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Abstract

We analyze an estimated stochastic general equilibrium model that replicates key
macroeconomic and financial stylized facts during the Great Moderation of 1983-2007.
Our model predicts a sizeable and volatile nominal term premium - comparable to
recent reduced-form empirical estimates - with real risk two times more important
than inflation risk for the average nominal term premia. The model enables us to
address salient questions about the effects of monetary policy on the term structure of
interest rates. We find that monetary policy shocks can have differing effects on risk
premia. Actions by the monetary authority with a persistent effect on households’
expectations have substantial effects on nominal and real risk premia. Our model
rationalizes many of the opposing findings on the effects of monetary policy on term
premia in the empirical literature.
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1 Introduction

What are the effects of monetary policy on the term structure of interest rates? The empiri-

cal literature has yet to reach a definitive conclusion on this question, not only quantitatively

but also qualitatively. We contribute to this discussion with an estimated stochastic dynamic

general equilibrium model (DSGE) which replicates key macroeconomic and financial stylized

facts during the Great Moderation of 1983-2007. In contrast to standard structural mod-

elling approaches – like the linear New Keynesian models commonly used in policy analysis

– our model captures the impact of monetary policy on interest rates beyond the expecta-

tion hypothesis and, therefore, is well positioned to answer our introductory question. We

show that different monetary policy actions can have substantially different effects on risk

premia. First, unexpected transitory changes of the policy rate have limited effects on nom-

inal and real term premia. Second, expected monetary policy shocks, such as unconditional

forward guidance, affect households’ future expectation regarding real and nominal variables

substantially. This has significant effects on households’ precautionary savings motives and,

consequentially, on risk premia in the economy. Similarly, shocks to the inflation target have

persistent effects on the systematic behavior of monetary policy, generating strong effects in

risk premia. By distinguishing between these different monetary policy actions, our struc-

tural model rationalizes many of the opposing findings on the effects of monetary policy on

term premia in the empirical literature (see, for example, Hanson and Stein, 2015; Nakamura

and Steinsson, 2017).

A comprehensive analysis of monetary policy needs a quantitative structural model that

captures the nonlinearity behind the risk of underlying financial variables and simultaneously

replicates key stylized macroeconomic facts. However, as poignantly phrased by Gürkaynak

and Wright (2012, p. 354): “A general problem with a structural model [. . . ] is that it is

challenging to maintain computational tractability and yet obtain time-variation in term

premia.” We address this problem and estimate a New Keynesian macro-finance model with

U.S. data from 1983:Q1 to 2007:Q4 using a new and computationally efficient procedure

that captures both constant and time varying risk premia by maintaining linearity in states

and shocks (Meyer-Gohde, 2016). This approach allows us to investigate a structural model

in the spirit of Smets and Wouters (2003, 2007) and Christiano, Eichenbaum, and Evans

(2005), and is able to provide not only an in-depth analysis of the macroeconomy but also of

the term structure of interest rates and their interactions. Figure 1 shows that our structural

model predicts a historical 10-year term premium comparable in level, pattern, and volatility

with recent reduced-form empirical estimates.1 Our model predicts both an upward sloping

1The gray area in Figure 1 presents the range (maximum and minimum) of the estimates for the 10-year
term premium from models developed by Kim and Wright (2005), Rudebusch and Wu (2008), Bernanke,
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Figure 1: Model implied 10-year nominal term premium (black line) and range of corre-
sponding estimates in the literature (gray area).

nominal yield curve in line with the data and an upward sloping real yield curve in line with

empirical estimates (see, for example, Gürkaynak, Sack, and Wright, 2010; Chernov and

Mueller, 2012). Our real yield curve is in contrast to many DSGE models (see, for example,

van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez, 2012; Swanson, 2016)

that generally attribute a stronger insurance-like character to real bonds leading to flat or

downward sloping real yield curves. Additionally, our results suggest that 2/3 of the average

slope of the nominal term structure is related to real rather than to inflation risk. In this

regard, the model implied upward sloping inflation risk premium is consistent with recent

estimates in the literature (see, for example, Abrahams, Adrian, Crump, Moench, and Yu,

2016), with our average term structure of inflation risk comfortably between the estimates

of Buraschi and Jiltsov (2005) and Chen, Liu, and Cheng (2010). In summary, our model-

implied estimates demonstrate a considerable alignment with various empirical estimates

in the literature. This alignment is all the more remarkable as these measures, with the

exception of nominal yields, were not used in our estimation. This provides us with a high

degree of confidence in our model as we proceed to the structural analysis of the effects of

monetary policy on the term structure of interest rates and its components.

Reinhart, and Sack (2004), Adrian, Crump, and Moench (2013), and Bauer (2016). The first three measures
were calculated by Rudebusch, Sack, and Swanson (2007) and Rudebusch, Swanson, and Wu (2006). A
description of the estimates can be found there. We are very thankful to Eric T. Swanson and Michael
Bauer for sharing their estimates with us.
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Our structural analysis contributes to the growing body of empirical investigations into

the effects of conventional and, more recently unconventional, monetary policy on the term

structure of interest rates.2 So far the empirical literature disagrees not only on the quantita-

tive effects of monetary policy shocks on term premia (see Hanson and Stein, 2015; Nakamura

and Steinsson, 2017), but also on their qualitative effects - i.e., whether interest rates and

term premia comove (see Abrahams et al., 2016; Crump et al., 2016). There are many po-

tential reasons for this lack of robustness and an analysis of them is beyond the scope of this

paper.3 Instead, we take our cue from Ramey (2016) who notes that the “shocks” identified

in the empirical literature are not always the empirical counterparts of shocks from theo-

retical models. For example, with monetary policy following a Taylor-type rule, we want

to disentangle changes in the systematic behavior of monetary policy - due, for example, to

changes in the inflation target - from innovations to the Taylor rule and from preannounced

monetary actions like forward guidance (see, for example, Woodford, 2012).

We find that an unexpected monetary policy shock via a simple innovation to the Taylor

rule affects risk premia at shorter more strongly than longer maturities (see Nakamura and

Steinsson, 2017, for a comparable emiprical finding), but overall has limited effects on the

term premia at all maturities. This finding is in line with those of other structural models

(see, for example, Rudebusch and Swanson, 2012) and confirms some of the empirical findings

of Nakamura and Steinsson (2017). Simply put, an uncorrelated innovation to the Taylor

rule dies out too quickly to have substantial effects at business cycle frequencies. Therefore,

the effects on risk premia, which vary primarily at lower frequencies (see, for example,

Piazzesi and Swanson, 2008), are limited. In contrast, a shock to the inflation target has

much stronger effects on the term structure of interest rates across all maturities. The reason

behind the strong effect on the risk premia, as laid out by Rudebusch and Swanson (2012), is

that a change to the inflation target introduces long-run (nominal) risk which is per se longer

lasting and so has stronger effects on households’ expectation formation, their precautionary

savings motives and, thus, on risk premia. The strong quantitative effects of such a monetary

action are comparable to the findings of Hanson and Stein (2015). Additionally for longer

maturities, the policy rate and risk premia comove on impact (see, for example, Hanson

and Stein, 2015; Abrahams et al., 2016) after such a more systematic change of monetary

policy. Contrarily, we find for a simple innovation to the Taylor rule that risk premia for long

2See for example the pioneering work by Kuttner (2001), Cochrane and Piazzesi (2002), and Gürkaynak,
Sack, and Swanson (2005a,b). More recent papers that also place a focus on unconventional monetary policy
are, for example, Nakamura and Steinsson (2017), Gertler and Karadi (2015), Gilchrist, López-Salido, and
Zakraǰsek (2015), Abrahams et al. (2016), and Crump, Eusepi, and Moench (2016).

3For example, different underlying samples or identification approaches could be to blame. See, for
example, Campbell, Fisher, Justiniano, and Melosi (2016) for a discussion of potential shortcomings in
isolating the effects of monetary policy in the recent literature.
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maturities tend to move opposite the policy rate on impact, i.e., a looser monetary policy

increases risk premia. In particular in our model, such a looser monetary policy increases the

precautionary savings motive of agents as they expect more volatile inflation and output and,

therefore, demand higher risk premia. This finding is comparable to the empirical results of

Crump et al. (2016) and Nakamura and Steinsson (2017).

Following the approach of Woodford (2012), we analyze the effects of unconditional for-

ward guidance.4 This is accomplished by adding a sequence of anticipated shocks to the

Taylor rule to keep the policy rate upon announcement constant until the announced inter-

est rate change (here a cut) is implemented. We find that this kind of forward guidance

affects risk premia substantially, prying bond yields from the expectations hypothesis. In

particular, we find that a commitment to a future reduction in the policy rate and constant

policy rates until then causes real term premia and inflation risk premia to rise as agents

expect more volatile inflation and output in the future. This finding is in line with the

empirical finding of Akkaya et al. (2015). Turning to the inflation risk premia, its increase

follows what theory would predict: While forward guidance does communicate the expected

path of future short rate, it is just as informative about the central bank’s commitment to

allow higher inflation in the future. This mechanism increases households’ precautionary

savings motives and their demand for higher inflation risk premia.

The reminder of the paper reads as follows: Section 2 presents the model. Following,

section 3 describes the solution method, the data, and the Bayesian estimation approach in

greater detail. Section 4 presents the estimation results and discusses the model fit. Section

5 presents the effects of unexpected and expected monetary policy on the term structure.

Section 6 concludes the paper.

2 Model

In the following section, we present our dynamic stochastic general equilibrium (DSGE)

model. We study a New Keynesian model, in which households have recursive preferences

following Epstein and Zin (1989, 1991) and Weil (1989), maximize their utility from con-

sumption relative to a habit and labor, and accumulate capital. The nominal yield curve is

derived from the households’ stochastic discount factor and no-arbitrage restrictions. Firms

are monopolistic competitors selling differentiated products at prices that are allowed to

adjust in a stochastic fashion as in Calvo (1983). The central bank follows a Taylor rule

4For a discussion of different forms of forward guidance see Campbell, Evans, Fisher, and Justiniano (2012)
and Akkaya, Gürkaynak, Kısacıkoğlu, and Wright (2015). Particularly such a distinction is a significant
challenge in many empirical approaches (see, for example, the discussion in Nakamura and Steinsson, 2017;
Campbell et al., 2016).
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which sets the short-term nominal interest rate as a function of the inflation rate and output.

The model has a similar structure to Smets and Wouters (2003, 2007) and Christiano et al.

(2005) by including nominal and real rigidities which have demonstrated success in repli-

cating stylized facts of the macroeconomy. Additionally, the model incorporates real and

nominal long-run risk (Bansal and Yaron, 2004; Gürkaynak et al., 2005b) which, together

with recursive preferences, have been highlighted in the literature as important in order to

explain many financial moments in consumption-based asset pricing models.

2.1 Firms

A perfect competitive representative firm produces the final good yt. This final good is an

aggregate of a continuum of intermediate goods yj,t and given by the function

yt =

(∫ 1

0

y
θp−1

θp

j,t dj

) θp
1−θp

(1)

with θp > 1 the intratemporal elasticity of substitution across the intermediate goods. The

competitive, representative firm takes the price of output, Pt, and the price of inputs, Pt(j),

as given. The resulting demand function for the intermediate good is

yj,t =

(
Pj,t
Pt

)−θp
yt (2)

and the aggregate price level is defined as

Pt =

(∫ 1

0

P
1−θp
j,t dj

) 1
1−θp

(3)

and gross inflation is πt = Pt/Pt−1.

The intermediate good j is produced by a monopolistic competitive firm with the follow-

ing Cobb-Douglas production function

yj,t = exp{at}kαj,t−1 (ztlj,t)
1−α − z+

t Ωt (4)

where kj,t and lj,t denote capital services and the amount of labor used for production by the

jth intermediate good producer, respectively. The parameter α denotes the output elasticity

with respect to capital and Ωt the fixed costs of production. The variable exp{at} refers to

6



a stationary technology shock, where at is described by the following AR(1) process

at = ρaat−1 + σaεa,t, with εa,t
iid∼ N (0, 1) (5)

The variable zt depicts a stochastic aggregate productivity trend. We include this non-

stationary productivity shock to allow for a source of real long-run risk. As put forward

by Bansal and Yaron (2004), the presence of real long-run risk is important in order to

explain many financial moments in a consumption-based asset pricing model. We assume

that exp{µz,t} = zt/zt−1 and let

µz,t = (1− ρz) µ̄z + ρzµz,t−1 + σzεz,t, with εz,t
iid∼ N (0, 1) (6)

The economy has two sources of growth. Alongside the stochastic trend in productivity

zt, the economy also faces a deterministic trend in the relative price of investment Υt with

exp{µ̄Υ} = Υt/Υt−1. We follow Altig, Christiano, Eichenbaum, and Linde (2011) and define

z+
t = Υ

α
1−α
t zt, which can be interpreted as an overall measure of technological progress in the

economy. The overall trend in the economy is characterized by

µz+,t =
α

1− αµ̄Υ + µz,t (7)

Finally, we scale Ωt by z+
t to ensure the existence of a balanced growth path and let produc-

tion costs be time-varying as proposed by Andreasen (2011). In our model, such variations

in firms’ fixed production costs represent real supply shocks by assuming that

log

(
Ωt

Ω̄

)
= ρΩ log

(
Ωt−1

Ω̄

)
+ σΩεΩ,t, with εΩ,t

iid∼ N (0, 1) (8)

Following Calvo (1983), intermediate good firms are subject to staggered price setting,

i.e., they are allowed to adjust their prices only with probability (1− γp) each period. If a

firm cannot re-optimize, its price evolves according to the indexation rule: Pj,t = Pj,t−1π
ξp
t−1.

When the firm is able to optimally adjust its price, the firm sets the price p̃t = Pj,t to

maximize the value of its expected future dividend stream subject to the demand it faces

and taking into account the indexation rule and the probability of not being able to readjust.

The first order conditions of this maximization problem are

Kt = ytp̃
−θp
t + γpEt


Mt+1

(
π
ξp
t

πt+1

)1−θp (
p̃t
p̃t−1

)−θp
Kt+1


 (9)

7



and

θp − 1

θp
Kt = ytmctp̃

−θp−1
t + γpEt


Mt+1

(
π
ξp
t

πt+1

)−θp (
p̃t
p̃t−1

)−θp−1
θp − 1

θp
Kt+1


 (10)

which is the same for all firms that can adjust their price in period t. Moreover, the variable

Mt+1 represents the real stochastic discount factor of the representative household from

period t to t+ 1 and mct the real marginal costs of the intermediate good firm. In sum, the

aggregate price index evolves according to

1 = γp

(
π
ξp
t−1

πt

)1−θp

+ (1− γp) (p̃t)
1−θp (11)

2.2 Households

We assume that the representative household has recursive preferences as postulated by

Epstein and Zin (1989, 1991) and Weil (1989). Following Rudebusch and Swanson (2012),

the value function of the household can be written as

Vt =





ut + β
(
Et
[
V 1−σEZ
t+1

]) 1
1−σEZ if ut > 0 for all t

ut − β
(
Et
[
(−Vt+1)1−σEZ]) 1

1−σEZ if ut < 0 for all t
(12)

where ut is the household’s period utility kernel and β ∈ (0, 1) the subjective discount factor.

For σEZ > 0, these preferences allow us to disentangle the household’s risk aversion from its

intertemporal elasticity of the substitution (IES). For σEZ = 0, eq. (12) reduces to standard

expected utility.

Similarly to Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2017), the utility

kernel takes the following functional form

ut = exp{εb,t}
[

1

1− γ

((
ct − bht
z+
t

)1−γ

− 1

)
+

ψL
1− χ (1− lt)1−χ

]
(13)

with consumption ct, the predetermined stock of consumption habits ht, hours worked lt,

and preference parameters γ, χ, and ψL. The habit stock is external to the household,

thus we set ht = Ct−1, the level of aggregate consumption in the previous period. The

parameter b ∈ (0, 1) controls the degree of external habit formation. The presence of habit

formation enables the model to match macroeconomic as well as asset pricing moments

jointly as discussed in the literature (see, for example, Hördahl, Tristani, and Vestin, 2008;

8



van Binsbergen et al., 2012). The variable exp{εb,t} represents a preference shock, where εb,t

evolves according to the process

εb,t = ρbεb,t−1 + σbεb,t, with εb,t
iid∼ N (0, 1) (14)

As described above, the variable z+
t represents the overall level of technology in the econ-

omy and, by expressing habit-adjusted consumption relative to this trend, the utility kernel

ensures a balanced growth path (see, for example, An and Schorfheide, 2007).

The household’s real period-by-period budget constraint reads

ct +
It
Υt

+ bt + Tt = wtlt + rkt kt−1 +
bt−1 exp

{
Rf
t−1

}

πt
+

∫ 1

0

Πt (j) dj (15)

where the left-hand side represents the household’s resources spent on consumption, invest-

ment It, a lump-sum tax Tt, and a one-period bond bt that accrues the risk-free nominal

interest Rf
t in the following period. The right-hand side of eq. (15) describes the income of

the household in period t. It consists of labor income wtlt with wt the real wage, income from

capital services sold to firms last period rkt kt−1, the pay-off from bonds issued one period

before bt−1. Finally, the term Π (j) represents the income from dividends of monopolistically

competitive intermediate firms – indexed by j – owned by households.

The households own the economy-wide physical capital stock, which accumulates accord-

ing to the following law of motion

kt = (1− δ) kt−1 + exp{εi,t}
(

1− ν

2

(
It
It−1

− exp{µ̄z+ + µ̄Υ}
)2
)
It (16)

where δ is the depreciation rate and ν ≥ 0 introduces investment adjustment costs as in

Christiano et al. (2005). The term exp{µ̄z+ + µ̄Υ} ensures that the investment adjustment

costs are zero along the balanced growth path. Following Justiniano, Primiceri, and Tam-

balotti (2010), the variable exp{εi,t} represents an investment shock which measures the

exogenous variation in the efficiency with which the final good can be transformed into

physical capital and thus into tomorrow’s capital input, where εi,t evolves according to the

process:

εi,t = ρiεi,t−1 + σiεi,t, with εi,t
iid∼ N (0, 1) (17)

9



2.3 Monetary Policy

We follow Rudebusch and Swanson (2008, 2012) and assume that monetary policy sets the

one-period nominal interest rate Rf
t by following a Taylor-type policy rule expressed annually

4Rf
t = 4·ρRRf

t−1+(1− ρR)

(
4r̄real + 4 log πt + ηy log

(
yt
z+
t ȳ

)
+ ηπ log

(
πt
π∗t

))
+σmεm,t (18)

where r̄real is the real interest rate at the deterministic steady state and ρR, ηy, and ηπ are

policy parameters that characterize the systematic response of the central bank. The term

εm,t represents a shock to the nominal interest rate which is assumed to be iid normally

distributed with mean 0 and variance 1. Monetary policy aims to stabilize the inflation

gap, log (πt/π
∗
t ), and the output gap, log

(
yt/z

+
t ȳ
)
. The output gap is characterized by the

deviation of actual output from its balanced growth path. The inflation gap is characterized

by the deviation of inflation from the central bank’s inflation target π∗t . Rudebusch and

Swanson (2012) interpret changes in the inflation target as long-run nominal (inflation) risk

and show that the existence of such long-run risk is helpful in explaining the historical U.S.

term premium. We follow Gürkaynak et al. (2005b) and Rudebusch and Swanson (2012)

and assume that the inflation target is time-varying and is described by the following law of

motion

log π∗t − 4 log π̄ = ρπ
(
log π∗t−1 − 4 log π̄

)
+ 4ζπ (log πt−1 − log π̄,) + σπεπ,t (19)

with επ,t representing a shock to the inflation target, assumed iid normal with mean 0 and

variance 1.

2.4 Aggregation and Market Clearing

The aggregate resource constraint in the goods market is given by

p+
t yt = exp{at}kαt−1 (ztlt)

1−α − z+
t Ωt (20)

where lt =
∫ 1

0
l (j, t) dj and kt =

∫ 1

0
k (j, t) dj are the aggregate labor and capital inputs,

respectively. The term p+
t =

∫ 1

0

(
Pj,t
Pt

)−θp
dj measures the price dispersion arising from

staggered price setting. Price distortion follows the law of motion

p+
t = (1− γp) (p̃t)

−θp + γp

(
π
ξp
t−1

πt

)−θp
p+
t−1 (21)

10



Finally, the economy’s aggregate resource constraint implies that

yt = ct +
It
Υt

+ gt (22)

where gt = ḡz+
t exp{εg,t} represents government consumption expenditures, which are grow-

ing with the economy and are financed by lump-sum taxes gt = Tt. The variable exp{εg,t}
represents an exogenous shock to government consumption with εg,t evolving according to

the following AR(1) process

εg,t = ρgεg,t−1 + σgεg,t, with εg,t
iid∼ N (0, 1) (23)

2.5 The Nominal and Real Term Structures

The derivation of the nominal and real term structure in our model is identical to the

procedure described, for example, by Rudebusch and Swanson (2008, 2012) and Andreasen

(2012a). Specifically, the price of any financial asset equals the sum of the stochastically

discounted state-contingent payoffs of the asset in period t+1 following standard no-arbitrage

arguments. For example, the price of a default free n-period zero-coupon bond that pays

one unit of cash at maturity satisfies

Pn,t = Et
[
M$

t,t+n1
]

(24)

= Et
[
M$

t,t+1Pn−1,t+1

]

where M$
t,t+1 is the household’s nominal stochastic discount factor, which has the following

functional form

M$
t,t+1 = β

λt+1

λtπt+1

(Vt+1)−σEZ Et

[
V

σEZ
1−σEZ
t+1

]
(25)

with λt the marginal utility of consumption. Additionally, the continuously compounded

yield to maturity on the n-period zero-coupon nominal bond is defined as

exp
{
−nR$

n,t

}
= P $

n,t (26)

Following the literature (e.g. Rudebusch and Swanson, 2012), we define the term premium

on a long-term bond as the difference between the yield on the bond and the unobserved

risk-neutral yield for that same bond. Similarly to eq. (24), this risk-neutral bond price, P̂n,t,

which pays also one unit of cash at maturity, is defined as

P̂n,t = exp
{
−Rf

t

}
Et

[
P̂n−1,t+1

]
(27)

11



In contrast to eq. (24), discounting is performed using the risk-free rate (with Rf
t equal to

the expression R1,t) rather than the stochastic discount factor. Accordingly, the nominal

term premium on a bond with maturity n is given by

TP $
n,t =

1

n

(
log P̂n,t − logP $

n,t

)
(28)

Similarly, we can derive the yield to maturity of a real bond Rn,t as well a the price of

risk-neutral real bond. Hence, it is straightforward to solve also for the real term premium

TPn,t of a bond with maturity n. Finally, we follow the literature and define inflation risk

premia TP π
n,t in our model as

TP π
n,t = TP $

n,t − TPn,t (29)

3 Model Solution and Estimation

3.1 Solution Method

We adopt the method of Meyer-Gohde (2016) to solve the model. This approximation ad-

justs a linear in states approximation for risk and provides derivations for the approximation

around the means of the endogenous variables approximated out to a finite moment of the

underlying stochastic driving forces.5 This allows us to use the standard set of macroecono-

metric tools for estimation and analysis of linear models, without limiting the approximation

to the certainty-equivalent approximation around the deterministic steady state. We adjust

the points and slopes of the decision rules for risk out to the second moments of the underly-

ing stochastics to capture both constant and time-varying risk premium, as well as the effects

of conditional heteroskedasticity (e.g. van Binsbergen et al., 2012). Unlike standard higher

order polynomial perturbations6 or affine approximation methods,7 this linear in states ap-

proximation gives us significant computational advantages for iterative calculations such as

the Metropolis-Hastings algorithm we will use to sample from the posterior distribution of

5Meyer-Gohde (2016) provides derivations for adjustments around the deterministic and stochastic steady
states, along with those around the mean that we derive and apply here, accuracy checks and formal justi-
fications for the method.

6Among others, recent third order perturbation approximations for DSGE models of the term struc-
ture include Rudebusch and Swanson (2008, 2012), van Binsbergen et al. (2012) Andreasen (2012a), and
Andreasen et al. (2017).

7These approaches separate the macro and financial variables, generally using a (log) linear approximation
of the former and an affine approximation for the yield curve following the empirical finance literature. Bonds
are priced in an arbitrage free setup using either the endogenous pricing kernel implied by households’
stochastic discount factors, as Dew-Becker (2014), Bekaert, Cho, and Moreno (2010), and Palomino (2012),
or an estimated exogenously specified kernel, as Hördahl, Tristani, and Vestin (2006) , Hördahl and Tristani
(2012), Ireland (2015), Rudebusch and Wu (2007), Rudebusch and Wu (2008).
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the parameters while maintaining the endogenous pricing of risk implied by agents’ optimiz-

ing behavior. Appendix B provides a self-contained overview of the derivations involved in

this approximation.

The tension between the nonlinearity need to capture the time varying effects of risk

underlying asset prices on the one hand and the difficulties bringing nonlinear estimation

routines such as the particle filter to bear on such models on the other is highlighted by

van Binsbergen et al. (2012), who model inflation as exogenous in a New Keynesian model

to make their Bayesian likelihood estimation tractable. The advantage of a linear in state

approximation for estimation has also been noted by, e.g., Ang and Piazzesi (2003), Hamil-

ton and Wu (2012), Dew-Becker (2014). Our approach compromises between the goals of

nonlinearity in risk to capture financial variables and the endogenous stochastic discount

factor to price financial variables consistent with the macroeconomy on the one hand, and

the need for linearity in states to make the estimation of medium scale policy relevant mod-

els feasible on the other. To further reduce the computational burden, we apply the PoP

method of Andreasen and Zabczyk (2015) that solves the model in a two-step fashion. First,

the policy rules for the macro side, including the pricing kernel and the nominal short rate,

are approximated and then the financial variables are solved for using this policy function.

It is important to note that this is not a further approximation, but rather the recognition

that the equations that price different maturities such as eq. (24) are forward recursions that

do not enlarge the state space.

3.2 Data

We estimate the model with quarterly U.S. data from 1983:q1 to 2007:q4. Thus, our sample

covers the Great Moderation, stopping right before the onset of the Great Recession. This

period is chosen specifically for two reasons. First, it is widely accepted in the literature that

the U.S. faced a systematic change in monetary policy after Paul Volcker became chairman

of the Federal Reserve (e.g. Clarida, Gaĺı, and Gertler, 2000). Second, the start of the

Great Recession, the financial crisis of 2008, along with the zero interest policy rates that

prevailed from December 2008 onward marks another structural change in U.S. monetary

policy. While the systematic behavior of monetary policy is an important driver of the yield

curve, as pointed out, for example, by Rudebusch and Swanson (2012), we chose a time

episode which is characterized by a relatively stable monetary policy regime.8

Our estimation is based on four macroeconomic time series complemented by six time

series from the nominal yield curve and two time series of survey data on interest rate

8See, for example, Bikbov and Chernov (2013) and Bianchi, Kung, and Morales (2016) for an investigation
of policy regime changes and the term structure of interest rates.
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forecasts.9 The macroeconomic dynamics are characterized by real GDP growth, real private

investment growth, real private consumption growth, and annualized GDP deflator inflation

rates. While the last is measured in levels, the remaining variables are expressed in per capita

log-differences using the civilian noninstitutional population over 16 years (CNP16OV) series

from the U.S. Department of Labor, Bureau of Labor Statistics.

The nominal yield curve is measured by the 1-quarter, 1-year, 3-year, 5-year, and 10-

year annualized interest rates of U.S. Treasury bonds. With the exception of the 1-quarter

interest rate, the data are from Adrian et al. (2013) which are identical to the otherwise

often used time series by Gürkaynak, Sack, and Wright (2007). For the 1-quarter maturity,

we use the 3-month Treasury Bill rate from the Board of Governors of the Federal Reserve

System. To have a consistent description of the yield curve, we use this interest rate as the

policy rate (Rf
t = R$

1,t ) in our model instead of the effective Fed funds rate.

Survey data on interest rate forecasts have shown to be helpful to improve the identifi-

cation of term structure models (see, for example, Kim and Orphanides, 2012; Andreasen,

2011). For this reason, we incorporate 1 and 4-quarter ahead expectations of the 3-month

Treasury Bill into the estimation. The data are taken from the Survey of Professional Fore-

casters.

3.3 Bayesian Estimation

In this subsection, we present the prior choices for the estimated parameters as well as the

calibration of the parameters we choose not to estimate.

Given the choice of our observable variables and the characteristics of our model, for

example, the highly stylized labor market, some of the model parameters can hardly be

expected to be identified. These parameters are calibrated either following the literature or

related to our observables. In particular, we calibrate the steady state growth rates, z̄+ and

Ψ̄ to 0.54/100 and 0.08/100 which implies growth rates of 0.54 and 0.62 percent for GDP and

investment as in our sample. Moreover, we calibrate the capital depreciation rate, δ, to 10%

per year and the share of capital, α, in the production function to 1/3. We also assume that

in the deterministic steady state, the labor supply l̄ and government consumption to GDP

ratio ḡ/ȳ are 1/3 and 0.19, respectively. The discount rate β is set equal to 0.99 and the

steady state of the elasticity of substitution between the intermediate goods θp is equal to 6,

implying a markup of 20%. Following Andreasen et al. (2017), we set the price indexation

ξp = 0 and calibrate the Frisch elasticity of labor supply FE to 0.5. Hence, we can solve

recursively for χ = 1/FE ·
(
1/l̄ − 1

)
. Table 1 summarizes the parameter calibration.

9See Appendix C for details on the source and a description of all data used in this paper.
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Description Symbol Value

Technology trend in percent z̄+ 0.54/100
Investment trend in percent Ψ̄ 0.08/100
Capital share α 1/3
Depreciation rate δ 0.025
Price markup θp/(θp − 1) 1.2
Price indexation ξp 0
Discount factor β 0.99
Frisch elasticity of labor supply FE 0.5
Labor supply l̄ 1/3
Ratio of government consumption to output ḡ/ȳ 0.19

Table 1: Parameter calibration.

The remaining parameters of the model are estimated. Since the focus of the paper is to

jointly explain macroeconomic and asset pricing facts, we pay special attention to selected

first and second moments when estimating the DSGE model. As described in Kliem and

Uhlig (2016), the practical problem boils down to having just one observation on the means,

e.g., of the slope, curvature, and level of the yield curve, while there are many observations

to identify parameters crucial for the macroeconomic dynamics of the model. To mitigate

this imbalance, we apply an endogenous prior approach similar to Del Negro and Schorfheide

(2008) and Christiano, Trabandt, and Walentin (2011). In particular, we use a set of initial

priors, p(θ), where the priors are independent across parameters. Then, we use two sets of

first and second moments from a pre-sample.10 We treat the first and second moments of

interest separably in two blocks to capture potentially different precisions of beliefs regarding

first and second moments. Finally, the product of the initial priors, the likelihood of selected

first moments, and the likelihood of selected second moments forms the endogenous prior

distribution which we use for the estimation of the model. In the subsequent paragraphs,

we describe the method of endogenously formed priors regarding first and second moments

as well as its practical application in the paper.

Following Del Negro and Schorfheide (2008), we assume F̂ to be a vector that collects

the first moments of interest from our pre-sample and FM (θ) be a vector-valued function

which relates model parameters and ergodic means

F̂ = FM (θ) + η (30)

10In practice, we follow Christiano et al. (2011) and use the actual sample as our pre-sample as no other
suitable data is available because of the monetary regime changes immediately before and after our sample.
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where η is a vector of measurement errors. In our application, we assume that the error

terms η are independently and normally distributed. Hence, we express eq. (30) as a quasi-

likelihood function which can be interpreted as the conditional density

L
(
FM (θ) |F̂ , T ∗

)
= exp

{
−T

∗

2

(
F̂ − FM (θ)

)′
Σ−1
η

(
F̂ − FM (θ)

)}
(31)

= p
(
F̂ |FM (θ) , T ∗

)

This quasi-likelihood is small for values of θ that lead the DSGE model to predict first mo-

ments that strongly differ from the measures of the pre-sample. The parameter T ∗ captures,

along with the standard deviation of η, the precision of our beliefs about the first moments.

In practice we set T ∗ to the length of the pre-sample.

For the application in this paper, we assume that the vector F̂ contains the mean of

inflation and the means of proxies for the level, slope, and curvature factors of the yield

curve. We include the mean of inflation because the non-linearities in our model impose

strong precautionary motives that push the predicted ergodic mean of inflation away from

its deterministic steady state, π̄, as is also discussed by Tallarini (2000) and Andreasen

(2011). Regarding L
(
FM (θ) |F̂

)
, we assume that Et [400π|θ] is normally distributed with

mean 2.5 and variance 0.1.

We follow, e.g., Diebold, Rudebusch, and Aruoba (2006) and specify common proxies

for the level, slope, and curvature factors of the yield curve. Specifically, the proxy for

the level factor is
(
R$

1,t +R$
8,t +R$

40,t

)
/3, with all yields expressed in annualized terms and

the nominal yield of the 1-quarter Treasury Bond equal to the policy rate in the model.

Additionally, the proxies for the slope and curvature factors are defined as R$
1,t − R$

40,t and

2R$
8,t−R$

1,t−R$
40,t, respectively. Regarding L

(
FM (θ) |F̂

)
, we assume that the ergodic mean

of each factor is normally distributed, with the mean equal to its empirical counterpart of

the pre-sample. Moreover, we assume that the means of level, slope, and curvature have a

variance of 22, 12, and 9 basis points respectively. Thus, the means and variances can be

interpreted as F̂ value and the variance of the measurement error η in eq. (30).

Additionally, we use the second moments of macroeconomic variables, about which we

have a priori knowledge, to inform our prior distribution and apply the approach of Chris-

tiano et al. (2011). This approach uses classical large sample theory to form a large sample

approximation to the likelihood of the pre-sample statistics. The approach is conceptually

similar to the one proposed by Del Negro and Schorfheide (2008), but differs in some im-

portant respects. Specifically, Del Negro and Schorfheide (2008) focus on the model-implied

p-th order vector autoregression, which implies that the likelihood of the second moments
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is known exactly conditional on the DSGE model parameters and requires no large-sample

approximation in contrast to the approach by Christiano et al. (2011). Yet, the latter ap-

proach is more flexible insofar as the statistics to target are concerned. Accordingly, let S

be a column vector containing the second moments of interest, then, as shown by Christiano

et al. (2011) under the assumption of large sample, the estimator of S is

Ŝ ∼ N

(
S0,

Σ̂S

T

)
(32)

with S0 the true value of S, T the sample length, and Σ̂S the estimate of the zero-frequency

spectral density. Now, let SM (θ) be a function which maps our DSGE model parameters θ

into S. Then, for n targeted second moments and sufficiently large T , the density of Ŝ is

given by

p
(
Ŝ|θ
)

=

(
T

2π

)n
2 ∥∥∥Σ̂S

∥∥∥
− 1

2
exp

{
−T

2

(
Ŝ − SM (θ)

)′
Σ̂−1
S

(
Ŝ − SM (θ)

)}
(33)

In our application, S is a set of variances of macroeconomic variables (GDP growth, con-

sumption growth, investment growth, inflation, and the policy rate). In sum, the overall

endogenous prior distribution takes the following form

p
(
θ|F̂ , Ŝ, T ∗

)
= C−1p (θ) p

(
F̂ |FM (θ) , T ∗

)
p
(
Ŝ|θ
)

(34)

where p (θ) is the initial prior distribution and C a normalization constant. Two points are

noteworthy. First, while the initial priors are independent across parameters, as is typical

in Bayesian analysis, the endogenous prior is not independent across parameters. Second,

the normalization constant C is necessary for, e.g., posterior odds calculation but not for

estimating the model. Accordingly, we do not calculate this constant, which has otherwise

to be approximated (see, for example, Del Negro and Schorfheide, 2008; Kliem and Uhlig,

2016). So, the posterior distribution is given by

p
(
θ|X, F̂ , Ŝ, T ∗

)
∝ p

(
θ|F̂ , Ŝ, T ∗

)
p (X|θ) (35)

with p (X|θ) the likelihood of the data conditional on DSGE model parameters θ.

Table 2 summarizes the initial prior distributions of the remaining parameters. While

the prior distributions for most of the parameters are chosen following the literature, it is

noteworthy to highlight some deviations. First, we do not use a prior for the preference

parameters, γ and αEZ , directly, but rather impose priors for the intertemporal elasticity

17



Name Symbol Domain Density Para(1) Para(2)

Relative risk aversion RRA/100 R+ Uniform 0 20
Calvo parameter γp [0, 1) Beta 0.5 0.1
Investment adjustment ν R+ Gamma 4.0 0.75
Habit formation b [0, 1) Beta 0.5 0.1
Intertemporal elas. substitution IES [0, 1) Beta 0.25 0.1
Steady state inflation 100 (π̄ − 1) R+ Uniform 0 6

Interest rate AR coefficient ρR [0, 1) Beta 0.8 0.1
Interest rate inflation coefficient ηπ R+ Gamma 1 0.15
Interest rate output coefficient ηy R+ Gamma 0.5 0.1
Inflation target coefficient 100ζπ [0, 1) Beta 0.3 0.1

AR coefficient technology ρa [0, 1) Beta 0.75 0.1
AR coefficient preference ρb [0, 1) Beta 0.75 0.1
AR coefficient investment ρi [0, 1) Beta 0.75 0.1
AR coefficient gov. spending ρg [0, 1) Beta 0.75 0.1
AR coefficient inflation target ρπ [0, 1) Beta 0.95 0.025
AR coefficient long-run growth ρz [0, 1) Beta 0.75 0.1
AR coefficient fixed costs ρΩ [0, 1) Beta 0.75 0.1

S.d. technology 100σa R+ InvGam 0.5 2
S.d. preference 100σb R+ InvGam 0.5 2
S.d. investment 100σi R+ InvGam 0.5 2
S.d. monetary policy shock 100σm R+ InvGam 0.5 2
S.d. government spending 100σg R+ InvGam 0.5 2
S.d. inflation target 100σπ R+ InvGam 0.06 0.03
S.d. long-run growth 100σz R+ InvGam 0.5 2
S.d. fixed costs 100σΩ R+ InvGam 0.5 2

ME 1-year T-Bill 4R$
4,t R+ InvGam 0.005 ∞

ME 2-year T-Bill 4R$
8,t R+ InvGam 0.005 ∞

ME 3-year T-Bill 4R$
12,t R+ InvGam 0.005 ∞

ME 5-year T-Bill 4R$
20,t R+ InvGam 0.005 ∞

ME 10-year T-Bill 4R$
40,t R+ InvGam 0.005 ∞

ME 1Q-expected policy rate 4Et

[
Rft,t+1

]
R+ InvGam 0.005 ∞

ME 4Q-expected policy rate 4Et

[
Rft,t+4

]
R+ InvGam 0.005 ∞

Table 2: Initial prior distribution. Para(1) and Para(2) correspond to means and standard
deviations for the Beta, Gamma, Inverted Gamma, and Normal distributions and to the
lower and upper bounds for the Uniform distribution.
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of substitution, IES, and the coefficient relative risk aversion, RRA, and solve for the

underlying parameters. The intertemporal elasticity of substitution, IES, in our model

with external habit formation is

IES =
1

γ

[
1− b

exp (z̄+)

]
(36)

We follow Swanson (2012) by using his closed-form expressions for risk aversion, RRA, which

takes into account that households can vary their labor supply. Hence, our model implies

RRA =
γ

1− b
exp(z̄+)

+ γ
χ

(
1− l̄

)
w̄
c̄

+ αEZ
1− γ

1− b
exp(z̄+)

−
(

1− b
exp(z̄+)

)γ
c̄γ−1 +

w̄(1−l̄)
c̄

1−γ
1−χ

(37)

where l̄ is the steady state labor supply, while c̄ and w̄ are consumption and the real wage

in the deterministic steady state, respectively. Given the wide range of different estimates

for relative risk aversion in the macro- and finance literatures, we initially assume a uniform

prior with support over the interval 0 to 2000; our endogenous prior approach, however, does

impose an informative prior. We proceed analogously for the deterministic steady state of

inflation and choose an uninformative initial prior distribution. Finally, we add measurement

errors to the 1-year, 2-year, 3-year, 5-year, and 10-year Treasury bond yields as well as to the

expected policy rate expected 1 and 4-quarters ahead. By adding measurement errors along

the yield curve, we are following the empirical term structure literature (see, for example,

Diebold et al., 2006) and the measurement errors on the expectations of the short rate align

the imperfect fit of the data with the model’s rational expectation assumption.

4 Estimation Results

In the following section, we present the estimated parameters and discuss the predicted

first and second moments of endogenous variables. Additionally, we compare the historical

components of the ten-year yield predicted by our model with estimates from the literature.

4.1 Parameter Estimates

As discussed in section 3.1, unlike standard perturbations (e.g. Andreasen et al., 2017), our

solution method maintains linearity in states and shocks which allows us to use standard

Bayesian techniques to estimate the model. In particular, we estimate the posterior mode

of the distribution and employ a random walk Metropolis-Hasting algorithm to simulate the

posterior distribution of the parameters and to quantify the uncertainty of our estimates
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of the same. In particular, we run two chains, each with 100,000 parameter vector draws

where the fist 50% have been discarded. Table 3 provides posterior statistics of the estimated

parameters, e.g., the posterior mode, posterior mean and the 90% posterior credible set.11

The results indicate that the posterior distributions of all structural parameters are well

approximated and differ from the initial prior distribution. In the following, we discuss some

key parameters in greater detail.

Name Symbol Mode Mean 5% 95%

Relative risk aversion RRA 89.860 91.427 75.581 108.489
Calvo parameter γp 0.853 0.855 0.843 0.866
Investment adjustment ν 1.417 1.440 1.204 1.667
Habit formation b 0.685 0.679 0.614 0.741
Intertemporal elas. substitution IES 0.089 0.089 0.077 0.101
Steady state inflation 100 (π̄ − 1) 1.038 1.034 0.981 1.091

Interest rate AR coefficient ρR 0.754 0.752 0.718 0.786
Interest rate inflation coefficient ηπ 3.124 3.164 2.839 3.491
Interest rate output coefficient ηy 0.156 0.159 0.114 0.204
Inflation target coefficient 100ζπ 0.210 0.242 0.109 0.366

AR coefficient technology ρa 0.366 0.356 0.304 0.412
AR coefficient preference ρb 0.820 0.817 0.793 0.843
AR coefficient investment ρi 0.956 0.955 0.949 0.961
AR coefficient gov. spending ρg 0.910 0.909 0.880 0.937
AR coefficient inflation target ρπ 0.934 0.925 0.901 0.950
AR coefficient long-run growth ρz 0.630 0.611 0.500 0.729
AR coefficient fixed cost ρΩ 0.928 0.928 0.922 0.933

S.d. technology 100σa 2.333 2.460 1.929 2.985
S.d. preference 100σb 4.878 4.880 4.180 5.570
S.d. investment 100σi 2.516 2.523 2.337 2.689
S.d. monetary policy shock 100σm 0.561 0.572 0.494 0.653
S.d. government spending 100σg 2.010 2.018 1.825 2.220
S.d. inflation target 100σπ 0.167 0.180 0.130 0.226
S.d. long-run growth 100σz 0.345 0.353 0.253 0.446
S.d. fixed cost 100σΩ 9.766 9.705 9.022 10.372

ME 1-year T-Bill 400R$
4,t 0.185 0.188 0.161 0.214

ME 2-year T-Bill 400R$
8,t 0.084 0.085 0.071 0.100

ME 3-year T-Bill 400R$
12,t 0.078 0.081 0.067 0.095

ME 5-year T-Bill 400R$
20,t 0.152 0.156 0.130 0.181

ME 10-year T-Bill 400R$
40,t 0.287 0.297 0.251 0.346

ME 1Q-expected policy rate 400Et

[
Rft,t+1

]
0.456 0.464 0.408 0.522

ME 4Q-expected policy rate 400Et

[
Rft,t+4

]
0.738 0.750 0.660 0.842

Table 3: Posterior statistics. Posterior means and parameter distributions are based on a
standard MCMC algorithm with two chains of 100,000 parameter vector draws each, 50% of
the draws used for burn-in, and a draw acceptance rates about 1/3.

11Figures 10 and 11 in the appendix illustrate the posterior distribution of each parameter in comparison
to its initial prior distribution.
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We find a low steady-state intertemporal elasticity of substitution (IES = 0.089) and a

high relative risk aversion (RRA ≈ 90). Both estimates are common in much of the exist-

ing macro-finance literature (see, for example, van Binsbergen et al., 2012; Rudebusch and

Swanson, 2012). However, it is difficult to compare these numbers. First, all these studies

use different samples for the estimation, whereas our study covers just the Great Modera-

tion. Second, the models differ regarding the underlying structural shocks of the economy.

As pointed out by van Binsbergen et al. (2012), models that feature a higher volatility

of shocks (higher risk) that increase the volatility of the stochastic discount factor need a

smaller amount of, e.g., relative risk aversion to match average bond yields. Nevertheless, our

estimates are high in comparison with risk aversion used in endowment economies or in com-

parison with micro-studies (Barsky, Juster, Kimball, and Shapiro, 1997). However, Malloy,

Moskowitz, and Vissing-Jørgensen (2009) show that risk aversion estimated for stockholders

in the U.S. is substantially lower than a representative agent using aggregate consumption.

The authors find that the estimated relative risk aversion increases to 81 when using aggre-

gate consumption. Alternatively, Barillas, Hansen, and Sargent (2009) argue that a small

amount of model uncertainty can substitute for the large degree relative risk aversion often

found in the literature.
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Figure 2: Observed and model implied nominal returns of treasury bills and returns of
expected short rates.

We estimate a quarterly deterministic steady state inflation of around 1.04% which is

substantially higher than the average observed inflation rate (0.64%). As mentioned before,

due to the non-linearities in our model, the difference is related to the household’s precau-

tionary motive in our model as also discussed by Tallarini (2000). However, we show in
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the subsequent subsection, that the approximated ergodic mean of inflation is similar to the

average U.S. inflation over our sample.

For the inflation target, we estimate ρπ = 0.93 and ζπ = 0.002. The latter coefficient is

similar to Rudebusch and Swanson (2012), while the former coefficient is slightly smaller,

implying a less persistent effect of nominal risk in our model. Moreover, we estimate a

moderate size of investment adjustment costs (ν = 1.4) and comparable estimates to the

literature for price stickiness (γp = 0.85) and external habit formation (b = 0.67). Finally,

we find that monetary policy puts more weight on stabilizing the inflation gap (ηπ = 3.13)

than on the output gap (ηy = 0.16) and smoothes changes in the policy rate (ρR = 0.75).

Figure 2 shows the historical time series (dash-dotted line) and the model implied

smoothed time series (solid line) for the seven variables estimated with measurement er-

ror. Note that we estimate small measurement errors along the yield curve. In particular,

the measurement errors range between 7 and 29 basis points, implying a correlation between

the smoothed model implied yields and the data of 0.99 or higher. The measurement errors

for the 1-quarter ahead and 1-year ahead expectations of the 3-month T-Bill are 45 and 74

basis points, respectively, delivering high correlations (0.94 and 0.98) of our model-based

expectations with the data from the Survey of Professional Forecasters.

4.2 Predicted Moments

In the following subsection, we begin our posterior analysis with respect to the predicted first

and second moments. Figure 3 shows the predicted ergodic means of the nominal yields in

relation to the means of the corresponding data. The figure illustrates the success of our es-

timation approach, with the a priori information about the level, slope, and curvature, based

on only 3-month, 2-year, and 10-year nominal yields, sufficient to estimate first moments for

all maturities.

Backus, Gregory, and Zin (1989) and den Haan (1995) formalized the bond-pricing puzzle

with the question of why the yield curve is upward sloping. This question refers to the idea

that long-term bond should carry an insurance-like negative risk premium, and therefore

the yield curve should be downward sloping. However, the data for nominal yields as well

as estimates for the nominal term premium suggest the opposite as does our model (see

Figure 4(b)). The mechanism behind this has already been described by, e.g., Rudebusch

and Swanson (2012): supply shocks move consumption and inflation in opposite directions,

imposing a negative correlation between the two. Thus, inflation reduces the real value

of nominal bonds precisely in states of low consumption when agents would particularly

value higher payouts, thereby generating a positive term premium. To this end, Piazzesi
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Figure 3: Nominal yield curve

and Schneider (2007) show that consumption and inflation were negatively correlated in the

period 1952-2004 for the U.S., which suggests that supply shocks play a relatively important

role in generating the upward sloping nominal term structure in the data and in our model.

The negative correlation between consumption growth and inflation can explain the pos-

itive slope in the nominal term structure by appealing to inflation risk, but absent another

mechanism cannot account for the real term structure. If it is solely inflation risk driving

the upward slope of the nominal term structure, then the real term structure should be

downward sloping as spells of low consumption growth will be associated with low real rates

(and hence high prices for real bonds). This gives agents a higher payout precisely when

they would value it highly and implying that real bonds should carry negative, insurance-like

risk premia. Nevertheless, as illustrated by Figures 4(a) and 4(c), our model also predicts

an upward-sloping real term structure which is in line with the literature (see, for example,

Gürkaynak et al., 2010; Chernov and Mueller, 2012). The mechanism in our model follows

that described in Wachter (2006) and Hördahl et al. (2008), as our households’ habit forma-

tion introduces a hump-shaped response of consumption. This makes consumption growth

positively autocorrelated while reducing agents’ precautionary saving motive for longer matu-

rities: households will seek to maintain their habit in the face of a slowdown in consumption,

drawing down their precautionary savings and driving down real bond prices, implying that

payouts on real bonds are negatively correlated with marginal utility and that real bonds de-

mand a positive risk premium. The precautionary motive is illustrated in Figure 4(a), where

the red line shows the real yield curve in absence of risk, i.e., at the deterministic steady

state. When confronted with risk, agents accumulate additional capital, driving down its

return. This reduction, however, is decreasing in the maturity due to the positive real risk

premium, resulting in our estimated upward sloping real term structure.
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(c) Real term premium
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(d) Inflation risk premium

Figure 4: Term structure of interest rates

Figure 4(d) shows that our model predicts an upward sloping inflation risk premium

consistent with recent estimates in the literature (see, for example, Abrahams et al., 2016),

with our ergodic mean term structure of inflation risk comfortably between the estimates of

Buraschi and Jiltsov (2005) and Chen et al. (2010). The ergodic mean of inflation risk is

approximately half the size of the real term premia for all maturities, consistent with Kim and

Wright’s (2005) estimates for the ten year inflation and real risk premia. Consequentially,

our results suggest that most of the average slope of the nominal term structure is related

to real rather than to inflation risk. Again, this finding is consistent with recent estimates

for the U.S. (see, for example, Kim and Wright, 2005) and is also qualitatively comparable

to the results by Hördahl and Tristani (2012) for the Euro area. So far most of the DSGE

models (see, for example, van Binsbergen et al., 2012; Swanson, 2016) generally attribute a

stronger insurance-like character to real bonds, that lead to flat or downward sloping real

yield curves.

Table 4 presents the first and second moments of the observables predicted by the model

as well as those contained in the data. As the predicted moments from the model are

population moments, we have calculated the corresponding population moments of the data
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Name Data Model
Mean S.d. Mean S.d.

GDP growth 0.540 0.593 0.540 0.803∗

[0.515, 0.764] [0.761, 0.838]
Consumption growth 0.610 0.435 0.540 0.559∗

[0.383, 0.515] [0.528, 0.587]
Investment growth 0.620 2.096 0.620 2.292∗

[1.796, 2.744] [2.120, 2.438]
Annualized inflation 2.496 1.022 2.469∗ 1.198∗

[0.840, 1.493] [2.418, 2.515] [1.136, 1.254]
Annualized policy rate 5.034 2.069 5.144∗ 2.861∗

[1.521, 3.927] [5.070, 5.222] [2.733, 3.026]

1-year T-Bill 5.577 2.334 5.515 2.574
[1.724, 4.417] [5.443, 5.588] [2.453, 2.733]

2-year T-Bill 5.896 2.373 5.900∗ 2.257
[1.699, 4.435] [5.828, 5.972] [2.144, 2.389]

3-year T-Bill 6.124 2.384 6.106 2.019
[1.699, 4.580] [6.035, 6.181] [1.914, 2.137]

5-year T-Bill 6.460 2.311 6.359 1.662
[1.611, 4.643] [6.287, 6.435] [1.582, 1.760]

10-year T-Bill 6.974 2.101 7.013∗ 1.150
[1.480, 4.634] [6.939, 7.086] [1.120, 1.253]

Table 4: Predicted first and second moments of selected macro and financial variables. Bold
moments are calibrated and moments appended with ∗ were used directly or indirectly to
form the endogenous prior.

by using a Bayesian vector autoregression model with two lags.12 The results illustrate that

our estimation approach delivers an ergodic mean of inflation comparable to the mean of

the data as intended and, as a result, captures households’ precautionary savings motives

appropriately. Moreover, the predicted moments regarding the macroeconomic variables are

in line with the data, highlighting the ability of our New Keynesian DSGE model to match

financial and macroeconomic moments jointly (see also Andreasen et al., 2017). Regarding

treasury bonds, our model misses the high volatility for longer maturities, but matches the

monotonic decrease in volatility with the maturity. This result in general equilibrium models

has been described in den Haan (1995) and is related to some missing source of persistence in

the model (see Hördahl et al., 2008). We do not see this, however, as a fatal shortcoming of

our analysis. Firstly, the uncertainty related to these population moments is quite high and,

12We fit a BVAR(2) to the observables by assuming a weak Normal-Whishart prior for the coefficients adn
covariance of the BVAR. For the comparison, we draw 1200 parameter vector draws from the posterior of the
BVAR as well as 1200 parameter vector draws from posterior distribution of the DSGE model. Appendix D
presents further statistics for the DSGE model.
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secondly, it rather illustrates the tension in the competing goals the model faces: matching

highly volatile nominal treasury bonds while predicting a very smooth inflation rate.

4.3 Model Implied Historical Fit

In the following subsection, we discuss our model implied historical time series for the nom-

inal term premium, break-even inflation rate, real rate, and inflation risk premium. It is

important to stress that these measures did not enter into our estimation and, instead, are

produced as estimated latent variables in our analysis. To judge the quality of our estimated

model, we contrast our estimates with various estimates from the literature. Following the

majority of the empirical literature, we limit our discussion to 10-year maturities.
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Figure 5: Decomposition of model implied 10-year nominal term premium over the full
sample.

Figure 5 shows the smoothed 10-year nominal term premium predicted by our model (see

also Figure 1) and its decomposition into real term premium and inflation risk premium. All

risk premia show the same steadily declining pattern. Over the sample, real term premia

contributed between 62% and 68% to the nominal term premium. Moreover, the inflation

risk premium declines until 1998, consistent with steadily declining inflation expectations

over this period.

In Figure 1, we compare our 10-year nominal term premium with several different promi-

nent estimates from the literature. As Rudebusch et al. (2007) show, all of the estimated

term premia, which they investigate, follow a similar pattern and are highly correlated. This

is also true for our extented sample which includes two more recent estimates by Adrian et al.
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(2013) and Bauer (2016).13 Table 5 presents the correlations between these five measures

of the term premium and the estimate of our model. Our estimate shows also a remark-

ably high correlation with all measures, but especially with those of Kim and Wright (2005)

and Bauer (2016) (0.94 and 0.93, respectively). Given that our model is arguably closest

in structure to the model used by Rudebusch and Wu (2008), we would have expected our

model to display a much higher correlation with their measure than it actually does. Also,

while the model by Rudebusch and Wu (2008) predicts a smooth term premium, all other

models including the model presented in this paper predict a much more volatile measure.
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S.d.

Bernanke et al. (2004) 1.000 1.294
Rudebusch and Wu (2008) 0.763 1.000 0.336
Kim and Wright (2005) 0.976 0.811 1.000 0.981
Adrian et al. (2013) 0.817 0.941 0.891 1.000 1.033
Bauer (2016) 0.853 0.734 0.936 0.885 1.000 1.182

Model 0.904 0.800 0.940 0.868 0.932 0.943

Table 5: Correlations among six measures of the 10-year term premium from 1984:q1-2005:q4.
The last column presents the standard deviation over the sample. Statistics related to the
estimates by Bauer (2016) are based on a shorter sample starting 1990.

The reason that our model produces a large and volatile term premium is similar to

explanations postulated in the recent literature (see, for example, Andreasen et al., 2017).

Beside the role of supply shocks in our model that generate a sizable term premium, the

presence of long-run nominal risk is important in generating a volatile term premium (see

Rudebusch and Swanson, 2012). Additionally, our model captures a channel recently postu-

lated by Andreasen et al. (2017), namely the role of steady-state inflation for the mean and

volatility of risk premia. In particular, steady-state inflation generates more heteroscedas-

ticity in the stochastic discount factor which eventually produces more volatile risk premia.

This channel is present despite the fact that the shocks in our model are all homoscedastic.

More specifically, the endogenously generated heteroscedasticity in the pricing kernel is a

byproduct of the heteroscedasticity in price dispersion due to positive steady-state inflation.

13The estimates by Bauer (2016) start in 1990, so all calculations using this estimate are restricted to a
shorter sample.
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Figure 6(a) compares our 10-year real rate with the estimates provided by Gürkaynak

et al. (2010) using TIPS data and those of Chernov and Mueller (2012) using survey-based

forecasting data. Both measures are not fully identical with the real rate measured by our

model, for example, while our real rates are based on GDP inflation the aforementioned

measures are based on CPI data. Also, our model has no role for a liquidity premium

component that is arguably a non-negligible component of TIPS (see, for example, Abrahams

et al., 2016). Nevertheless, our estimate captures the downward trend since the 1980s found

likewise in Chernov and Mueller (2012). Additionally, our estimate demonstrates a high

correlation with both (0.9 with Gürkaynak et al. (2010) and 0.94 with Chernov and Mueller

(2012)) of these alternative measures, derived from empirical reduced-form models.
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(a) Model implied 10-year real rates (red solid),
10-year TIPS of Gürkaynak et al. (2010) (black
dashed), and 10-year real rate of Chernov and
Mueller (2012)(blue dash-dotted).
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Figure 6: 10-year real interest rate and 10-year break-even rate.

Figure 6(b) shows the model implied 10-year break-even inflation rate. At the beginning

of the sample, the breakeven inflation rate declines continuously until 1998. From 1999

onward we find a stable breakeven rate fluctuating around 3 percent. Over this period,

our estimate is comparable in levels and pattern with those by Gürkaynak et al. (2010).

Moreover, the continuous decline in the model’s breakeven rate until 1998 is accompanied

by a decreasing inflation risk premium (see figure 5). This pattern is commensurate with

declining inflation expectations in this period.

In summary, our model-implied estimates of the components of 10-year bond yields

demonstrate a considerable alignment with various empirical estimates in the literature.

This alignment is all the more remarkable as these components of the yields were not used in
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our estimation procedure. This provides us with a high degree of confidence in our model’s

ability to replicate stylized term structure facts as we now turn to the structural analysis of

the effects of monetary policy on the term structure of interest rates and its components.

5 Monetary Policy Through the Lens of Our Model

In this section, we analyze the effects of monetary policy on term premia by distinguishing

between three different policy actions. First, a surprise shock to the policy rate via the

residual of the Taylor-rule. Second, a shock to the inflation target that might be interpreted

as a change in the systematic component of monetary policy as it affects agents’ perception of

inflation in the long run. Third, we investigate the effects of a commitment by the monetary

authority to a path for future short rates; i.e., forward guidance by means of a credible

announcement to change the policy rate in the future while holding it constant until then.

While this may seem a narrow aspect of recent experience with unconventional monetary

policy, Woodford (2012), for example, argues that even quantitative easing itself can at least

partially be interpreted as forward guidance through the signalling channel, building on

results by Krishnamurthy and Vissing-Jorgensen (2011) and Bauer and Rudebusch (2014).

Furthermore, forward guidance has been a component of standard monetary policy at major

central banks even before its explicit implementation since the financial crisis (see Gürkaynak

et al., 2005a). Technically, we implement this forward guidance scenario by altering the

Taylor rule in eq. (18) following Laséen and Svensson (2011), Del Negro, Giannoni, and

Patterson (2015), and others by adding a sequence of anticipated shocks to the Taylor rule

that allow the monetary authority to keep the policy rate upon announcement constant until

the announced interest rate change (here a cut) is implemented as follows

rft = R
(
rft−1, πt, yt

)
+ σm

(
εm,t +

K∑

k=1

εm,t+k

)
, εm,t+k

iid∼ N (0, 1) (38)

where R (·) characterizes the systematic response of monetary policy, εm,t is the usual con-

temporaneous policy shock, and
∑K

k=1 εm,t+k a sequence of policy shocks known to agents at

time t but that affect the policy rule k periods later, i.e., at time t+ k.

The three columns in Figure 7 contain the IRFs of macroeconomic variables to a surprise

shock to the policy rate (left column), to a surprise inflation target shock (middle column),

and to a four-quarter ahead forward guidance shock (right column). All shocks are normal-

ized to yield a median lowering of the policy rate by 50 basis points on impact (or in four

quarters for the forward guidance shock).
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Figure 7: Posterior impulse responses of macro variables to a surprise 50 basis point policy
rate cut, a surprise cut in the inflation target leading to a 50 basis point policy rate cut, and
forward guidance of a 50 basis point policy rate cut in 4 quarters. Shaded areas represent
the 90% and 68% posterior credible sets.
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As is standard in the literature, the expansionary policy due to surprise policy rate cut

(left column of Figure 7) leads to an increase in aggregate demand and its components as

well as inflation. As the policy rate begins to return to its mean level with inflation still

elevated, the resulting increase in expected real rates reverses the expansion, depressing

aggregate demand and its components, before the macroeconomy then settles back to its

mean position after around 10 quarters.

The middle column of Figure 7 shows the impulse responses to a surprise inflation target

shock. The reduction in the inflation target is accompanied with a nearly two annualized

percentage point reduction in inflation, roughly the same magnitude as the reduction of the

target, which corresponds to a substantial change in the systematic behavior of monetary

policy. The lowering of the policy rate is hump shaped with the maximal decrease of about

110 annualized basis points occurring about a year after the lowering of the inflation target.

This lowering of the policy rate is not sufficient to overcome the initial contractionary effects

of the lowered inflation target and associated disinflation as can be seen by the negative

responses on aggregate demand. Moreover, our results illustrate that a shock to the inflation

target is much more long lasting and therefore has stronger effects on business cycle and lower

frequencies, in contrast to a simple innovation to the Taylor-rule which quickly dissipates.

This confirms the interpretation of Rudebusch and Swanson (2012) that a change in the

inflation target, or more generally a change in the systematic behavior of monetary policy,

introduces long-run nominal risk into the economy.

The right column in Figure 7 shows the evolution of macroeconomic variables following

the forward guidance experiment. Similarly to most studies, we find that forward guidance

increases macroeconomic activity and substantially increases inflation. Output and inflation

both increase on impact with output reaching its peak after 3 quarters and falling slightly

below its mean value after 12 quarters. The response to the announcement is driven by

expectations of lower nominal short term interest rates and of future inflation. Expected

higher inflation leads to a rise in current inflation through forward looking price setting,

with a consequential fall in current and expected real interest rates and associated increase

in economic activity on impact. Therefore, comparable to a change in the inflation target,

forward guidance communicates the central bank’s commitment to allow higher inflation in

the future, which has more stronger and more long lasting effects on households’ expectation

and so on their precautionary savings motives.

Figure 8 shows the impact responses of the nominal and real term structures while Figure

9 presents the dynamic responses of 1-year and 10-year maturities. The unexpected monetary

policy shock (the left column of both figures) shows that the response on impact of the term

structure becomes more muted with the maturity, as would be expected in accordance with
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Figure 8: Impact responses of nominal and real term structures across all maturities to a
surprise 50 basis point policy rate cut, a surprise cut in the inflation target leading to a
50 basis point policy rate cut, and forward guidance of a 50 basis point policy rate cut in
4 quarters. The deviations of yields are in percentage points while the deviations of risk
premia are presented in basis points. Shaded areas represent the 90% and 68% posterior
credible sets.
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Figure 9: Posterior impulse responses of nominal and real term structure at the short and
long ends to a surprise 50 basis point policy rate cut, a surprise cut in the inflation target
leading to a 50 basis point policy rate cut, and forward guidance of a 50 basis point policy rate
cut in 4 quarters. The deviations of yields are in percentage points while the deviations of
risk premia are presented in basis points. Shaded areas represent the 90% and 68% posterior
credible sets.
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the expectations hypothesis and the path of the policy rate (assumed identical to the short

rate). Similarly, the response on impact of the real yield curve, see the second row of

Figure 8, is driven primarily by the expectations hypothesis and the Fisher equation with

the response likewise becoming more muted with the maturity. This too is reflected in the

impulse responses over time for short and long maturities contained in the second row of

Figure 9. With the expectations hypothesis being the predominate driver of the impact on

real and nominal rates, an unexpected monetary policy shock – a simple innovation to the

Taylor rule – has limited, though nonzero, effects on the risk premia along all maturities.

This finding is in line with those of other structural models (see, for example, Rudebusch

and Swanson, 2012). On impact, see the third row of Figure 8, bond holders demand higher

total premia for holding nominal bonds for longer maturities and lower total premia for

shorter maturities which is qualitatively in line with the findings of Nakamura and Steinsson

(2017). The stimulative effects in the short run generate increased confidence in the absence

of downside risks to the economy, reflecting the fall in the short run premia. The delayed

contractionary effects of the loosening of monetary policy are reflected in the higher medium

to long run premia demanded on impact. When the contractionary effects are realized two

quarters after the shock, the economy is looking towards a recovery and the downside risks

are decreased at all horizons, which is reflected in a reduction in the premia demanded at

both the short and long ends of the term structure of nominal term premia (the third row

of Figure 9). In this regard, our findings are qualitatively similar to those by Crump et al.

(2016). The effects on impact and the dynamic responses of the short and long ends for

the real term premia qualitatively mirror those of the nominal term premia, confirming that

the primary driver of the nominal term premia is indeed the real economy and associated

risks. On impact, the real term premia, see the fourth row of Figure 9, are shifted downward

across all maturities relative to the impact response of the nominal term premia, reflecting the

elevation in the inflation risk premia, see the bottom row of Figure 9, demanded by investors

in response to the inflationary effects of the expansionary monetary policy. The negative

initial response of real term premia associated with shorter maturities and positive response

of those associated with longer maturities can be understood roughly from the comovement

of the real yields and the consumption relative to its habit in the pricing kernel. Yields

on real bonds at all maturities drop on impact whereas consumption relative to its habit

initially rises but then falls. This generates a positive comovement between the kernel and

yields on shorter maturities that thus contain a negative, insurance-like premium. At longer

maturities, this comovement becomes negative as consumption drops relative to its habit

and thus real bonds of longer maturities bear a positive risk premium to induce households

to hold these bonds that pay less when payoffs are more highly valued. The timing of when
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the ten year real term premium turns negative coincides with the onset of the contraction

in the real economy. On impact, investors demand a higher premium across all maturities

to compensate them for the upside risks in inflation associated with the surprise change in

monetary policy. This upside risk is quickly reversed as the delayed contractionary effects of

the monetary policy shock are realized and the inflation premia demanded at both the short

and long ends of the term structure are reduced.

In contrast, a surprise shock to the inflation target has a much stronger effect on the risk

premia of interest rates across all maturities, see the second columns of Figures 8 and 9, with

the effects roughly two orders of magnitude larger. While this stronger effect on the nominal

term premia can also be found in Rudebusch and Swanson (2012), our findings show that

monetary policy substantially affects real term premia as postulated by Hanson and Stein

(2015). In contrast to the nominal yield curve, the response of the real yields is decreasing in

the maturity. This is consistent with a Fisher equation perspective on the real rates, noting

the delayed reduction in the nominal short rate in response to the decrease in inflation.

The drop in yields is driven by households drawing down their precaution stock of capital,

thereby driving up real yields, to smooth consumption in the face of the initial contraction

in output. The short end of the real yield curve falls below zero when the nominal short

rate recovers from its trough one year after the impact of the shock and remains there as the

policy rate converges more quickly to its mean value than inflation. On impact and through

time, the effect on real rates of longer maturities is limited and almost entirely driven by

term premia. On impact, shorter maturities are associated with increased nominal and real

term premia and longer maturities with decreased nominal and real term premia, see the

third and fourth rows of Figure 8. This coincides by and large with the initial expansion and

delayed contraction in the aggregate real economy and is consistent with the comovement

of the pricing kernel, driven partially by the initial rise and decrease later in consumption

relative to its habit, and the initial increase in yields at all maturities. This again confirms

that the primary driver of the nominal term premia is indeed the real economy. The downside

risks to the real economy are perceived on impact to be longer lived than the nominal risks,

which can be seen in the larger positive impact effect of the reduction in the inflation target

on the premia for longer maturities demanded by investors. Rows three and four of Figure

9 show that the premia at the short and long ends of the term structure remain diverged

in their entire dynamic responses. This is consistent with the interpretation of the shock to

the inflation target as being a shift in the systematic monetary policy: long run downside

risks to the economy are reduced by the more aggressive response of monetary policy at

the cost of heightened short run risks. With both the inflation target and realized inflation

reduced by the more aggressive posture of monetary policy towards inflation, investors’
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perception of upside risks to inflation are ameliorated, leading to a reduction in the inflation

risk premia that they demand at all horizons on impact, as well as dynamically at the short

and long ends of the associated term structure, see the bottom middle panels of Figures 8

and 9. While the nominal term premia are still primarily driven by risks associated with

the real economy in response to the inflation target shock, the effects of inflation risk premia

are disproportionately increased in magnitude, consistent with the interpretation of this

experiment being not only a change in the systematic response of monetary policy, but more

specifically a more aggressive posture towards inflation.

Alongside the expectation channel from above, forward guidance propagates through an

additional channel, the movements in the nominal long rates, which the recent literature has

argued plays a nontrivial role (e.g., Woodford, 2012; Del Negro et al., 2015). From both

a theoretical and empirical perspective, it is not obvious a priori which maturities in the

nominal term structure should fall in our forward guidance experiment. From the perspec-

tive of our model, the dynamic responses of interest rates are driven by the countervailing

effects of the expectations hypotheses and risk premia. As in standard models under the

expectations hypothesis, the dynamics of interest rates with longer maturities reflect the dy-

namic adjustment of the risk free short rate, determined by the monetary authority’s Taylor

rule. The large effects on inflation and output imply that the policy rate rises quickly above

its ergodic mean only few quarters after its announced fall. This explains, at least in part,

why we observe only a mild drop on impact in nominal bonds with a maturity longer than

2 years (see the upper right panel of Figure 8). While the yield of a 1-quarter real bond

falls by around 30 basis points on impact, the yield of a 10-year real bond falls by around

3 basis points (see the second row of the right column in Figure 8). The right columns in

Figures 8 and 9 show the impact responses and impulse responses over time, respectively, for

the nominal and real term premia as well as the inflation risk premia. They illustrate that

bondholders demand higher nominal premia on impact for all maturities from 2 years onward

to compensate them for the downside risks they perceive in the nominal economy. This is

in line with the empirical findings of Akkaya et al. (2015). While there is some increased

short to medium term confidence in the real economy, as can be seen by the fall in the

real premium demanded for two year real bonds on impact, this is outweighed by the larger

increase in inflation risk perceived by the bondholders, see the bottom two rows of the right

column in Figure 8. This overall increase in nominal premia prevents nominal rates from

falling as strongly as the expectations hypothesis would predict and therefore dampens the

expansionary effects of the announced cut in the policy rate. Finally, the increase in inflation

risk premia follows what theory would predict. While forward guidance does communicate

the expected path of future short rate, it is just as informative about the central bank’s
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commitment to allow higher inflation in the future. This commitment drives households’

demand for higher inflation risk premia.

In sum, our findings show that different monetary policy actions affect the term structure

of interest rates differently. In particular, changes to the inflation target (or, more generally,

changes to the systematic response of monetary policy, as is also a component of forward

guidance) have stronger and more long lasting effects on households’ precautionary savings

motives and, therefore, on risk premia. In contrast, unexpected monetary policy shocks die

out quite quickly, limiting their effects on business cycle frequencies and, consequentially, on

risk premia. In this light, our model can rationalize the seemingly contradictory findings in

the empirical literature (see, for example Hanson and Stein, 2015; Nakamura and Steinsson,

2017).

6 Conclusion

The role of monetary policy in shaping the term structure has been gaining increased promi-

nence. Yet the empirical literature has yet to reach a definitive conclusion on either the

qualitative or quantitative effects of monetary policy on the term structure and the standard

structural alternative – the linear New Keynesian model – has been criticized for lacking ef-

fects on interest rates beyond the expectations hypothesis (Hanson and Stein, 2015). Newer

structural modelling approaches that go beyond the expectations hypothesis face significant

computational challenges (van Binsbergen et al., 2012). We ameliorate these challenges by

using the risk adjusted approximation of Meyer-Gohde (2016), allowing our model to capture

the salient features of risk while remaining linear in states such that Bayesian estimation and

posterior analysis using standard macroeconometric techniques is tractable. Our estimated

structural framework is consistent with a wide variety of asset pricing and macroeconomic

facts, making it well suited to investigate the impact of monetary policy on term structure of

interest rates. Specifically, our medium scale New Keynesian macro-finance model produces

sizable and time varying risk premia comparable to historical estimates from affine term

structure models (e.g. Kim and Wright, 2005; Adrian et al., 2013) without sacrificing the fit

of macroeconomic or other financial variables.

We show that distinguishing between different monetary policy actions rationalizes many

of the seemingly contradictory findings on the effects of monetary policy on term premia in

the empirical literature (see, for example, Hanson and Stein, 2015; Nakamura and Steinsson,

2017). In particular, we find that a shock to the inflation target has strong effects on risk

premia and that these premia are the primary drivers of real interest rates in the long run.

In contrast, the effect of an unexpected monetary policy shock via a simple innovation to the
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Taylor rule has limited effects on the term premia at all maturities as it dissipates too quickly

to have meaningful effects at business cycle frequencies. Consequentially, the effects on risk

premia, which vary primarily at lower frequencies (see, for example, Piazzesi and Swanson,

2008), are limited. This is in stark contrast to shocks that affect monetary policy much more

systematically, such as a shock to the inflation target. They affect households’ precautionary

savings motives much more strongly and so have much stronger effects on the term structure

of interest rates across all maturities. Similarly, we find that unconditional forward guidance

affects risk premia substantially in a sizable separation from the expectations hypothesis.

Specifically, we find that a commitment to a future reduction in the policy rate and constant

policy rates until then causes real term premia and inflation risk premia to rise. This follows

as agents expect more volatile inflation and output in the future and is in line with the

empirical findings of Akkaya et al. (2015).

The present paper offers a first step toward understanding the transmission of monetary

policy on the term structure of interest rates from a structural Bayesian perspective, but

many salient questions need further investigation. For example, while our model features

a frictionless asset trade, a model featuring market segmentation could affect the policy

conclusions of our paper (see, for example, Fuerst, 2015). Moreover, investigating the impact

of unconventional monetary policy on risk premia or the impact of monetary policy on asset

valuation more generally are natural questions of currently high interest. We acknowledge

but leave these extensions for future work, providing an estimated macro-finance model in

this paper able to provide a structural analysis of the impact of monetary policy on the term

structure of interest rates.
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Raḿırez (2012): “The term structure of interest rates in a DSGE model with recursive
preferences,” Journal of Monetary Economics, 59, 634–648.

Wachter, J. A. (2006): “A consumption-based model of the term structure of interest
rates,” Journal of Financial Economics, 79, 365–399.

Weil, P. (1989): “The equity premium puzzle and the risk-free rate puzzle,” Journal of
Monetary Economics, 24, 401–421.

Woodford, M. (2012): “Methods of policy accommodation at the interest-rate lower
bound,” Proceedings - Economic Policy Symposium - Jackson Hole, 185–288.

44



A Model Solution

A.1 Stationarized Model
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Intermediate Goods Producer:
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Shock Processes:
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A.2 Deterministic Steady State

Given our parameterizations for ḡ
ȳ
, π̄, and L̄, we can solve for the deterministic steady state

as follows:

¯̃p =

[
1− γpπ̄(ξp−1)(1−θp)

1− γp

] 1
1−θp

(A-25)

p̄+ =
(1− γp) ¯̃p−θp

1− γpπ̄(1−ξp)θp
(A-26)

R̄f = log

(
π̄

β

)
− (−γ (1− φ)− φ) z̄+ (A-27)

M̄ = β exp
(
−z̄+

)
(A-28)

r̄k =
exp

(
z̄+ + Ψ̄

)

β
− (1− δ) (A-29)

mc = ¯̃p
θp − 1

θp

(
1− γpβπ̄(1−ξp)θp

)

(1− γpβπ̄(ξp−1)θp)
(A-30)

k̄ = L̄

(
r̄k

mcα

1

exp
(
z̄+ + Ψ̄

)
)− 1

1−α

(A-31)

w̄ = mc (1− α)
(
exp

(
z̄+ + Ψ̄

))−α
(

r̄k

mcα

1

exp
(
z̄+ + Ψ̄

)
) α

1−α

(A-32)

ȳ = r̄k

(
k̄

exp
(
z̄+ + Ψ̄

)
)

+ w̄L̄ (A-33)

Φ =

(
k̄

exp
(
z̄+ + Ψ̄

)
)α

L̄1−α − ȳp̄+ (A-34)

Ī =

(
1− 1− δ

exp
(
z̄+ + Ψ̄

)
)
k̄ (A-35)

ḡ =

(
ḡ

ȳ

)
ȳ (A-36)

c̄ = ȳ − ḡ − Ī (A-37)

λ̄ =

(
c̄− bc̄

exp (z̄+)

)−γ
(A-38)

ψL = w̄λ̄
(
1− L̄

)χ
(A-39)

K̄p =
ȳ ¯̃p−θp

1− γpβπ̄(ξp−1)(1−θp)
(A-40)

V̄ =
1

1− β




(
c̄− bc̄

exp(z̄+)

)1−γ
− 1

1− γ − ψL
(
1− L̄

)1−χ

1− χ


 (A-41)
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B Approximation

B.1 Risk-Adjusted Linear Approximation

The method of Meyer-Gohde (2016) differs from others in constructing an approximation
centered around a risk-adjusted critical point, such as Juillard (2010), Kliem and Uhlig
(2016), and Coeurdacier, Rey, and Winant (2011). First, it is direct and noniterative relying
entirely on perturbation methods to construct the approximation. Second, it enables us to
construct the approximation around (an approximation of) the ergodic mean of the true
policy function instead of its stochastic or “‘risky” steady state, placing the locality of
our approximation in a region with a likely high (model-based) data density. The closest
methods in the macro-finance term structure literature are Dew-Becker (2014) and Lopez,
Lopez-Salido, and Vazquez-Grande (2015), who both approximate the nonlinear macro side
of the model to obtain a linear in states approximation with adjustments for risk and then
derive affine approximation of the yield curve taking this macro approximation as given. The
exact meaning of these risk adjustments remains unclear, however, whereas Meyer-Gohde’s
(2016) method adjusts the coefficients out to the second moments in shocks around the mean
of the endogenous variables, itself approximated out to the second moments in shocks.

Thus instead of either a linear certainty-equivalent or nonlinear non-certainty-equivalent
approximation, the method constructs a linear non-certainty-equivalent approximation. By
using higher order derivatives of the policy function at the deterministic steady state, it
approximates the ergodic mean of endogenous variables and the first derivatives of the policy
function around this ergodic mean.

Stacking our ny endogenous variables into the vector yt and our nε normally distributed
exogenous shocks into the vector εt, we collect our equations into the following vector of
nonlinear rational expectations difference equations

0 = Et[f(yt+1, yt, yt−1, εt)] = F̂ (yt−1, εt) (B-1)

where f is an (neq × 1) vector valued function, continuously M -times differentiable in all its
arguments and with as many equations as endogenous variables (neq = ny).

The solution to the functional problem in (B-1) is the policy function

yt = g0(yt−1, εt) (B-2)

Generally, a closed form for (B-2) is not available, so recourse to numerical approximations
is necessary.

We assume that the related deterministic model

0 = f(yt+1, yt, yt−1, 0) = F (yt−1, 0) (B-3)

admits the calculation of a fix point, the deterministic steady state, defined as y ∈ Rny such
that 0 = F (y, 0). We are, however, interested in the stochastic version of the model and
will now proceed to nest the deterministic model, for which we can recover a fix point, and
the stochastic model, for which we cannot, within a larger continuum of models, following
standard practice in the perturbation DSGE literature.

48



We introduce an auxiliary variable σ ∈ [0, 1] to scale the stochastic elements in the
model. The value σ = 1 corresponds to the “true” stochastic model and σ = 0 returns the
deterministic model in (B-3). Accordingly, the stochastic model, (B-1), and the deterministic
model, (B-3), can be nested inside the following continuum of models

0 = Et[f(yt+1, yt, yt−1, ε̃t)] = F (σ, yt−1, ε̃t), ε̃t ≡ σεt (B-4)

with the associated policy function

yt = g(yt−1, ε̃t, σ) (B-5)

Notice that this reformulation allows us to express the deterministic steady state in definition
?? as the fix point of (B-4) for σ = 0, i.e., y ∈ Rny such that 0 = F (0, y, 0) = F (y, 0) and,
as a consequence y = g(y, 0, 0). We use this deterministic steady state and derivatives of the
policy function in (B-5), recovered by the implicit function theorem,14 evaluated at at y (both
in the deterministic model, (B-3), and towards our stochastic model, (B-1), to construct our
approximation of and around the ergodic mean.

Since y in the policy function (B-5) is a vector valued function, its derivatives form a

hypercube.15 Adopting an abbreviated notation, we write gzjσi ∈ Rny×njz as the partial
derivative of the vector function g with respect to the state vector zt j times and the per-
turbation parameter σ i times evaluated at the deterministic steady state.

Instead of using the partial derivatives to construct a Taylor series as is the standard
procedure,16 we would like to construct a more accurate linear approximation of the true
policy function (B-2), centered at the mean of yt. Accordingly, we will construct a linear
approximation of (B-2) around the ergodic mean, which we formalize in the following.

Proposition 1 Linear Approximation around the Ergodic Mean
Nest the means of the stochastic model (σ = 1) and of the deterministic model (σ = 0)
through

ỹ(σ) ≡ E [g(yt−1, σεt, σ)] = E [yt] (B-8)

Then for any σ ∈ [0, 1], the linear approximation of the policy function, (B-2), around the

14See Jin and Judd (2002).
15We use the method of Lan and Meyer-Gohde (2014) that differentiates conformably with the Kronecker

product, allowing us to maintain standard linear algebraic structures to derive our results as follows: Let
A(B) : Rs×1 → Rp×q be a matrix-valued function that maps an s × 1 vector B into a p × q matrix A(B),
the derivative structure of A(B) with respect to B is defined as

AB ≡ DBT {A} ≡
[
∂
∂b1

. . . ∂
∂bs

]
⊗A (B-6)

where bi denotes i’th row of vector B, T indicates transposition; n’th derivatives are

ABn ≡ D(BT )n{A} ≡
([

∂
∂b1

. . . ∂
∂bs

]⊗[n]
)
⊗A (B-7)

16The Taylor series approximation at a deterministic steady state, assuming (B-5) is CM with respect to

all its arguments, can be written as yt =
∑M
j=0

1
j!

[∑M−j
i=0

1
i!gzjσiσi

]
(zt − z)⊗[j]
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mean of yt defined in (B-8) and that of εt is

yt ' ỹ(σ) + yy(ỹ(σ), 0, σ) (yt−1 − ỹ(σ)) + yε(ỹ(σ), 0, σ)εt (B-9)

Furthermore, the mean of yt defined in (B-8) and the two additional unknown functions in
this linear approximation

ỹy(σ) ≡ gy(ỹ(σ), 0, σ) (B-10)

ỹε(σ) ≡ gε(ỹ(σ), 0, σ) (B-11)

can be approximated, assuming that they are all analytic in a neighborhood around σ = 0 with
a radius of at least one,17 using the partial derivatives of (B-5) from the standard nonlinear
perturbation around the deterministic steady state in definition ??.

Proof. See the next subsection.

B.2 Proof of Proposition 1

We will recover the first order partial derivatives by applying the implicit function theorem
on (B-4) and higher order partials through successive differentiation.18

Beginning with the unknown point of approximation, the ergodic mean, construct a
Taylor series around the deterministic steady state

ỹ(σ) = ỹ(0) + ỹ′(0)σ +
1

2
ỹ′′(0)σ2 . . . (B-12)

under the assumption of analyticity, the ergodic mean ỹ(1) can be approximated by

ỹ(1) ≈ ỹ(0) + ỹ′(0) +
1

2
ỹ′′(0) + · · ·+ 1

n!
ỹ(n)(0) (B-13)

Analogously for the two first derivatives of the policy function (B-2)

ỹy(1) ≈ ỹy(0) + ỹy
′(0) +

1

2
ỹy
′′(0) + · · ·+ 1

(n− 1)!
ỹy

(n−1)(0) (B-14)

ỹε(1) ≈ ỹε(0) + ỹε
′(0) +

1

2
ỹε
′′(0) + · · ·+ 1

(n− 1)!
ỹε

(n−1)(0) (B-15)

Note that the approximations of ỹε(1) and ỹy(1) are expressed up to order n − 1, whereas
the approximation of ỹ(1) is expressed up to order n. As the first two are derivatives of the
third, terms of the order of n − 1 in these two are actually of the order n with respect to
derivatives of the underlying policy function (B-5), from which we will construct the approx-
imations. Additionally, the assumption of analyticity, here in a domain encompassing both

17This ensures that the Taylor series in these functions converge to the true functions for values of σ
including the value of one that transitions to the true stochastic problem.

18See Jin and Judd (2002) for a local existence theorem as well as Juillard and Kamenik (2004) for
derivations with successive differentiation and Lan and Meyer-Gohde (2014) for solvability conditions for
perturbations of arbitrary order.
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the deterministic steady state and ergodic mean of (B-5), while hardly innocuous, underlies
standard perturbations methods that approximate the stochastic model using derivatives of
the meta policy function (B-5) evaluated at the deterministic steady state in definition ??.

Now we will show that the Taylor series representations of (B-8), (B-10), and (B-11) can
be recovered from the derivatives of the policy function (B-5) evaluated at the deterministic
steady state used in standard perturbations. We will derive the expressions out to n = 3
order, consistent with the goals laid out in the main text.

We will start with (B-8), the point of approximation,

ỹ(1) ≈ ỹ(0) + ỹ′(0) +
1

2
ỹ′′(0) +

1

6
ỹ(3)(0) (B-16)

we need the four terms on the right hand side—ỹ(0), ỹ′(0), ỹ′′(0), and ỹ(3)(0)—to construct
this approximation. Proceeding in increasing order of differentiation, we begin with ỹ(0).
From (B-8),

ỹ(0) = E [g(yt−1, 0, 0)] = g(y, 0, 0) = y (B-17)

the first derivative, ỹ′(σ), is

ỹ′(0) = Dσ{E [yt]}
∣∣∣
σ=0

= Dσ{E [g(yt−1, σεt, σ)]}
∣∣∣
σ=0

= E [Dσ{g(yt−1, σεt, σ)}]
∣∣∣
σ=0

(B-18)

where the expectation is with respect to the infinite sequence of {εt−j}∞j=0 with invariant
i.i.d. distributions, thus and assuming stability of yt, gives the final equality. Taking deriva-
tives and expectations and evaluating at the deterministic steady state

Dσ{E [yt]}
∣∣∣
σ=0

=gyDσ{E [yt−1]}
∣∣∣
σ=0

+ gεE [εt] + gσ (B-19)

=gyDσ{E [yt−1]} (B-20)

where the second line follows from the assumption of εt being mean zero.19 Thus,

ỹ′(0) = 0 (B-21)

as gy has all its eigenvalues inside the unit circle. The second derivative, ỹ′′(σ), is

ỹ′′(0) = Dσ2{E [yt]}
∣∣∣
σ=0

= E [Dσ2{g(yt−1, σεt, σ)}]
∣∣∣
σ=0

(B-22)

Taking derivatives and expectations, evaluating at the deterministic steady state, and re-

19Thus, E [εt] = 0 follows directly and gσ consequentially, see Schmitt-Grohe and Uribe (2004), Jin and
Judd (2002), or Lan and Meyer-Gohde (2014).
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calling results from the first derivative above20

Dσ2{E [yt]}
∣∣∣
σ=0

=E
[
gyDσ2{yt−1}+ gy2Dσ{yt−1}⊗[2] + 2gyεεt ⊗Dσ{yt−1} (B-23)

+2gyσDσ{yt−1}+ 2gεσεt + gε2ε
⊗[2]
t + gσ2

] ∣∣∣
σ=0

=gyDσ2{E [yt−1]}
∣∣∣
σ=0

+ gy2E
[
Dσ{yt−1}⊗[2]

] ∣∣∣
σ=0

+ gε2E
[
ε
⊗[2]
t

]
+ gσ2

=gyDσ2{E [yt−1]}
∣∣∣
σ=0

+ gy2

(
Iny − g⊗[2]

y

)−1
g⊗[2]
ε E

[
ε
⊗[2]
t

]

+ gε2E
[
ε
⊗[2]
t

]
+ gσ2

ỹ′′(0) = Dσ2{E [yt]}
∣∣∣
σ=0

=
(
Iny − gy

)−1
((
gε2 +

(
Iny − g⊗[2]

y

)−1
g⊗[2]
ε

)
E
[
ε
⊗[2]
t

]
+ gσ2

)

where the second to last equality follows21—taking expectations, evaluating at the determin-
istic steady state, and recalling results from the first derivative above—as

E
[
Dσ{yt}⊗[2]

] ∣∣∣
σ=0

=E
[
(gyDσ{yt−1}+ gεεt + gσ)⊗[2]

] ∣∣∣
σ=0

=g⊗[2]
y E

[
Dσ{yt−1}⊗[2]

] ∣∣∣
σ=0

+ g⊗[2]
ε E

[
ε
⊗[2]
t

]
(B-24)

Thus, ỹ′′(0) adjusts the zeroth order mean ỹ(0) or deterministic steady state for the

cumulative—
(
Iny − gy

)−1
—influence of the variance of shocks, directly through E

[
ε
⊗[2]
t

]

and indirectly through the influence of risk on the policy function captured by gσ2 . The
third derivative, ỹ(3)(0), is

ỹ(3)(0) = Dσ3{E [yt]}
∣∣∣
σ=0

= E [Dσ3{g(yt−1, σεt, σ)}]
∣∣∣
σ=0

(B-25)

Taking derivatives and expectations, evaluating at the deterministic steady state, and re-
calling results from the first two derivatives above

Dσ3{E [yt]}
∣∣∣
σ=0

=E
[
gy3Dσ{yt−1}⊗[3] + 3gy2εDσ{yt−1}⊗[2] ⊗ εt + 3gy2σDσ{yt−1}⊗[2]

+ 3gyε2Dσ{yt−1} ⊗ ε⊗[2]
t + 6yyεσDσ{yt−1} ⊗ εt + 3gyσ2Dσ{yt−1}

+ yε3ε
⊗[3]
t + 3gε2σε

⊗[2]
t + 3gεσ2εt + gσ3 + 3gy2Dσ2{E [yt]} ⊗Dσ{E [yt]}

+ 3gyεDσ2{E [yt]}εt + 3yyσDσ2{E [yt]}+ gyDσ3{yt−1}
]∣∣∣
σ=0

(B-26)

20The notation x⊗[n] represents Kronecker powers, x⊗[n] is the n’th fold Kronecker product of x with itself:
x⊗ x · · · ⊗ x.

21The second line follows as gyσ and gεσ are zero, see Schmitt-Grohe and Uribe (2004), Jin and Judd
(2002), or Lan and Meyer-Gohde (2014).
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From our assumption of mean-zero, normally distributed shocks, it follows that

ỹ(3)(0) = Dσ3{E [yt]}
∣∣∣
σ=0

= 0 (B-27)

as third derivatives of g involving derivatives with respect of σ only once are zero,22 terms
cubic in εt (either directly or through products involving Dσ{yt−1}, which is linear in εt, or
Dσ2{yt−1}, which is quadratic in εt), and gσ3 are all zero in accordance with the symmetry
of the normal distribution.23

Moving on to the derivative of the policy function with respect to yt−1, (B-10), for small
deviations of yt−1 and εt from their respective means

ỹy(1) ≈ ỹy(0) + ỹy
′(0) +

1

2
ỹy
′′(0) (B-28)

we need the three terms on the right hand side—ỹy(0), ỹy
′(0), and ỹy

′′(0). Starting with
ỹy(0),

ỹy(0) = Dyt−1{yt}
∣∣∣
σ,εt=0

= Dyt−1{g(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= gy (B-29)

Turning to ỹy
′(0)

ỹy
′(0) = Dσyt−1{yt}

∣∣∣
σ,εt=0

=Dσyt−1{g(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= Dσ{gy(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= gy2Dσ{ỹ(σ)}
∣∣∣
σ=0
⊗ Iny + gσy

= 0 (B-30)

The first term is zero as Dσ{ỹ(σ)}
∣∣∣
σ=0

was shown to be zero above and the second is equal

to zero following standard results in the perturbation literature as discussed above. Finally,
ỹy
′′(0)

ỹy
′′(0) = Dσ2yt−1

{yt}
∣∣∣
σ,εt=0

=Dσ2yt−1
{g(ỹ(σ), ε̃t, σ)}

∣∣∣
σ,εt=0

= Dσ2{gy(ỹ(σ), ε̃t, σ)}
∣∣∣
σ=0

= gy3Dσ{ỹ(σ)}
∣∣∣
⊗[2]

σ=0
⊗ Iny + 2gσy2Dσ{ỹ(σ)}

∣∣∣
σ=0
⊗ Iny

+ gy2Dσ2{ỹ(σ)}
∣∣∣
σ=0
⊗ Iny + gσ2y

= gy2Dσ2{ỹ(σ)}
∣∣∣
σ=0
⊗ Iny + gσ2y (B-31)

22See Andreasen (2012b), Jin and Judd (2002), or Lan and Meyer-Gohde (2014).
23See Andreasen (2012b) for perturbations with skewed distributions.
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The final equality follows as Dσ{ỹ(σ)}
∣∣∣
σ=0

and gσy2 are both zero following the results and

discussions above.
Finally, the derivative of the policy with respect to εt, (B-11), follows analogously to the

derivative with respect to yt−1,

ỹε(1) ≈ ỹε(0) + ỹε
′(0) +

1

2
ỹε
′′(0) (B-32)

Again, we need the three terms on the right hand side—ỹε(0), ỹε
′(0), and ỹε

′′(0). Starting
with ỹε(0),

ỹε(0) = Dεt{yt}
∣∣∣
σ,εt=0

= Dεt{g(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= gε (B-33)

then ỹε
′(0)

ỹε
′(0) = Dσεt{yt}

∣∣∣
σ,εt=0

=Dσεt{g(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= Dσ{gε(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= gyεDσ{ỹ(σ)}
∣∣∣
σ=0
⊗ Inε + gσε

= 0 (B-34)

The first term is zero as Dσ{ỹ(σ)}
∣∣∣
σ=0

was shown to be zero above and the second is equal

to zero following standard results in the perturbation literature as discussed above. Finally,
ỹy
′′(0)

ỹε
′′(0) = Dσ2εt{yt}

∣∣∣
σ,εt=0

=Dσ2εt{g(ỹ(σ), ε̃t, σ)}
∣∣∣
σ,εt=0

= Dσ2{gε(ỹ(σ), ε̃t, σ)}
∣∣∣
σ=0

= gy2εDσ{ỹ(σ)}
∣∣∣
⊗[2]

σ=0
⊗ Inε + 2gσyεDσ{ỹ(σ)}

∣∣∣
σ=0
⊗ Inε

+ gyεDσ2{ỹ(σ)}
∣∣∣
σ=0
⊗ Inε + gσ2ε

= gyεDσ2{ỹ(σ)}
∣∣∣
σ=0
⊗ Inε + gσ2ε (B-35)

The final equality follows as Dσ{ỹ(σ)}
∣∣∣
σ=0

and gσyε are both zero following the results and

discussions above.
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C Data

In this paper we use several macro and financial time series. This appendix describes some
modifications and especially the source of the raw data.

Real GDP: This series is BEA NIPA table 1.1.6 line 1 (A191RX1).

Nominal GDP: This series is BEA NIPA table 1.1.5 line 1 (A191RC1).

Implicit GDP Deflator: The implicit GDP deflator is calculated as the ratio of Nominal
GDP to Real GDP.

Private Consumption: Real consumption expenditures for non-durables and services is
the sum of the respective nominal values of the BEA NIPA table 1.1.5 line 5 (DND-
GRC1) and BEA NIPA table 1.1.5 line 6 (DNDGRC1) and finally deflated by the
deflator mentioned above.

Private Investment: Total real private investment is the sum of the respective nominal
values of the series Gross Private Investment BEA NIPA table 1.1.5 line 7 (A006RC1)
and Personal Consumption Expenditures: Durable Goods BEA NIPA table 1.1.5 line
4 (DDURRC1) and finally deflated by the deflator mentioned above.

Civilian Population: This series is calculated from monthly data of civilian noninstitu-
tional population over 16 years (CNP16OV) from the U.S. Department of Labor: Bu-
reau of Labor Statistics.

Policy Rate: The quarterly policy rates is the 3-Month Treasury Bill: Secondary Market
Rate TB3MS provided by Board of Governors of the Federal Reserve System. The
quarterly aggregation is end of period.

Treasury Bond Yields: The quarterly series for 1-year, 2-year, 3-year, 5-year, and 10-year
zero-coupon bond yields re measured end of quarter. The original series are daily
figures based on the updated series by Adrian et al. (2013).
Source: https://www.newyorkfed.org/research/data_indicators/
term_premia.html

Nominal Interest Rate Forecasts: The quarterly series for 1-quarter (TBILL3) and
4-quarter (TBILL6) ahead forecasts of the nominal 3month Treasury Bill. The time
series are the median responses by the Survey of Professional Forecasters from the
Federal Reserve Bank of Philadelphia.
Source: https://www.philadelphiafed.org/research-and-data/
real-time-center/survey-of-professional-forecasters/data-files
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Figure 10: Prior (gray) and posterior (black) distribution of the model parameters, the green
dashed line indicates the posterior mode.
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Figure 11: Prior (gray) and posterior (black) distribution of measurement errors, the green
dashed line indicates the posterior mode.
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D.2 Predicted Moments

Name Symbol Mean S.d.
50% 5% 95% 50% 5% 95%

1-year real T-Bill R4,t 2.68 2.59 2.77 2.13 2.02 2.25
2-year real T-Bill R8,t 3.00 2.92 3.08 1.83 1.73 1.94
3-year real T-Bill R12,t 3.17 3.08 3.25 1.62 1.53 1.72
5-year real T-Bill R20,t 3.33 3.23 3.42 1.32 1.25 1.39
10-year real T-Bill R40,t 3.74 3.62 3.85 0.86 0.82 0.91

1-year nominal term premium TP $
4,t 37.35 35.20 39.81 10.86 9.57 12.35

2-year nominal term premium TP $
8,t 77.08 73.46 81.15 24.18 21.78 27.06

3-year nominal term premium TP $
12,t 99.63 95.13 104.39 32.04 28.95 35.55

5-year nominal term premium TP $
20,t 129.06 124.09 134.27 40.38 36.57 44.62

10-year nominal term premium TP $
40,t 202.62 197.14 208.41 52.22 46.83 58.84

1-year real term premium TP4,t 24.01 21.68 26.49 5.85 4.95 6.97
2-year real term premium TP8,t 57.10 52.77 61.54 16.22 14.21 18.58
3-year real term premium TP12,t 74.64 68.83 80.41 22.36 20.04 25.17
5-year real term premium TP20,t 93.03 85.72 100.71 27.91 25.44 30.97
10-year real term premium TP40,t 138.88 128.89 148.57 35.77 32.74 39.28

1-year inflation risk premium TPπ4,t 13.37 12.28 14.43 5.17 4.61 5.79
2-year inflation risk premium TPπ8,t 20.07 17.74 22.47 8.18 7.15 9.33
3-year inflation risk premium TPπ12,t 25.01 21.50 28.53 9.84 8.39 11.55
5-year inflation risk premium TPπ20,t 35.93 30.47 41.07 12.48 10.34 14.94
10-year inflation risk premium TPπ40,t 63.90 54.83 72.49 16.52 13.49 20.22

Table 6: Predicted first and second moments of further financial variables. All returns are
measured in annualized percentage points and all risk premia are measured in annualized
basis points.
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