimal investment amount of

q+ =
q̂a[κa − aa[q̂a]pa−1] + q̂f [κf − af [q̂f ]pf−1]

b
. (24)

Proof see Appendix.

If investors chose to invest q+ they would receive zero CAPM excess return in the

long-run equilibrium. But instead they invest q?, therefore from an ex-post perspective the

long-run equilibrium expected excess return is equal to

α?CAPM =

[
q+ − q?

q?

]
b. (25)

As q? > q+ due to the imposed relations between κa and κf , aa and af , as well as pa

and pf , the ex-post expected long-run equilibrium excess return to investors is negative. If

q? >> q+, α?CAPM approaches −b which is the natural lower bound for the ex-post expected

long-run excess return in the model. This negative return to investors is the main difference

of our model compared to Berk and Green (2004) according to which econometricians should

observe zero excess returns in the long-run equilibrium.
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3 Data and Methodology

3.1 Data

We use data provided by the Center for Research in Security Prices (CRSP) and Morn-

ingstar. Our sample contains 3,292 actively managed mutual funds from the United States

that primarily invest in domestic equity (>95% AUM invested in domestic stocks), cover-

ing the period from March 1993 to December 2014 on a monthly grid. We merge the two

databases using an approach similar to Pástor et al. (2015), thereby trying to eliminate

possible reporting errors in our sample. Specifically, we perform an inner join of the two

databases looking at matching values for net returns and AUM. We only include funds that

contain almost exactly the same return and AUM figures across the two databases on the

fund level. This enables us to sort out database errors leading to a high data accuracy in

the final sample.

To gain more intuition for our analyses we label the components of Equation (7) from

the model in Section 2 as follows:

Investors′ Alpha = αCAPM,t

True Alpha =
qa,t
qt
Ra,t

Fake Alpha =
qf,t
qt
Rf,t

Operating Costs =
Ca(qa,t) + Cf (qf,t)

qt

Management Fee = b

Note from Equation (7) that Investors’ Alpha is a net figure, whereas True Alpha and

Fake Alpha are both gross figures, which means associated costs are not deducted.

The Investors’ Alpha is the fund’s risk adjusted net excess return with respect to the

CAPM. To account for the possible time variation of the exposure to the systematic risk
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source, we estimate αCAPM by applying a rolling window approach. For a specific month

t, we apply the following two-stage estimation: First, we use the fund’s Net Return data

from the previous 24 month including t − 1 to estimate the risk exposure towards Kenneth

French’s value weighted Market Risk Factor. Second, we take the estimated exposure and

the data from month t to estimate the alpha. On average a fund within our sample has a

positive Net Return of 73 bp per month while having a negative Investors’ Alpha of -5 bp

per month (see Table 1).

We estimate True Alpha in the same manner as Investors’ Alpha but instead of using the

one factor CAPM as risk adjustment model, we use either the three factor model by Fama

and French (1993) (FF3 ) or the four factor model by Carhart (1997) (CH4 ).6 To obtain the

gross values, we take the net estimates and add the monthly Expense Ratio. Additionally, we

calculate a Pástor et al. (2015) style True Alpha by simply taking the difference between a

fund’s Gross Return and the corresponding return of the benchmark assigned by Morningstar

for each month. We label these Morningstar alphas with MS.

The Fake Alphas are calculated by simply taking the difference between Investors’ Alpha

and the net True Alpha7. Depending upon the risk adjustment model the average True Alpha

lies between 1 bp and 2 bp per month whereas the average Fake Alpha ranges from 3 bp

to 5 bp per month (see Table 1). A more detailed explanation of our alpha estimation

methodology can be found in Appendix B.

A fund’s size measured in end-of 2014 inflated dollars is defined as

Infl. AUMt = AUMt
Total MCap Equity CRSP12−31−2014

Total MCap Equity CRSPt
. (26)

By using this definition, where we multiply the fund’s AUM at t with the ratio of the total

market capitalization of CRSP stocks at the end of 2014 to the total market capitalization

of CRSP stocks at t, we account for variations in overall equity-market size that might be

6We obtain the factor data from Kenneth French’s website as well.
7The net True Alpha is equal to the True Alpha minus the monthly Exp. Ratio.
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mirrored in a fund’s AUM as well. This simply means that we assume the supply of equity

to be driven by the overall equity market size, and we control for that using inflated dollars

instead of usual dollars. The average size of a fund in 2014 inflated dollar is $1, 952 million.

Over the entire sample the fund size varies with a standard deviation of $4, 857 million (see

Table 1) which is mainly due to severe size differences in the cross section: The average

cross-sectional standard deviation of Infl. AUMt is $4, 089 million compared to an average

time series standard deviation of $475 million.

To account for these cross-sectional differences in fund size we introduce the Standard-

ized Size of a fund as

Std. Sizet =
Infl. AUMt

Mean(Infl. AUMs)
{s ∈ all observations for the fund}. (27)

Using the Std. Sizet instead of the absolute size prevents our panel analyses to be dominated

by large funds. The mean Std. Size is at roughly 100% 8, which is not surprising having in

mind the definition above, and it varies with a standard deviation of about 61% on a month

by month basis (see Table 1).

We define the Industry Size in the spirit of Pástor et al. (2015) as

Industry Sizet =

∑
allfundsAUMt

Total MCap Equity CRSPt
, (28)

and similarly to their work, we use it as a measure for professional competitiveness in the

equity market as well. The basic idea of the estimator is that the higher the portion of equity

managed by professionals (in our case represented by the managers of active managed equity

mutual funds) the higher the competitiveness regarding the generation potential of excess

returns. As competitiveness rises it gets harder for a manager to generate an excess return

running an active strategy which is shown in a theoretical context by Pástor and Stambaugh

8Due to the applied winsorizing of all variables at the 1% and the 99% quantile this is only roughly the
case
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(2012).

Further, we make use of a fund’s reported Expense Ratio, its Management Fee as well

as its Turnover Ratio. For the Exp. Ratio and the Mgmt. Fee we take the reported yearly

figures and divide them by 12 to obtain the monthly equivalents. We then calculate the

Operating Costs as the difference between Exp. Ratio and Mgmt. Fee on a monthly basis.

The average Operating Costs are 6 bp per month, the mean Mgmt. Fee is 5 bp on a monthly

basis (see Table 1).

The number of funds in our analysis varies strongly over time. Figure 1 shows the timeline

of funds that report returns (black) as well as of those we included in the following regressions

where either FF3 or CH4 as benchmark is used (blue). The gap between the two lines is

due to the fact that not all return reporting funds report e.g. Mgmt. Fee or Exp. Ratio

as well, therefore we cannot include these observations in analyses where we require all of

theses variables. Note that especially between 1995 and 2005 the number of funds in our

sample strongly increases, whereas between 2005 and the end of 2014 is roughly stays at a

stable level which is between 1500 and 2000 funds.

3.2 Econometric Issues

As outlined in detail by Pástor et al. (2015), estimating simple OLS coefficients for a

regression model of type

αCAPM,it = a+ βStd. Sizeit−1 + eit (29)

is prone to inherit an omitted-variable bias. Suppose the alpha of a fund as well as the

fund’s size are both correlated with the fund manager’s skill. Then the estimated OLS β

from equation (29) is biased, as the resulting error terms of the model are correlated with skill.

The omitted-variable bias in this case arises from the neglected variable skill. Unfortunately,

managerial skill is not easy to observe but we can at least control for a time-independent
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cross-sectional effect by running a similar regression model as above adding fund-fixed effects

αCAPM,it = ai + βStd. Sizeit−1 + eit. (30)

Accordingly, we assume that each manager has an individual skill which is fix over the

observation period. It does not completely solve the omitted-variable concern, but at least

enables to correct for the time-fixed effects in the cross section.

As Pástor et al. (2015) correctly point out, introducing the fund-fixed effects however

leads to another bias, the so called finite-sample bias if the parameters of the model in

Equation (30) are estimated using standard OLS. They give a detailed explanation of the

problem in their paper including a simulation study concerning the matter. Our goal is

simply to summarize the core of the finite-sample issue to provide reason why we address

this in our analyses. According to Stambaugh (1999) the bias arises in finite-samples (and

by introducing the fixed effects we estimate our parameters sort of on a fund by fund level

thereby extremely shrinking the sample size per parameter estimation) if the innovations of

Std. Sizeit and the eit are correlated. In our case we should expect such a correlation for the

following two reasons: (1) A lucky positive return in period t (high eit) also automatically

increases Std. Sizeit (measured at the end of period t), which is due to the defined linkage of

the return and the subsequent size of a fund. (2) By theory, any positive return during the

period also attracts new flows leading to a higher Std. Sizeit at the end of it. This is as well

the case if the positive return was earned by luck. Consequently, to avoid this bias we again

follow Pástor et al. (2015) using a recursive demeaning approach to estimate the coefficients

in the fund-fixed effect models to follow. Details of the recursive demeaning procedure can

be found in Pástor et al. (2015). We exactly apply their procedure of recursively forward

demeaning all our variables (dependent and independent) and then instrumenting for forward

demeaned Std. Size by using backward demeaned Std. Size in the analyses to follow.

Further, we address the problem of possible correlations within the dependent variable
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in our further analyses: The average correlation of Investors’ Alpha for funds within the

same Morningstar Category is 0.33 whereas for funds of different Morningstar Category

membership it drops to 0.06. This pattern holds for True Alphas, Fake Alphas as well

as the Operating Costs. Hence, we calculate the standard errors of the estimators in our

empirical analyses allowing for correlations within the clusters MSCategory × date and

fund, thereby also accounting for serial correlation on the fund level possibly induced by

the alpha estimation or the recursive demeaning.

4 Empirical Tests

One of the model’s important pillars is the assumption that investors chase CAPM alpha.

Before we test whether there is empirical evidence for our model, we need to address this

assumption first. In a recent paper, Berk and van Binsbergen (2016) show that amongst

all major asset pricing models it is most likely that investors form their decisions based

on CAPM alpha.9 Yet Berk and van Binsbergen (2016) use a slightly different approach

estimating their alphas. In particular, they are not applying a rolling estimation window as

we do, which is why we reaffirm their results using our way of estimating alphas. The results

of these tests are in Appendix C and are qualitatively in line with their work, yielding that

indeed the CAPM alpha is most likely guiding investors’ decisions. Given theses results we

focus on testing the model’s main predictions in the following.

4.1 Implications Derived from our Model

If investors do not truly understand true market mechanisms while managers are well

informed, the model gives the following two main implications:

Implication 1 Decreasing Returns and Costs to Scale

Based upon Equation (8), Investors’ Alpha, True Alpha, Fake Alpha, as well as the Operat-

9The results of Barber et al. (2016) point towards the same direction although they use a different
approach.
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ing Costs should all be inversely related to the fund’s size. This should hold for equilibrium

as well as for non-equilibrium states.

Implication 2 Negative Investors’ Alpha in Equilibrium

Ex-post expected Investors’ Alpha should be negative but not exceeding the level of the

Mgmt. Fee in the long-run equilibrium states. This is due to the outcome that under the

imposed restrictions investors overinvest into the funds in the long-run equilibrium (q? > q+).

At the same time, the True Alpha and the Fake Alpha should be non-negative.

While the Decreasing Returns and Costs to Scale from Implication 1 of our model are

basically in line with Berk and Green (2004), the negative Investors’ Alpha in equilibrium

from Implication 2 is clearly against their theory. However, the negative overall mean of

the Investors’ Alpha in our sample (including possible non-equilibrium states) as reported

in Table 1 could be explained by their model as well. Berk and Green do not impose

restrictions for the way towards the long-run equilibrium. For example, if investors start

off overestimating a specific fund manager’s skill in the Berk and Green model they will

receive negative excess returns at the beginning of the fund’s lifetime to then converge

towards receiving zero excess returns in equilibrium. Hence, the average of all excess return

observations for that fund still would be negative, with the level depending upon the time

it takes to reach equilibrium. The fact that possibly not all observations are at equilibrium

states is largely ignored by the empirical literature discussing Berk and Green (2004). In

contrast, we exploit our model’s equilibrium relation between age and size to carefully identify

equilibrium states.

Literature discussing decreasing returns to scale, as stated in Implication 1, show diverg-

ing results so far. Pástor et al. (2015) point out that most of the existing work on estimating

the size-performance relation is likely to be biased, and consequently they derive an unbiased

estimator by applying the recursive demeaning procedure mentioned in Section 3.2. Using

this estimator they find that a fund’s size is negatively correlated to its gross alpha. However,

the observed negative relation is not very robust, especially if Ind. Size as competitiveness
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measure is considered as well. We make use of their recursive demeaning procedure and pro-

vide first evidence regarding the fund size-performance relation with respect to individual

alpha components, i.e. Investors Alpha (net), True Alpha (gross) and, Fake Alpha (gross).

We also reexamine the fund size/gross alpha relation using a standardized size measure to

facilitate cross-sectional comparisons.

4.2 Decreasing Returns and Costs to Scale

According to Implication 1 the model yields negative relations of the different alphas

and the costs with the size of a fund. We will empirically test theses relations starting

off with the Investors’ Alpha, then looking at different estimators for the True Alpha, and

examining the Operating Costs last. In each of the tests we perform a regression using one

of the alphas or the costs as dependent variable and Std. Size along with several control

variables as independent ones. First, we control for Ind. Size as a measure for market

competitiveness. Second, Age is included as we expect a fund’s Age to be correlated with its

size if the investors’ prior parameter expectations deviate from the posterior equilibrium ones.

Third, we include Mgmt. Fee as a control variable to asses possible performance boosting in

exchange for management income. Fourth, we consider the Turn. Ratio as well, to account

for portfolio rebalancing. Lastly, we control for the SMB, the HML, and the MOM factor

returns to account for time variation in risk premia, i.e. variations of the supply side of the

Fake Alpha.

For each model the slope coefficients are estimated using two different samples: One

including all available observations and one in which observations with Age < 4 years are

excluded, thereby accounting for a possible incubation bias.10 For the Investors’ Alpha,

the True Alpha, and the Operating Costs regressions we use the recursive demeaning

procedure on the fund level. As the average level of Fake Alpha for a fund primarily

varies between funds of different Morningstar Categories and only exhibits a much lower

10This is in line with Evans (2010) who finds that removing the first three years of data eliminates the
incubation bias.
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variation for funds belonging to the same Morningstar Category (i.e. 0.25% compared

to 0.16% in the CH4 specification), we use fixed effects on the Morningstar Category

level in the Fake Alpha regressions instead of the fixed effects on the fund level we apply

in the other models. The Fake Alpha regressions are therefore less prone to inherit a

finite-sample bias, as we have more observations within each fixed-effect category (see

Pástor et al. (2015) for details). This is the reason why we use plain OLS estimators

(including the fixed effects on the Morningstar Category level) in the Fake Alpha regressions.

Investors’ Alpha

Results for the regression models with Investors’ Alpha as dependent variable are presented

in the first two columns of Table 2. Model (1) includes all observations whereas observations

with Age < 4 years are excluded in model (2). In the specification with all observations,

the estimated slope coefficient for Std. Size is -0.26, which yields that as a fund grows

from zero (0%) to its mean size (100%) the Investors’ Alpha on average declines by 26 bp

per month. With a t-statistic of -6.66 the negative relation is statistically significant. The

decreasing returns to scale relation is not only statistically but also economically significant.

For example, a one-standard-deviation increase in the Std. Size leads to a sizable decline in

Investors’ Alpha of about 16 bp per month. These findings clearly support the first part of

Implication 1 regarding the negative relationship between Investors’ Alpha and the size of

a fund.

Looking at the controls, the Industry Size has no significant relation with the In-

vestors’ Alpha. While we observe a negative relation between a fund’s Age and Investors’ Al-

pha with a slope coefficient of -3.01 and a t-statistic of -1.83. In terms of our model, the the

negative Investors’ Alpha/Age relationship goes well with investors that start off investing

qt < q? on average at the time the funds get issued. Note that the slope coefficient declines

to -2.67 with a t-statistic of -1.61 in model (2). Thus, the learning effect seems to be most

severe amongst the very young funds.
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The Mgmt. Fee and Investors’ Alpha are negatively connected in model (1) but the slope

coefficient drops to about one third of its size in model (2), which gives reason to believe

that there might be an incubation bias: Managers set a low Mgmt. Fee at the very beginning

of a fund’s lifetime, thereby attract new investors, then quickly raise the Mgmt. Fee (within

the first 4 years), and leave it on a constant level for the remainder.

For the Turn. Ratio we observe a significantly positive relation with Investors’ Alpha,

indicating that managers only trade when they expect positive net outcome. If the entire

portfolio is reallocated over the period of a year (Turn. Ratio=100%) investors on average

receive about 10 bp more alpha on a monthly basis compared to the case when there is no

reallocation at all (Turn. Ratio =0%). In all cases the risk premia are positively correlated

with Investors’ Alpha, which implies that the average fund loads positively on all three

factors.

True Alphas

Next, we examine the regression models with True Alpha as dependent variable for which

the results are presented in models (3) to (8) of Table 2. We run the regressions for the

different versions of True Alpha introduced in Section 3.1, using either FF3, CH4, or MS

as the benchmark for the full sample and the sample where we exclude the young funds

respectively. Throughout all specifications we observe a significant negative relationship

between True Alpha and Std. Size with slope coefficients ranging between -0.20 and -0.10

and t-statistics between -7.96 and -3.63. Looking at model (6) for example, where the

benchmark is CH4 and we exclude young observations, a rise in Std. Size from 0% to 100%

yields an average decline in monthly True Alpha of 17 bp. These results strongly support

the second part of Implication 1 regarding the negative relation between the True Alpha

and the size.

Examining the controls, we observe the relationship between Ind. Size and True Alpha

to be mainly negative but usually insignificant. Model (5) depicts the only exception where
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we obtain a slightly significant negative relationship between Ind. Size and True Alpha

with a slope coefficient of -7.53. This means that as industry size rises by 1% point the

True AlphaCH4 drops on average by about 8 bp per month in model (5). The relation

between Age and the True Alphas is negative as well, yet only significant when we use MS

(model (7) and (8)) as benchmark to calculate the alphas. For the Mgmt. Fee we obtain

similar results as in the Investors’ Alpha case, always having a negative relation between

Mgmt. Fee and True Alpha that is significant for the models we estimate using the full

sample, but insignificant whenever we exclude the young observations. The results reinforce

the above evidence of an incubation bias. For the Turn. Ratio the regression coefficients

are consistently positive and significant, hinting again at managers that only seem to trade

when they expect a positive risk adjusted return. In contrast to the positive relation to

Investors’ Alpha we find that risk premia have a negative effect on True Alpha whenever

significant (except for the Momentum premium in the MS specifications). We will come

back to this point shortly after discussing Fake Alpha and Operating Cost.

Fake Alphas

Table 3 reports Fake Alpha regression results. For each specification the Std. Size is

significantly negatively related to Fake Alpha with slope coefficients ranging between -0.10

and -0.03 and t-statistics between -6.42 and -2.08. Focusing again at the CH4 benchmark

case with excluded young observations in model (4), the slope coefficient of -0.04 yields

that as Std. Size of a fund grows from zero (0%) to its average size (100%) the monthly

Fake Alpha decreases by 6 bp on average. This is in line with the third part of Implication

1 regarding the negative relationship between Fake Alpha and the size of a fund.

Examining the controls, the relationship between Ind. Size and the Fake Alphas is positive

but only significant in the CH4 case with slope coefficients in both specifications at about 8

and t-statistics at 2.25 and 2.40 respectively. Economically this means that if the Ind. Size

rises by 1% point the average Fake AlphaCH4 increases by 8 bp per month. Note that
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Ind. Size has a standard deviation of 1.63% as you can observe in Table 1, correspondingly a

one standard deviation increase in Ind. Size leads to an average increase in Fake AlphaCH4 of

about 13 bp. Also, note that we observe a positive relation between Ind. Size and Fake Alphas

in general for all Fake Alpha specifications, whereas the relation between True Alphas and

Ind. Size is rather negative. Again, we will address this issue in more detail later on.

Age is negatively correlated with Fake Alpha, similarly as in the Investors’ Alpha and

True Alphas regressions but always insignificant. We also do not observe a significant re-

lation between Mgmt. Fee and Fake Alpha which is expected due to our alpha estimation

methodology. Any alpha which is not linked to the pricing kernel is contributed to True Al-

pha. The Turn. Ratio and the Fake Alphas are positively connected, although not significant

in the MS specification. This could again be interpreted as evidence that the managers only

shift their portfolio if they think the shift has a positive expected gross return.

The risk premia are in general significantly positively related to the Fake Alphas,

which is plausible, since if a specific portfolio’s factor loadings do not change, higher risk

premia directly lead to higher Fake Alpha. Nevertheless, against expectations we observe a

significantly negative relation of the MOM prem. with the Fake AlphaMS, which hints at

difficulties by the Morningstar benchmark in capturing variations in risk-factor exposure.

Operating Costs

Now let us look at the regression results for Operating Costs in Table 4. In line with

the alpha regressions, we also observe a significant negative relation between Std. Size and

Operating Costs which is coherent with the last part of Implication 1 regarding the decreasing

relationship between the size of a fund and its Operating Costs. The magnitude of the slope

coefficient in both cases is -0.01, yielding that as Std. Size increases from 0% to 100%, cost

decreases on average by 1 bp per month.

Examining the results for the controls, we observe no significant relation between

Ind. Size and the cost. Age is again negatively connected to the dependent variable, this
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is also the case for the Mgmt. Fee. The large t-statistics in the latter case are due to

the definition of Operating Costs as they are calculated by subtracting the Mgmt. Fee

from the Exp. Ratio. As expected, Turn. Ratio is significantly positively related with

Operating Costs, meaning more trading comes along with higher costs.11 We obtain

tremendously higher R2s within these regressions (≥0.66) compared to the ones we get in

all the alpha regressions (≤0.09). This is due to the fact that we estimate the alphas using

market data thereby introducing estimation noise, whereas Operating Costs are calculated

based on reported figures only.

Discussing Risk Premia Relations

Besides the fact that Implication 1 is generally confirmed by our empirical results, cross-

comparing the slope coefficients of True Alpha (Table 2) and Fake Alpha (Table 3) is in-

structive: The relationship between risk premia and True Alphas is either insignificant or

negative, whereas for the Fake Alphas it is the other way around. When taken together, these

findings are consistent with the following storyline: Fund managers consider active and fac-

tor strategies as substitutes. Once factor premia increase, the benefits for running factor

strategies increase as well (positive risk premia coefficients in Table 3). Therefore, managers

focus less on the active part and True Alpha declines (negative risk premia coefficients in

Table 2). Also if competitiveness rises, it gets harder for managers to generate excess re-

turns running true active strategies (negative Ind. Size coefficients in Table 2). Thus, they

lose incentives for running active strategies in more competitive times and instead they shift

towards factor investing (positive Ind. Size coefficients in Table 3).

4.3 Addressing Equilibrium Alphas

As emphasized in Implication 2, the model implies negative Investors’ Alpha in equilib-

rium. To test this hypothesis with our data, we first need a way to identify equilibrium

11Note that this does not cover cross-sectional differences in cost levels, since the Turn. Ratio is a measure
relative to the fund’s individual portfolio size.
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states empirically. One of the theoretical properties of our model is helpful in this context,

namely that the newly observed returns when being in the long-run equilibrium should not

influence the investors’ posterior believes. Hence, for long-run equilibrium states, Age and

size of a fund should be uncorrelated. In our empirical specification we allow for multiple

equilibrium states during a fund’s lifetime and we label these as EQ phases.

To identify the EQ phases we first include all observations with a non-significant 24

month rolling window correlation coefficient (at the 10% level) between Age and Infl. AUM

in the candidate EQ sample. From the candidate EQ sample we then exclude all obser-

vations during NBER recession periods to obtain the final EQ sample. In this EQ sample

we now merge all observations of one fund that are within a window of 24 months to one

EQ phase. We end up having N=26,789 observations merged to 4,379 EQ phases of 2,406

different funds in the EQ sample. Based on this identification, we recalculate the standard-

ized size (Standardized SizeEQ) but only use observations within the same EQ phase for

standardization. Specifically, this means that the mean of Infl. AUM, which is used to stan-

dardize the size of a fund, is calculated over only those observations that are included in one

EQ phase.

Figure 2 shows the empirical distribution of the Std. SizeEQ within the EQ sample.

Restricting our empirical analysis to the EQ sample allows us to consider this distribution

as the empirical counterpart of the optimal investment amount’s distribution with q? being

the corresponding expected value. While Figure 2 reveals a peak around Std. SizeEQ =

100% both lower and higher values also occur. In terms of our model, this variation is

induced by the posterior distributions of the model parameters. Note that Implication 2

makes statements about ex-post expected alphas and cost in equilibrium, i.e. those alphas

we should observe as econometricians when focusing on equilibrium states and conditioning

to investors investing the expected equilibrium amount q?. Therefore, we are most interested

in alphas and cost corresponding to a Std. SizeEQ of 100%. According to Implication 2 the

corresponding Investors’ Alpha should be negative but bounded by the level of the Mgmt. Fee
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while we expect non-negative True Alpha and Fake Alpha at the same time. Based on our

model, we can also make predictions for invested amounts below and above q?: For some

level of the Std. SizeEQ below 100% and below we expect to see positive Investors’ Alpha,

while observations at some level of the Std. SizeEQ with Std. SizeEQ above 100% and above

should come along with a negative Investors’ Alpha that clearly exceeds the Mgmt. Fee in

absolute terms, as well as possibly negative True Alpha and Fake Alpha.

To empirically test the above hypotheses and examine the alphas and cost for the EQ sam-

ple, we subsequently group the observations in quintiles based on Std. SizeEQ and then

calculate the mean values for the variables under investigation for each quintile. Results are

presented in Table 5. Panel A depicts the mean Investors’ Alphas for the five quintiles with

t-statistics in parentheses12. Our focus lies on quintile 3 as its mean Std. SizeEQ matches

exactly the Std. SizeEQ =100% level. The average Investors’ Alpha within this quintile

is -7.21 bp per month with a significant t-statistic of -2.92. Note that the absolute level

exceeds the average Mgmt. Fee of 4.74 bp per month (see Panel E). Still, we conclude that

the first part of Implication 2 regarding the negative Investors’ Alpha is clearly supported

by the data, even though this is not the case for the lower bound imposed by the model. For

the remaining quintiles, the Investors’ Alphas are well in line with the model as we observe

positive values for quintile 1 and 2 (not significant) and negative values for quintiles 4 and

5.

Panel B reports the average True Alphas for the three different benchmark cases. Again,

we first focus on quintile 3. For none of the three benchmark cases the average True Alpha

is significantly different from zero which is in line with the second part of Implication 2. The

values for the remaining quintiles are in line with the model, with the average True Alphas

being positive for quintiles 1 and 2 and negative for quintiles 4 and 5.

Panel C shows the Fake Alphas for the three different benchmark cases. Within quintile 3,

for the FF3 and the CH4 specification we obtain mean estimates of 3.09 bp per month and

12Note that due to the reduced sample size we cluster the standard errors on the fund basis in the
EQ sample, as otherwise we would have many clusters containing a single observation only.
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2.80 bp per month respectively, both with t-statistics close to being significant. As the level

of these Fake Alphas exceeds the level of the corresponding True Alphas from Panel B (FF3

and CH4 both at 0.16 bp per month) this could be suggestive that the Fake Alpha is the more

important component of the two from an economic perspective. The mean Fake AlphasMS is

insignificant in quintile 3. Collectively, these results support the second part of Implication 2

referring the non-negative Fake Alpha in equilibrium. Looking at the quintiles to the left

and to the right we observe positive average Fake Alphas for quintiles 1 and 2 and negative

ones for quintiles 4 and 5, which is also in line with the model.

To complete the picture, we supplement information about the average Operating Costs

as well as the average Mgmt. Fees for all quintiles in Panels D and E.

Overall, based on the EQ sample we find strong evidence for negative expected In-

vestor’s Alpha in equilibrium. Also, the behavior of the Investor’s Alphas, the True Alphas,

and the Fake Alphas across size quintiles fit into the picture and clearly supports our model.

4.4 Do Investors Learn?

So far we assume that investors do not learn about the structural mistake they make, i.e.

even if they receive negative excess returns in equilibrium they do not reconfigure the cost

function they associate with these returns. This might be a strong assumption in particular

in a model with constant unknown return distributions and cost. However, in real-world

decision-making situations general market conditions are very dynamic, which means that

a specific strategy to gain True Alpha run by a manager today might not work tomorrow.

Also, risk premia vary a lot over time and on top of that there might be time variation in the

cost functions as well. Thus, a more realistic economic setting would assume that investors

always get fresh injections of uncertainty and are never able to pin down true distributions.

The fact that only 31,273 of possibly 340,049 observations are within the EQ sample can be

seen as empirical support.

To get an impression whether and to what extent learning is possible in a more dynamic
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economic setting we consider an empirical specification that allows investors to learn about

their mistake once they remain in equilibrium state for a while. Think of it as a two staged

process where the second stage can only be reached after completion of the first one. If such

learning takes place, the prediction would be that investors leave the first stage equilibrium

(as a consequence of the learning) by reducing their investments into the fund under con-

sideration to then reach another second stage equilibrium. Given that structural learning is

completed, the Investors’ Alpha in the second stage equilibrium should be zero as second

stage equilibrium then corresponds to an optimal investment level of q+.

We first analyze whether or not such structural learning is observable in our overall data.

To this end, we split the EQ sample in two cohorts by looking at the counter of EQ phases

on the fund level. If a fund reaches equilibrium for the first time, the observations of the

corresponding EQ phase are assigned to the first cohort. The observations of any following

EQ phase(s) for that fund are assigned to the second cohort. Note that thereby observations

of funds that reach only one equilibrium phase during their entire observation period are

assigned to the first cohort as well. Of the 4,379 EQ phases identified in total in our sample,

by applying this splitting rule 2,406 are assigned to the 1st stage EQ cohort and 1,973 are

assigned to the 2nd stage EQ cohort. This corresponds to N=14,113 observations in the

1st stage EQ cohort and N=12,676 observations in the 2nd stage EQ cohort. To compare

the Investors’ Alphas for the two cohorts we again split observations into quintiles based on

their Std. SizeEQ. The results are presented in Panel A of Table 6. As in the previous section

our focus is on the 3rd quintile. Within this quintile Investors’ Alpha is on average -7.00

bp amongst the 1st stage EQ observations compared to an average Investors’ Alpha of -6.56

bp for the observations belonging to the 2nd stage EQ cohort. This insignificant difference

from both the economical and the statistical point of view supports our assumption that on

average investors seem not to learn about the structural mistake they are making, even if

they have reached an equilibrium state.

However, to get a sense about the economic magnitude of the mistake investors make,
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it would help to observe at least some funds whose investors seem to learn when they have

reached an equilibrium state. Thus, instead of examining from an overall perspective whether

or not investors learn from 1st to 2nd stage EQ, we now check if there are at least some

investors within the sample who seem to structurally learn. To be identified as a learning

candidate pair of EQ phases we require the following two conditions on the fund level: (1)

The 1st stage EQ phase has to be left due to a negative (rolling) correlation of Age and size,

i.e. investors of the specific fund redeemed investments at the time the EQ phase was left.

(2) To diminish possible effects that arise from dynamic markets, the 2nd stage EQ phase

has to be entered shortly after 1st stage EQ was left. We set the threshold to 4 years13 after

the 1st stage EQ phase was left. Within the EQ sample 530 pairs of EQ phases fulfill these

two criteria. Splitting the 1,060 phases into a cohort containing observations belonging to

the 1st stage EQ phases and a cohort that comprises the observations for the 2nd stage EQ

phases results in a size of N=2,756 observations for the 1st stage EQ cohort and a size of

N=3,553 observations for the 2nd stage EQ cohort.

We again compare the Investors’ Alphas around the Std. SizeEQ level of 100% by looking

at Panel B of Table 6 focusing on quintile 3. The Investors’ Alpha of the 1st stage EQ cohort

is at -14.84 bp per month which is below the Investors’ Alpha of the entire EQ sample in

quintile 3 of -7.21 bp (see Table 5). For the 2nd stage EQ cohort the average Investors’ Alpha

in quintile 3 is equal to -1.25 bp. With a t-statistic of -0.11 the alpha is not significantly

different from zero. This evidence is consistent with the prediction of zero Investors’ Alpha

in equilibrium once the investors have learned the true cost function and hence might be an

indication that the group of investors we examine here has indeed learned about its structural

mistake. To get a sense about the economic magnitude of the investors’ mistake we compare

the average Infl. AUMs for each fund between the two equilibrium phases: Across all 530

EQ phase pairs on average investors reduce their investments by 23% (measured in 2014

13The results are qualitatively the same if we instead change this criteria to 3 years. Note that we cannot
require a proximity of subsequent EQ phases of <= 2 years as due to the identification of the EQ phases,
observations in the EQ sample that are closer than 2 years apart are combined in one phase.
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inflated dollars) coming from 1st stage EQ to 2nd stage EQ.

In conclusion, two important observations emerge from this analysis. First, there is some

evidence for structural learning, but only within a very small group and this small group

seems to have a negligible effect on our overall sample. Second, from an in-depth analysis of

this small group we can roughly estimate that the active mutual fund industry focusing the

US equity market is 23% too large due to investors erroneous assessment of the managers

skill.

5 Conclusion

By assuming investors who are not aware of the true market mechanisms on the one

side, and managers that are able to exploit this on the other side, we have shown that

negative excess returns to investors in equilibrium might be simply a consequence of rational

behaving agents given the circumstances. Supporting our model, we observe significant

negative relationships between each Investors’ Alpha, True Alpha, Fake Alpha, and Operating

Costs, with the size of a fund. Identifying and examining an equilibrium sample yields that

the implied negative returns to investors in the long-run equilibrium are mirrored by empirical

data: In equilibrium, investors earn negative net CAPM alphas by about the magnitude of

the Mgmt. Fee of a fund. According to our model such a severe magnitude implies that

investors tremendously overinvest into active managed mutual equity funds, since negative

net CAPM alphas to investors by the level of the Mgmt. Fee should only be observed if the

actual amount invested is by far larger than the amount investors would invest having access

to the full information set (q? >> q+). We show that on average investors do not learn

about the structural mistake they are making, but we are able to identify a small group

of investors that seems to learn. Observing this group’s behavior we estimate that the US

equity active mutual fund industry is too large by about 23% of its actual size. The model

implies that the excess investment amount should not improve market efficiency too much,
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as it is simply indexed by the managers. Thus, the portion of money that is put into true

active strategies should be unaffected by these excess investments.

To put this in a more tangible perspective consider the scenario where the actual size of

the industry exceeds by far its optimal size q+. This would roughly mean that on average

5 bp per month of the entire industry value (this is about equal to the average Mgmt. Fee

in the EQ sample) are erroneously paid by investors to the managers as a consequence of

their false assessment of managerial skill. But since the model surely doesn’t capture all

restrictions, let us look at a more conservative estimate of the overall economic magnitude

by referring to the results we obtain for the small group that seems to learn about its mistake.

Projecting their behavior onto the overall sample about 23% of the 5 bp per month are due

to overinvestment. Taking the size of the entire US active mutual fund market14 in 2014

which is equal to $15.9 trillion (see Investment Company Institute (2015)), this means that

within 2014 $21.9 billion would have been falsely paid by investors of active managed US

mutual funds to their managers. This is equal to 0.13% of the US GDP in 2014, or on

average $244 per mutual fund holder.

14This includes active managed mutual funds that invest in non-equity asset classes and out-of-US regions
as well.
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Figure 1: The black line shows the number of funds in the full sample for which we at least
have a return at the given point in time. The blue line depicts the number of funds in the
full sample which are included when estimating the full sample CAPM , FF3, and CH4
regression models in Table 2 and 3.
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Figure 2: Absolute histogram over Std. SizeEQ for the equilibrium sample. The equilibrium
sample is constructed by including all observations that have a non-significant (at the 10%
level) past 24 month correlation coefficient between Age and Infl. AUM, Age > 4 years,
and correspond to dates outside of the NBER recession periods.
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Table 1: Summary Statistics

The table shows summary statistics for our sample covering US equity active managed mutual funds for the period from 1993 to
2014. Net Return is the return received by investors. Investors’ Alpha is the net alpha measured using the CAPM. True Alphas
are estimated using the FF3 or the CH4 model respectively, or in the MS case it is calculated by taking the difference between
the return of the fund and the return of the corresponding Morningstar Category Benchmark index. For all True Alphas the
monthly Exp. Ratio is added to obtain the figures. Infl. AUM the fund’s AUM multiplied with the ratio of the entire stock
market capitalization at the end of 2014 to the value of the entire stock market capitalization at the corresponding time.
Std. Size is calculated on the fund level always taking the fund’s AUM measured in 2014 inflated dollars and dividing it by
the mean AUM of the fund measured in 2014 inflated dollars over its entire observation period, Std. SizeEQ is calculated in
the same manner as Std. Size but solely for assumed equilibrium states and using observations within the same EQ phase for
standardization only. Ind. Size is the sum over the AUM for all active equity mutual fund AUMs for one month divided by the
sum of the entire market capitalization of all CRSP Stocks within the same month.Operating Costs are calculated subtracting
the Mgmt. Fee from the Exp. Ratio. Turnover Ratio is the fraction of the portfolio being reallocated over the entire year. Flow
is the difference of AUM from one month to another correcting for the return over that period. All alphas, costs, and fees, as
well as the flows are given in monthly units, only the Turn. Ratio is yearly. We winsorized all variables at the 1% and the 99%
quantile.

Statistic N Mean St. Dev. Pctl(1) Pctl(25) Pctl(50) Pctl(75) Pctl(99)

Net Return (%) 437,251 0.733 5.023 −15.188 −2.016 1.219 3.837 13.223
Investors′ Alpha (%) 375,183 −0.050 2.199 −6.846 −1.122 −0.081 0.977 7.163
True AlphaFF3 (%) 375,183 0.008 1.801 −5.570 −0.893 −0.001 0.886 5.956
True AlphaFF4 (%) 375,183 0.007 1.777 −5.615 −0.877 0.004 0.879 5.790
True AlphaMS (%) 358,919 0.020 1.873 −5.975 −0.882 −0.006 0.883 6.410
Fake AlphaFF3 (%) 375,183 0.050 1.552 −5.138 −0.537 0.007 0.608 5.459
Fake AlphaFF4 (%) 375,183 0.050 1.688 −5.655 −0.619 0.009 0.693 5.831
Fake AlphaMS (%) 324,993 0.033 1.877 −5.935 −0.801 0.017 0.834 5.978
Infl. AUM (mill.) 427,774 1,952 4,857 2 92 375 1,444 34,212
Std. Size (%) 427,774 99.176 61.373 3.278 54.041 93.046 131.367 311.858
Std. SizeEQ (%) 26,789 99.895 10.897 60.927 96.182 99.942 103.209 144.652
Ind. Size (%) 427,774 12.544 1.629 5.029 12.111 13.039 13.610 14.194
Age (years) 427,774 12.927 12.879 0.928 4.654 8.997 15.830 68.414
Mgmt. Fee (%) 351,376 0.049 0.064 −0.432 0.045 0.061 0.075 0.127
Oper. Costs (%) 351,376 0.056 0.075 0.000 0.018 0.037 0.067 0.582
Turn. Ratio (%) 411,763 83.159 72.143 3.000 34.000 64.000 109.000 411.380
Flow (mill.) 433,088 2 193 -12,079 -9 0 5 8,153
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Table 2: Investors’ Alpha and True Alpha Relations

The dependent variable is either the net alpha measured using the CAPM or the gross alpha
using the FF3, or the CH4 model respectively. In the MS case the gross alpha is calculated
by taking the difference between gross returns of the fund and Morningstar Benchmark
returns. The Std. Size is calculated on a fund by fund level, always taking the fund’s AUM
measured in 2014 inflated dollars and dividing it by the mean AUM of the fund measured
in 2014 inflated dollars over its entire observation period. The Ind. Size is calculated by
summing over the AUM for all active equity mutual funds for one month and then dividing
that sum by the entire market capitalization of all CRSP within the same month. The unit of
the dependent variable is always bp per month, Std. Size, Ind. Size, Mgmt. Fee, Turn. Ratio,
and the risk premia are in % per month, Age is in years. We estimate the coefficients via
a recursive demeaning approach, i.e. all variables are recursively forward demeaned on the
fund level and we instrument for forward demeaned Std. Size by using backward demeaned
Std. Size. We estimate each regression model using two samples, one with all observations,
and another one where we exclude observations with Age < 4 years. Heteroskedasticity
robust t-statistics based on standard error clustered by MS Category × month as well as
by fund are in parentheses.

Dependent variable:

Investors′ Alpha True AlphaFF3 True AlphaCH4 True AlphaMS

(1) (2) (3) (4) (5) (6) (7) (8)

Std. Size −0.26 −0.25 −0.10 −0.12 −0.16 −0.17 −0.20 −0.20
(−6.66) (−7.50) (−3.63) (−4.61) (−6.59) (−7.35) (−6.67) (−7.96)

Ind. Size −2.62 0.23 −1.38 1.10 −7.53 −5.03 −2.79 −0.62
(−0.39) (0.03) (−0.31) (0.25) (−1.88) (−1.25) (−0.80) (−0.18)

Age −3.01 −2.67 −1.42 −0.94 −1.33 −0.92 −1.77 −1.42
(−1.83) (−1.61) (−1.40) (−0.94) (−1.38) (−0.96) (−1.96) (−1.63)

Mgmt. Fee −67.23 −19.71 −98.26 −48.62 −80.76 −31.15 −52.52 21.64
(−2.43) (−0.51) (−4.26) (−1.36) (−3.76) (−0.89) (−2.39) (0.53)

Turn. Ratio 0.10 0.09 0.05 0.04 0.04 0.04 0.09 0.08
(4.06) (3.31) (2.47) (1.83) (2.31) (1.85) (4.87) (4.30)

HML prem. 3.77 3.40 −0.04 0.06 0.05 0.07 1.18 0.93
(2.33) (2.03) (−0.05) (0.06) (0.05) (0.07) (1.22) (1.00)

SMB prem. 11.38 10.92 −2.38 −2.01 −1.47 −1.05 −0.74 −0.88
(5.68) (5.47) (−2.88) (−2.41) (−1.81) (−1.28) (−0.85) (−1.02)

MOM prem. 0.35 0.40 −0.77 −0.89 −1.86 −2.24 3.02 2.70
(0.45) (0.51) (−1.35) (−1.60) (−2.99) (−3.51) (5.61) (5.27)

Excl. Age < 4 no yes no yes no yes no yes
Observations 292,836 242,716 292,836 242,716 292,836 242,716 299,393 245,004
Adjusted R2 0.04 0.04 0.01 0.01 0.01 0.01 0.02 0.02
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Table 3: Fake Alpha Relations

The dependent variable Fake Alpha is calculated by first taking the difference between the
CAPM alpha (net) of a fund and either one of the FF3, the CH4 or the MS alpha (all
gross) and then adding the monthly Exp. Ratio to obtain the gross figure. The Std. Size is
calculated on a fund by fund level, always taking the fund’s AUM measured in 2014 inflated
dollars and dividing it by the average AUM of the fund measured in 2014 inflated dollars over
its entire observation period. The Ind. Size is calculated by summing over the AUM for all
active equity mutual funds for one month and then dividing that sum by the entire market
capitalization of all CRSP within the same month. The unit of the dependent variable is
always bp per month, Std. Size, Ind. Size, Mgmt. Fee, Turn. Ratio, and the risk premia are
in % per month, Age is in years. Fixed effects are added on MS Category level. We estimate
each regression model using two samples, one with all observations, and another one where
we exclude observations with Age < 4 years. Heteroskedasticity robust t-statistics based on
standard error clustered by MS Category ×month as well as by fund are in parentheses.

Dependent variable:

Fake AlphaFF3 Fake AlphaCH4 Fake AlphaMS

(1) (2) (3) (4) (5) (6)

Std. Size −0.10 −0.08 −0.08 −0.06 −0.04 −0.03
(−6.42) (−5.51) (−5.42) (−4.35) (−2.65) (−2.08)

Ind. Size 3.89 4.42 7.86 8.28 4.21 4.77
(1.21) (1.38) (2.25) (2.40) (0.95) (1.09)

Age −0.03 −0.02 −0.03 −0.03 −0.03 −0.01
(−0.78) (−0.81) (−0.77) (−1.02) (−0.56) (−0.48)

Mgmt. Fee 6.68 −0.83 3.65 −0.03 −5.06 −4.63
(1.14) (−0.10) (0.63) (−0.003) (−0.79) (−0.47)

Turn. Ratio 0.03 0.02 0.04 0.03 0.01 0.01
(2.25) (2.06) (2.82) (2.50) (1.38) (1.11)

HML prem. 4.02 3.53 4.16 3.73 2.32 2.04
(2.61) (2.21) (3.06) (2.65) (1.17) (1.03)

SMB prem. 13.47 12.70 12.52 11.66 13.09 12.71
(7.58) (7.19) (6.79) (6.39) (5.70) (5.62)

MOM prem. 0.81 1.04 2.16 2.63 −2.48 −2.18
(1.13) (1.48) (2.54) (3.00) (−2.63) (−2.36)

Excl. Age < 4 no yes no yes no yes
Observations 292,836 242,716 292,836 242,716 289,256 239,376
Adjusted R2 0.09 0.08 0.07 0.06 0.06 0.05
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Table 4: Operating Costs Relations

The dependent variable Operating Costs is calculated by subtracting the Mgmt. Fee from the
Exp. Ratio. The Std. Size is calculated on a fund by fund level, always taking the fund’s AUM
measured in 2014 inflated dollars and dividing it by the average AUM of the fund measured
in 2014 inflated dollars over its entire observation period. The Ind. Size is calculated by
summing over the AUM for all active equity mutual funds for one month and then dividing
that sum by the entire market capitalization of all CRSP within the same month. The unit
of the dependent variable is bp per month, Std. Size, Ind. Size and Turn. Ratio are in % per
month, Age is in years. We estimate the coefficients via a recursive demeaning approach,
i.e. all variables are recursively forward demeaned on the fund level and we instrument
for forward demeaned Std. Size by using backward demeaned Std. Size. We estimate each
regression model using two samples, one with all observations, and another one where we
exclude observations with Age < 4 years. Heteroskedasticity robust t-statistics based on
standard error clustered by MS Category ×month as well as by fund are in parentheses.

Dependent variable:

Operating Costs

(1) (2)

Std. Size −0.01 −0.01
(−13.80) (−12.12)

Ind. Size −0.01 −0.002
(−0.25) (−0.10)

Age −0.07 −0.05
(−7.87) (−5.07)

Mgmt. Fee −86.40 −70.93
(−80.57) (−17.88)

Turn. Ratio 0.001 0.002
(4.09) (5.44)

Excl. Age < 4 no yes
Observations 304,072 248,937
Adjusted R2 0.83 0.66
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Table 5: Equilibrium Alphas and Costs

The table holds the alphas and costs for the equilibrium phases. To identify equilibrium
states the 24 month rolling window correlation between Infl. AUM and Age is calculated
on a fund by fund basis. All observations with a non-significant correlation at the 10% level
and Age > 4 years are included in the candidate EQ sample. Then we drop all observations
during NBER recession periods to obtain the final EQ sample. Observations of the same
fund in the EQ sample that are within a window of 24 month are assigned to one EQ phase.
To calculate the Std. SizeEQ we divide the Infl. AUM through the mean of Infl. AUM for
all observations within the same EQ phase. Then the observations are grouped in quintiles
based on their Std. SizeEQ. The values in the table present the means over all observations
for the corresponding variable-quintile combination within the equilibrium sample in bp per
month. We test the null whether the mean of observations belonging to one quintile is
zero. Heteroskedasticity robust t-statistics based on standard errors clustered by fund are
in parentheses.

Quintile 1 2 3 4 5

Quintile mean (Std. SizeEQ in %) 86 97 100 102 114

Panel A Investors’ Alpha

Investors′ Alpha 15.31 7.94 -7.21 -32.92 -45.39
(4.36) (2.82) (-2.92) (-12.92) (-14.11)

Panel B True Alpha

True AlphaFF3 20.29 11.46 0.16 -16.29 -20.57
(7.38) (5.03) (0.08) (-7.83) (-7.88)

True AlphaCH4 19.90 11.44 0.16 -17.92 -21.94
(7.34) (5.16) (0.09) (-8.81) (-8.59)

True AlphaMS 20.87 11.67 2.02 -13.61 -19.78
(7.41) (5.50) (1.01) (-6.29) (-7.01)

Panel C Fake Alpha

Fake AlphaFF3 5.55 6.04 3.09 -5.91 -10.85
(2.22) (3.02) (1.66) (-3.00) (-4.27)

Fake AlphaCH4 5.95 6.12 2.80 -4.33 -10.82
(2.25) (2.94) (1.42) (-2.11) (-3.98)

Fake AlphaMS 4.83 5.92 1.83 -8.13 -13.14
(1.72) (2.44) (0.80) (-3.37) (-4.27)

Panel D Operating Costs

Operating Costs 5.07 4.60 4.77 4.28 4.82
(29.06) (29.98) (12.83) (31.70) (31.74)

Panel E Mgmt. Fee

Mgmt. Fee 5.80 5.84 4.74 5.98 5.82
(33.67) (45.23) (9.20) (54.96) (45.68)
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Table 6: Equilibrium Alphas at Different Stages

The table holds the alphas and costs for the equilibrium phases divided up in a 1st and a
2nd stage EQ cohort. To identify equilibrium states the 24 month rolling window correlation
between Infl. AUM and Age is calculated on a fund by fund basis. All observations with a
non-significant correlation at the 10% level and Age > 4 years are included in the candidate
EQ sample. Then we drop all observations during NBER recession periods to obtain the
final EQ sample. Observations of the same fund in the EQ sample that are within a window
of 24 month are assigned to one EQ phase. To calculate the Std. SizeEQ we divide the Infl.
AUM through the mean of Infl. AUM for all observations within the same EQ phase. In
Panel A we split up the entire EQ sample assigning the first EQ phase of each fund to the
1st stage EQ cohort and any following EQ phase of the same fund to the 2nd stage EQ cohort.
In Panel B we identify 1st and 2nd stage EQ pairs by requiring that (1) the 1st stage EQ
phase has to be left due to a negative significant correlation at the 10% level of age and size
of the fund, and (2) the two EQ phases have to be closer than 4 years apart. Within their
cohort the observations are grouped in quintiles based on their Std. SizeEQ. The values
in the table present the means over all observations for the corresponding variable-quintile
combination for the respective cohort in bp per month. We test the null whether the mean of
observations belonging to one cohort quintile is zero. Heteroskedasticity robust t-statistics
based on standard errors clustered by fund are in parentheses.

Quintile 1 2 3 4 5

Panel A Overall EQ sample

EQ stage 1
Quintile mean (Std. SizeEQ in %) 85 97 100 103 115

Investors′ Alpha 20.86 4.09 -7.00 -38.72 -49.94
(3.78) (1.00) (-2.01) (-10.43) (-10.34)

EQ stage 2
Quintile mean (Std. SizeEQ in %) 88 97 100 102 112

Investors′ Alpha 9.59 10.35 -6.56 -27.20 -39.28
(2.17) (2.93) (-1.90) (-7.97) (-9.69)

Panel B Learning candidates sample

EQ stage 1
Quintile mean (Std. SizeEQ in %) 89 98 100 102 111

Investors′ Alpha -14.38 8.55 -14.84 -44.29 -83.80
(-1.40) (1.11) (-1.96) (-5.61) (-6.68)

EQ stage 2
Quintile mean (Std. SizeEQ in %) 87 97 100 102 113

Investors′ Alpha -0.83 14.60 -1.25 -28.39 -43.66
(0.02) (1.91) (-0.11) (-3.73) (-4.67)
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A The Model - Proofs

Proposition 1 Observing aggregated returns Raf,t investors update their expectation φ about

κaf according to

φt =

[
γaf + [t− 1]ωaf
γaf + tωaf

]
φt−1 +

[
ωaf

γaf + tωaf

]
Raf,t−1.

Proof. Using Theorem 1 from page 1967 in DeGroot (1970) it is straight forward to show

that the posterior mean of κaf is updated by the recursion in Proposition 1.

Proposition 2 Observing aggregated cost Caf (qaf,t−1) investors update their expectation θ

about aaf according to

θt =

[
ψaf + [t− 1]τaf
ψaf + tτaf

]
θt−1 +

[
τaf

ψaf + tτaf

] [
Caf (qaf,t−1)

[qaf,t−1]pa

]
.

Proof. Solving Equation (15) for aaf at t-1 leads to

aaf =
Caf (qaf,t−1)

[qaf,t−1]pa
(31)

Using (31) and applying Theorem 1 from page 1967 in DeGroot (1970) one can easily show

that the posterior mean of aaf is updated by the recursion in Proposition 2.
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Proposition 3 For given φt and θt the optimal investment amount for investors in period

t is

qt =

 [φt]
pa

pa−1

[paθt]
1

pa−1

−
θt

[
[φt]

pa
pa−1

]
[paθt]

pa
pa−1

 1

b
.

Proof. In a first step, the investors predict the amount qaf,t they expect the manager to

actively invest conditional on their coarser information set, KI,t, and the overall investment

qt. To do so they basically solve the manager’s problem from the investors’ perspective using

the rationality assumption that manager invests up to the point where the marginal expected

return equals the marginal cost: φt
!

= E(C ′af (qaf,t)|KI,t). This leads to

E(qaf,t|KI,t) =

[
φt
paθt

] 1
pa−1

. (32)

Inserting (32) into the equilibrium condition E(αCAPM,t|KI,t)
!

= 0, taking expectations, and

moving terms leads to

qt =

 [φt]
pa

pa−1

[paθt]
1

pa−1

−
θt

[
[φt]

pa
pa−1

]
[paθt]

pa
pa−1

 1

b
.
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Proposition 4 The optimal investment amount for investors having the full information

set KM is equal to

q+ =
q̂a[κa − aa[q̂a]pa−1] + q̂f [κf − af [q̂f ]pf−1]

b
.

Proof. Using the equilibrium condition E(αCAPM,t|KM)
!

= 0 leads to

E

(
qa,t
qt
Ra,t +

qf,t
qt
Rf,t −

[Ca(qa,t) + Cf (qf,t)]

qt
− b|KM

)
= 0.

Now taking together Equation (9) with (10) and rearranging leads to

qt =
q̂aκa + q̂fκf − [Ca(q̂a) + Cf (q̂f )]

b

⇔ qt =
q̂a[κa − aa[q̂a]pa−1] + q̂f [κf − af [q̂f ]pf−1]

b
.
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B Alpha Estimation

To estimate the alpha for a fund at one specific point in time t, we use the following two

stage approach: First, we estimate the risk exposure of the fund regarding the market factor

via the linear regression model

rs − rrf,s = ρCAPM,t−1 + βMkt,t−1Mkts + εs ∀s ∈ [t− w, t− 1], (33)

using data over the observation window of length w months preceding t with rt−1 being the

return received by investors holding the fund over period t− 1 to t, and rrf,t−1 representing

the return of the risk-free asset over the same period of time. Second, we use the estimated

βMkt,t−1 from step one to calculate the risk adjusted excess return of the fund i with respect

to the CAPM over the period from t− 1 to t as

αCAPM,t = rt − rrf,t − βMkt,t−1Mktt. (34)

By excluding data from t in step one we prevent correlation of the errors in αCAPM and

βMkt.

In general, for each t we use monthly data of the previous 24 months including t − 1

(w = 24m) for the estimation of step one. We then take the observations from t to calculate

the alpha in step two. Relying solely on this procedure would imply that we couldn’t analyze

returns of funds with an age below 25 months. To also include these young observations,

we use daily (working day) data starting off with window length w = 40wd and step by

step widen the estimation window up to w = 500wd for the estimation and then switch to

the monthly grid as soon as we reach the 24 month (= 500wd). We accumulate the daily

alphas to a monthly figure to make them comparable with the monthly estimates. As a

result we obtain an enlarged sample with alpha estimates starting whenever we have at least

40 working days of observation data for a fund. For each t < 25m the returns are estimated
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using daily data, for the remainder they are based on the monthly data set.

We estimate True Alpha in the same manner as Investors’ Alpha but instead of using

the CAPM as risk adjustment model in Equations (33) and (34) we use either the three

factor model by Fama and French (1993) (FF3 ) or the four factor model by Carhart (1997)

(CH4 ). Additionally, we calculate a Pástor et al. (2015) style True Alpha by simply taking

the difference between a fund’s Gross Return and the corresponding return of the benchmark

assigned by Morningstar for each month. This means that estimation of one or multiple betas

as in Equation (33) is not necessary, instead the beta towards the assigned benchmark is

always assumed to be equal to one. Thus, the procedure reduces possible estimation noise on

the one hand but might lack accuracy one the other. We label these Morningstar alphas with

MS. To obtain the gross values we use the net estimates and add the monthly Exp. Ratio.

The Fake Alphas are calculated by simply taking the difference between Investors’ Alpha

and the net True Alpha. The net True Alpha is equal to the True Alpha minus the monthly

Exp. Ratio.
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C The Basis of Investors’ Investment Decisions

In Section 2 we presume that investors chase CAPM alpha when making investment

decisions. We apply the method of Berk and van Binsbergen (2016) in order to show that

investors actually base their capital allocation decisions on the CAPM.

Berk and van Binsbergen (2016) assume that investors hunt for positive net present

value (NPV) opportunities and eliminate them by submitting buy or sell orders. Positive

NPV opportunities are misspricings in the context of a specific asset pricing model and

thus they depend on model choice. The idea of Berk and van Binsbergen (2016) is to

compare misspricings with investor reactions thereafter, in order to determine which model’s

misspricing triggers an investor reaction. By observing the reaction to a certain asset pricing

model’s misspricing, Berk and van Binsbergen (2016) conclude that the investor is using

that particular model in which the misspricing occured. For example, from net buy orders

in response to positive NPV opportunity with respect to the CAPM? We would infer that

investors are using the CAPM to price their investments. To test different models, it is thus

necessary to identify misspricing and to monitor investors’ reactions thereafter. Especially

the second part is difficult as most markets are so competitive that only the price change

itself can be observed.15 Berk and van Binsbergen (2016) exploit that the price of a mutual

fund, i.e. its Net Asset Value (NAV), is fixed based on the value of its underlying assets.

Thus, adjustments have to be realized via volume, i.e. fund flows. Under the assumption

that a particular asset pricing model holds, Berk and van Binsbergen (2016) rely on the main

insight from Berk and Green (2004) to show that positive abnormal mutual fund returns are

equal to positive NPV opportunities. By looking at abnormal returns in the context of a

specific asset pricing model and observing subsequent flows, it is hence possible to investigate

which model investors use for their capital allocation decision. The approach can also be

used to judge naive models in which investors ignore risk factor exposure and simply chase

15See for example Milgrom and Stokey (1982).
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any outperformance relative to some benchmark.

We calculate the two model ingredients as follows. First, we use the two stage approach

from Appendix B in order to calculate abnormal returns for different asset pricing models.

Specifically, we deploy the rolling-window regressions for the CAPM as well as multi-factor

models (see Equation (34) and (33) for details). For the naive models without any beta, the

abnormal return is calculated linearly with a plain subtraction. In order to keep notations

simple in the following, alpha / αM refers to all tested measures, i.e. abnormal model returns,

excess returns in the context of naive models as well as raw returns. Second, we calculate

mutual fund flows by comparing subsequent assets under management and correcting for

the funds’ return, in order to counteract the possibility that a fund creates ”inflows” just by

having a positive return, as follows:

flowt = qt−m − qt(1 + rt−m), (35)

where q is the funds total assets under management and r is the funds return over the

observation horizon from t − m to t. As before, we suppress a fund’s index i in order to

facilitate notations. Using both flows and alphas, we then run the single univariate panel

regression:

Φ(flowt) = x+ zΦ(αM,t) + ut, (36)

in which Φ(·) is a function that maps real values onto {-1,0,1} according to a variable’s

numeric value and the alpha in this setting corresponds to an accumulated alpha over the

respective observation horizon m. While Berk and van Binsbergen (2016) test their model

using various horizons (m) for the calculation of flows and alphas, we focus on a 3 months

horizon simply due to the fact that results for other horizons do not provide any additional

insights.
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Table 7: Relation between Abnormal Returns and Fund Flows

This table reports estimates for the panel regression from Equation (36) for different asset
pricing models M . For ease of interpretation, the table reports (z + 1)/2 in percent, which
is equivalent to (Pr[Φ(flowt = 1 | Φ(αM,t) = 1)] + Pr[Φ(flowt = −1 | Φ(αM,t) = −1)])/2 as
shown in Berk and van Binsbergen (2016). The table comprises a different asset pricing model
in each row, starting with the CAPM using the CRSP value-weighted index as the market
portfolio in the first row. The three subsequent rows report results for the Fama-French
three-factor model from Fama and French (1993) and its cousin, the Carhart four-factor
model from Carhart (1997) as well as the risk correction proposed in Pástor et al. (2015)
using a fund’s Morningstar benchmark. Finally, the last three lines report the results for the
fund’s actual return, the fund’s return in excess of the risk-free rate and the fund’s return
in excess of the return on the market as measured by the CRSP value-weighted index. The
maximum number (the best performing model) is shown in bold face.

(z + 1)/2 in %

Market Model
CAPM 54.30

Multi-factor Models
Fama-French 3F (FF3) 53.33
Carhart 4F (CH4) 53.02
Morningstar Benchmark (MS) 52.73

No Model
Return 53.04
Excess Return 52.88
Excess Market Return 53.64

Table 7 presents the result from regression (36), whereby the regression parameter z

is scaled to z+1
2

and expressed in percent. As shown in Berk and van Binsbergen (2016),

the scaled parameter is basically the fraction of decisions for which outperformance implies

capital inflows and underperformance implies capital outflow. In other words, it is the

average probability that the sign of the alpha predicts the sign of the flow.16 So if flow

and outperformance are completely unrelated, the scaled parameter amounts to 50%. In

contrast, if outperformance is a perfect prediction for flow, the scaled beta is equal to 100%.

You can see in Table 7 that the CAPM ranks first with a value for the scaled parameter of

54.30. Thus, investors seem to rely on the CAPM for investment decisions. The result is

consistent with findings from Berk and van Binsbergen (2016) as well as Barber et al. (2016),

16See Berk and van Binsbergen (2016) for proof of
z+1

2 =
Pr[Φ(flowt=1|Φ(αM,t)=1)]+Pr[Φ(flowt=−1|Φ(αM,t)=−1)]

2 .
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both depicting the CAPM as the main asset pricing model used by investors. Finally, a large

part of flows remains unexplained and shows that investors appear to use other criteria as

well. To assess whether the ranking of the different models depicts statistically significant

differences, we deploy a further statistical test from Berk and van Binsbergen (2016) in Table

8 and conclude that the overall victory of the CAPM is statistically profound.

Table 8: Test of Statistical Significance

This table displays the test of the statistical significance of the ranking of the different asset
pricing models. Specifically, the coefficient and double-clustered (by fund & date) t-statistics
of the univariate regression of signed flow on signed outperformance (see Equation (36) is
shown in the first two columns. The rest of the table shows the statistical significance of

ζ1 > 0 from the pairwise regression tests: Φ(flowt) = ζ0 + ζ1( Φ(αc,t)

var(Φ(αc,t))
− Φ(αd,t)

var(Φ(αd,t))
) + ξt,

in which ζ1 > 0 if and only if model c is a better approximation of the true asset pricing
model than d. Hence, the double-clustered t-statistic of the test that the model in the row
is a better approximation of the true asset pricing model than the model in the column
is shown in each entry. In particular, that means that each entry tests zrow > zcolumn on
its statistical significance. The table (both rows and columns) is ordered so that the best
performing model, according to the highest value for z, is on top. The underlying derivation
and proof can be found in Berk and van Binsbergen (2016).

Model z t-statistic (1) (2) (3) (4) (5) (6) (7)

(1) CAPM 0.086 13.60 0.00 2.89 3.26 2.48 4.20 2.87 5.51
(2) Ex. Market 0.073 11.55 -2.89 0.00 0.98 1.40 1.93 1.82 3.86
(3) FF3 0.067 13.07 -3.26 -0.98 0.00 0.54 2.32 0.86 2.67
(4) Return 0.061 7.53 -2.48 -1.40 -0.54 0.00 0.04 2.54 0.67
(5) CH4 0.060 12.93 -4.20 -1.93 -2.32 -0.04 0.00 0.28 1.20
(6) Ex. Return 0.058 6.98 -2.87 -1.82 -0.86 -2.54 -0.28 0.00 0.31
(7) MS 0.055 11.60 -5.51 -3.86 -2.67 -0.67 -1.20 -0.31 0.00

In replicating the approach from Berk and van Binsbergen (2016), we differ slightly in

the calculation of both flow and alpha. First, while the authors use a vanguard benchmark

based on a fund’s style as the return correction in the calculation of a fund’s flow, we stick

with the fund’s own return as we think this is a more accurate way (see Equation 35).

In particular, we opine that using an external benchmark leads to embellished regression

results as an outperformance of this benchmark creates an artificial inflow and is likely to

be correlated with the fund’s alpha. Thus, regression results would be spuriously boosted

towards one. This difference is seen in our somewhat weaker yet still significant results than
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the ones shown in Berk and van Binsbergen (2016). Second, we calculate alphas based on

rolling windows and hence differing beta exposures, whereas Berk and van Binsbergen (2016)

calibrate the betas over the lifetime of a fund and thus assume that the style of the fund

does not change.

All in all, based on the approach of Berk and van Binsbergen (2016), mutual fund in-

vestors seem to favour the CAPM when it comes to investment decisions. Given the short-

comings of the CAPM depicted in papers such as Fama and French (1993) and Carhart

(1997), this result seems somewhat surprising. However, the behavior benefits mutual fund

managers, as it allows them to grow their fund by creating a CAPM alpha which can in turn

be done by loading on additional systematic risk factors such as value, size, or momentum.

Thus, our model or more specifically our assumption about the goal of a mutual fund man-

ager to maximize the CAPM alpha in order to maximize his assets under management from

Section 2 seems to be empirically justified.
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