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Abstract

I entertain a generalization of the standard Bolzmann-Gibbs-Shannon measure of entropy in multi-

plier preferences of model uncertainty. Using this measure, I derive a generalized exponential cer-

tainty equivalent, which nests the exponential certainty equivalent of the standard Hansen-Sargent

model uncertainty formulation and the power certainty equivalent of the popular Epstein-Zin-Weil

recursive preferences as special cases. Besides providinga model uncertainty rationale to these

risk-sensitive preferences, the generalized exponentialequivalent provides additional flexibility in

modeling uncertainty through its introduction of pessimism into agents, causing them to overweight

events made more likely in the worst case model when forming expectations. In a standard neo-

classical growth model, I close the gap to the Hansen-Jagannathan bounds with plausible detection

error probabilities using the generalized exponential equivalent and show that Hansen-Sargent and

Epstein-Zin-Weil preferences yield comparable market prices of risk for given detection error prob-

abilities.
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1 Introduction

Model uncertainty in macroeconomic models (see Hansen and Sargent (2001, 2010) and the detailed

treatment in the monograph Hansen and Sargent (2007)) places agents in an decision environment

riddled with unstructured, Knightian uncertainty that leads to agents forming their decision rules to

be robust to a worst case (i.e., welfare minimizing) model. With agents making intertemporal deci-

sions such as investment in an environment where they distrust the models they use to form expec-

tations about the future, Barillas, Hansen, and Sargent (2009) show that a modest amount of model

uncertainty can substitute for a high degree of risk aversion. Tallarini (2000), Barillas, Hansen,

and Sargent (2009), and Ju and Miao (2012) among others have emphasized the close relationship

between model uncertainty preferences and risk-sensitivepreferences such as the popular Epstein

and Zin (1989) and Weil (1990) recursive, constant elasticity preferences.1 Yet an equivalence has

only been demonstrated for the specific case of a unit elasticity of intertemporal substitution. This

limitation arises due to the differing functional forms of the certainty equivalents in these prefer-

ences (exponential for Hansen and Sargent’s (2007) model uncertainty and power for Epstein and

Zin’s (1989) and Weil’s (1990) risk-sensitive preferences). Backus, Routledge, and Zin (2005) ob-

serve that it is an open question whether the power certaintyequivalent underlying Epstein and Zin’s

(1989) and Weil’s (1990) risk-sensitive preferences can begiven a model uncertainty foundation that

relates the two sets of preferences beyond the known specialcase.

In this paper, I propose an answer to this open question by generalizing the statistics of model

uncertainty preferences beyond the logarithmic Bolzmann-Gibbs-Shannon measure of entropy to

the measure introduced by Tsallis (1988) for nonextensive statistical mechanics in thermodynamics.

Alongside a generalized exponential certainty equivalent, I derive a power certainty equivalent from

model uncertainty preferences and its associated worst-case distribution. With this distribution in

hand, I can calibrate risk aversion in Epstein and Zin’s (1989) and Weil’s (1990) preferences using

detection error probabilities as proposed by Anderson, Hansen, and Sargent (2003) and Hansen

1Hansen and Marinacci (2016) summarize the connection between Hansen and Sargent’s (2007) multiplier pref-
erence approach to model uncertainty that I adopt here and other “variational preferences” (Maccheroni, Marinacci,
and Rustichini 2006) such as the multiple priors of Gilboa and Schmeidler (1989) and smooth ambiguity of Klibanoff,
Marinacci, and Mukerji (2005). Hansen and Sargent (2010) provide a discussion of the link between their multiplier
preference and Gilboa and Schmeidler’s (1989) multiple priors. Ju and Miao’s (2012) generalized smooth ambiguity
preferences nests these variational preferences as special cases from a risk sensitive and ambiguity (vis-a-vis unobserv-
able states) perspective.
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and Sargent (2007). From the lens of model uncertainty, decreases in risk aversion in Epstein and

Zin’s (1989) and Weil’s (1990) risk-sensitive preferencescan be interpreted as a reduction in model

uncertainty tempered by an increase in pessimism in the formof an overweighting of the probability

of the worst case model. This overweighting of events vis-a-vis objective probabilities relates to

the choice-theoretic framework of Quiggin (1982) and results here from the generalized alternative

entropy measure and its associated subadditivity of probabilities, the latter found also in Gilboa

(1987) and Schmiedler (1989). In an application of subadditivity to investment, Dow and Werlang

(1992) emphasize that expectations formed under probabilities that do not sum to one reflect both

agent’s uncertainty and aversion thereto.

Applying the preferences to a standard RBC model2 under random walk with drift productivity

and using the perturbation-based solution and sampling techniques of Bidder and Smith (2012), I

find that both Hansen and Sargent’s (2007) original formulation and the model uncertainty formu-

lation for Epstein and Zin (1989) and Weil (1990) behave comparably for a given detection error

probability with respect to both macroeconomic and asset pricing variables. Examining the worst

case density associated with the different specifications,I find that agents with Hansen and Sar-

gent’s (2007) formulation fear autocorrelated productivity growth with a lower mean but reduced

volatility,3 those with Epstein and Zin (1989) and Weil (1990) preferences autocorrelated produc-

tivity growth with a higher mean but increased volatility, and those with the generalized model

uncertainty preferences I introduce here autocorrelated productivity growth with a lower mean and

increased volatility.

The remainder of the paper is organized as follows. In section 2, I formulate a general dynamic

model and derive the specific conditions under which Epsteinand Zin’s (1989) and Weil’s (1990)

risk-sensitive preferences and Hansen and Sargent’s (2007) model uncertainty are equivalent. I then

turn to the measure of entropy behind model uncertainty and present the generalized measure in

section3. In section4, I apply this measure to the general dynamic model, derive conditions that

2I follow Tallarini’s (2000) specification of the RBC model and twist the continuation utility value according to the
different certainty equivalents I derive here. See Bidder and Smith (2012) for a model uncertainty RBC model with
investment adjustment costs, variable capital utilization, stochastic volatility, and labor wealth effect sensitive period
utility and Ilut and Schneider (2014) for a model uncertainty New Keynesian model with confidence shocks. Backus,
Ferriere, and Zin (2015) provide a thorough analysis of variants of a standard RBC model under risk and ambiguity.

3This result is broadly consistent with other studies: Barillas, Hansen, and Sargent (2009), Bidder and Smith (2012),
Ellison and Sargent (2015), Bidder and Drew-Becker (2016) all find that the worst case is associated with lower mean
growth.
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recover both Epstein and Zin’s (1989) and Weil’s (1990) risk-sensitive preferences as well as Hansen

and Sargent’s (2007) original model uncertainty framework, assess atemporal risk aversion in all

three frameworks, and examine the asset pricing implications of the generalized model uncertainty

specification. I then apply the generalized model uncertainty to an otherwise standard RBC model

in section5 and examine the asset pricing and macroeconomic performance of all three frameworks.

Section6 concludes.

2 Dynamic Model

In this section, I will lay out a general dynamic model. I review the risk sensitive preferences of

Epstein and Zin (1989) and Weil (1990) and the model uncertainty multiplier preferences of Hansen

and Sargent (2007), as well as the conditions under which thetwo coincide.

I will consider a recursive dynamic model where a time-invariant transition density

p(x′,x,a)(1)

gives the joint distribution of the future state,x′ ∈ X, the current state,x∈ X, and anx measurable

control variable,a ∈ A. Thus, the probability distribution over the sequence of states, or model, is

determined by

π(x′,x) .
= p(x′,x,a(x))(2)

the control variable,a, is chosen to maximize lifetime utility expressed recursively following Kreps

and Porteus (1978) as

V(x) = max
a∈A

T (u,R (V))(x)(3)

whereT is a time aggregator andR a risk aggregator, or certainty equivalent.

The popular risk sensitive preference specification of Epstein and Zin (1989) and Weil (1990) is

a constant elasticity time and risk preference formulation, given by

V(x) = max
a∈A

[

(1−β)u(x,a(x))1−ρ +β
(∫

V(x′)1−γp(x′,x,a(x))dx′
)

1−ρ
1−γ





1
1−ρ

(4)

whereβ ∈ (0,1) is the discount factor and, with respect tou(x,a(x)), ρ is the inverse of the intertem-

poral elasticity of substitution andγ the coefficient of relative risk aversion.4 In this case,R (V)(x)

4Both of these measures are expressed here with respect to theperiod utility kernelu(x,a(x)) and are misnomers
if u(x,a(x)) 6= C(x), whereC(x) is the agent’s current consumption. See especially, Swanson (2012a) and Swanson
(2012b) for measures of relative risk aversion with alternative period utility kernels and under recursive preferences. I
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is a power certainty equivalentE
[

V(x′)1−γ|x
]

1
1−γ .

Standard expected utility can be recovered using the transformationṼ(x)
.
= V(x)1−ρ) and the

limiting case ofγ = ρ

lim
γ→ρ

Ṽ(x) = max
a∈A

(1−β)u(x,a(x))1−ρ+β
∫

Ṽ(x′)p(x′,x,a(x))dx′(5)

In this case,R (Ṽ)(x) is the conditional expectations operatorE
[

Ṽ(x′)|x
] .
=

∫
Ṽ(x′)p(x′,x,a(x))dx′.

The risk aggregator,R (V)(x), can also be given a model uncertainty interpretation usingthe

tools of robust control following Hansen and Sargent (2007). In this approach, agents have a pref-

erence for robustness; i.e., their decisions are tempered by a fear of model misspecification. This

fear is formalized by bounds, derived by a min-max utility approach, on value functions over a set

of models. This set is constrained by limiting or penalizingalternative models considered by the

agent according to their relative entropy measured vis-a-vis the agent’s baseline, or approximating,

model. This provides the modeler a disciplined departure from rational expectations, as agents can

have a common approximating model shared with nature, yet demonstrate an ex post divergence by

tempering their decisions on the worst-case model.

Formally, an agent has preferences in the form of (3) given by

V(x) = max
a∈A

u(x,a(x))+βR (V)(x)(6)

where the aggregatorR (V)(x) is derived by considering an agent who entertains a distorted model

p̃(x′,x,a(x))(7)

close to the approximating model, the probability distribution common to other specifications (2).

The likelihood ratio between the distorted and approximating models is

g(x′,x)
.
=

p̃(x′,x,a(x))
p(x′,x,a(x))

(8)

and the discrepancy between the two models will be calculated as the expected value of this ratio,

i.e., their relative entropy or the Kullback-Leibler divergence,∫
ln
(

g(x′,x)
)

p̃(x′,x,a(x))dx′(9)

The aggregatorR results from a robustness consideration that selects the density for evaluating the

maintain this misnomer here for expositional expediency.
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continuation value as5

R (V)(x)
.
= min

p̃(x′,x,a(x))≥0∫
p̃(x′,x,a(x))dx′=1

∫
V(x′)g(x′,x)p(x′,x,a(x))dx′+θ

∫
ln
(

g(x′,x)
)

p̃(x′,x,a(x))dx′(10)

This is Hansen and Sargent’s (2007) multiplier preferencesapproach,6 which tempers the agent’s

decisions against models that are pernicious (i.e., reduceher expected continuation value) yet plau-

sible (i.e., are close to the baseline model in the sense of small relative entropy). The worst case

model, p̃, that solves the minimization problem balances these two goals, whereθ controls how

much weight is assigned to the entropy goal. If this weight isinfinite, p̃ is identical top andR

becomes the conditional expectation operator.

For a finiteθ, however, the minimizing model, ˜p, will differ from the approximating model,p.

Rearranging the likelihood ratio, (8), the minimizing model can be expressed as

p̃(x′,x,a(x)) = g(x′,x)p(x′,x,a(x))(12)

where the likelihood ratio,g, distorts the approximating model,p, to give the minimizing model ˜p.

Solving the minimization problem, (10), gives

g(x′,x) =
exp
[

−1
θV(x′)p(x′,x,a(x))

]

∫
exp
[

−1
θV(x′)p(x′,x,a(x))

]

dx′
(13)

as the minimizing distortion. Here, future statesx′ associated with a lower than average (under the

approximating model,p) continuation value are assigned a higher probability (g(x′,x) > 1) than

under the approximating model and thosex′ associated with a higher than average (again, under

the approximating model) continuation value a lower probability ( g(x′,x) < 1) than under the ap-

proximating model. This distortion of the approximating probability measure is proportional to the

expected continuation value, or an agent concerned with therobustness of her decisions operates

under the hypothesis that “events occur with probabilitiesin inverse proportion to their desirability.”

Hansen and Sargent (2007), following Bucklew (2004), call this a “statistical version of Murphy’s

5A Bellman-Isaacs condition enables the minimization and maximization operators to be interchanged in formulating
the zero-sum game that underlies the selection of the minimizing density, see Hansen and Sargent (2007).

6More direct, yet, mathematically less expedient is the constraint preferences approach

R (V)(x)
.
= min∫

ln(g(x′,x)) p̃(x′,x,a(x))dx′≤η

∫
V(x′)g(x′,x)p(x′,x,a(x))dx′(11)

whereby the agent makes her decision rule robust to unstructured uncertainty contained inside the hyperball with a radius
η centered around her approximating model.η thus measures the amount of uncertainty facing an agent. Hansen and
Sargent (2001) provide conditions under which this constraint approach is evuivalent to the multiplier approach I use
here.
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Law.” Substituting the minimizing distortion,g, back into the minimization problem, (10), gives

R (V)(x) =−θ ln
∫

exp

[

−
1
θ

V(x′)p(x′,x,a(x))

]

dx′(14)

an exponential certainty equivalent. With this certainty equivalent, (6) can be written as

V(x) = max
a∈A

u(x,a(x))−θβ ln
∫

exp

[

−
1
θ

V(x′)p(x′,x,a(x))

]

dx′(15)

Standard expected utility is recovered in the limiting caseof θ → ∞

lim
θ→∞

−θ ln
∫

exp

[

−
1
θ

V(x′)p(x′,x,a(x))

]

dx′ =
∫

V(x′)p(x′,x,a(x))dx′

In this case,R (Ṽ)(x) is the conditional expectations operatorE
[

Ṽ(x′)|x
] .
=

∫
Ṽ(x′)p(x′,x,a(x))dx′.

The recursive preferences of Epstein and Zin (1989) and Weil(1990) lead to a power certainty

equivalent, see (4), whereas those of Hansen and Sargent (2007) lead to an exponential certainty

equivalent, see (14). As has been demonstrated by, e.g., Tallarini (2000), Barillas, Hansen, and

Sargent (2009), and Ju and Miao (2012), the two are closely related under special restrictions on the

parameters and the period utility function. I review this inthe following proposition

Proposition 2.1. Logarithmic Equivalence of Risk Sensitive and Model Uncertainty Preferences

If the elasticity of intertemporal substitution in (4) is one, the period utilities are related through a

logarithmic transformation

uHS(x,a(x)) = ln
(

uEZ(x,a(x))
)

(16)

and

−θ =
1

(1−β)(1− γ)
(17)

then

VHS(x) =
1

1−β
ln
(

VEZ(x)
)

(18)

Proof. See the Appendix.

Risk sensitive and uncertainty averse preferences coincide but only in the special case of an

intertemporal elasticity of substitution of one and a logarithmic relationship between the period

utility functions. Backus, Routledge, and Zin (2005) have pointed out that is an unresolved question

how these two preference relate under more general settings. Addressing this question means finding

a foundation that recovers both exponential and power certainty equivalents as special cases. I will

take the model uncertainty perspective and accomplish exactly this by generalizing the measure of

entropy used to compared alternate models.
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3 Generalized Entropy

To provide a model uncertainty framework that moves beyond the exponential certainty equivalent of

Hansen and Sargent (2007) demands that we move past the standard logarithmic relative entropy to

measure the distance between two models. I follow the the physics literature on statistical mechanics

and replace the standard Boltzmann-Gibbs-Shannon measureof entropy with the generalization

introduced by Tsallis (1988). After introducing the basic properties and intuition, I turn to the

associated measure of relative entropy and compare its properties with those of the standard measure

of relative entropy or Kullback-Leibler divergence.

The standard Boltzmann-Gibbs-Shannon measure of entropy

S1(p(x))
.
=−

∫
p(x) ln p(x)dx(19)

where the meaning of the subscript inS1 will become apparent shortly, is used in the context of

information theory, see, e.g., Cover and Thomas (1991), as ameasure of the expected information

content7 of a realization from the distributionp(x)—that is, the expected surprisal or unpredictability

of a distribution.

The uniqueness theorems of Shannon and Khinchin8 provide an axiomatic foundation for the

function in (19) and prove that its functional form uniquely satisfies theirset of axioms. If their

axioms are modified to pseudoadditivity9 and biased probabilitiespq,i = pq
1,i , then there exists an

unique measure of entropy for all real values ofq, the entropic index.

This measure, introduced by Tsallis (1988), is given by

Sq(p(x))
.
=−

∫ (
1− p(x)q

1−q

)

dx=−
∫

p(x)q lnq p(x)dx(20)

where the generalizedq-logarithm, lnq, is defined as

lnq(x)
.
=

x1−q−1
1−q

(21)

It is useful to define the inverse function of lnq, the generalizedq-exponential function,

expq(x)
.
= [1+(1−q)x]

1
1−q(22)

Note that both (21) and (22) can be extended over their removable singularities atq= 1 to give the

standard basee logarithm and exponential function as limiting cases, ln1(x) = ln(x) and exp1(x) =

7This follows analogously, mathematically and conceptually, with the origin of the term “entropy” as the transfor-
mation content in classical thermodynamics and uncertainty or “mixedupness” in statistical mechanics.

8See Tsallis (2009, Ch. 2).
9For two independent subsystemsA and B, pseudoadditivity results inSq(A + B) = Sq(A) + Sq(B) + (1 −

q)Sq(A)Sq(B), where standard additivity results in the limiting case limq→1Sq(A+B) = S1(A)+S1(B).
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exp(x). Thus, Tsallis’s (1988) entropy recovers (19) as a limiting case, generalizing Boltzmann-

Gibbs-Shannon entropy.
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Figure 1:q Entropy or Generalized Expected Surprise
magenta—q= 0.1, red—q= 0.5, black—q= 1, blue—q= 2, green—q= 10

Figure1 depicts the generalized entropy (20) for a two state system.10 The first feature to note

is that entropy is concave for all the values ofq depicted here; more generally, (20) is concave for

q > 0 and convex forq < 0, see Tsallis (1988) and Tsallis (2009, Ch.3). When the probability of

either of the two states is one (p = 0 or p = 1), entropy is zero as the probability one event will

happen with certainty and there is, thus, no expected surprisal. Note that this holds regardless of

the value of the entropic index,q. As can be seen in figure1, the expected surprisal is decreasing

in q; that is, if q> 1 then entropy is less than in the standard Boltzmann-Gibbs-Shannon case and

if q < 1 entropy is greater. The entropic index can be interpreted as biasing standard probabilities

following Tsallis, Mendes, and Plastino (1998), Tsallis (2003), and Tsallis (2009, Ch. 3) and, as

noted above, from the generalization of the Shannon-Khinchin uniqueness theorems. Indeed as a

probability is positive and less than one, 0≤ pi ≤ 1, pq
i ≥ pi for q< 1 andpq

i ≤ pi for q> 1. Thus,

under biased probabilities, one expects more (less) surprisal from a realization of random variable

whenq < 1 (q > 1). The total probability under the biased probabilities isdepicted in figure2a

and clearly shows an increase (decrease) in expected surprisal withq< 1 (q> 1) stemming from an

increase (decrease) in total probability. Following Schmiedler (1989) and Dow and Werlang (1992),

10That is, the probability of state one is given byp and that of state two by 1− p. Of course, the continuous measures
above and investigated afterwards are replaced by their discrete counterparts for this example. See Tsallis (2009).
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q> 1 can be interpreted as a situation of uncertainty from the perspective of objective probabilities.
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Figure 2: Biased Probabilites
magenta—q= 0.1, red—q= 0.5, black—q= 1, blue—q= 2, green—q= 10

To preserve the law of total probability, an escort distribution can be defined

pq(x)
.
=

p(x)q∫
p(x)qdx

(23)

which normalizes the biased probabilities by the total probability from above. For the two state sys-

tem, figure2b plots the probabilities of the escort distribution as a function of the initial probability

for different values of the entropic index. As can be seen, the entropic index favors—i.e., increases

the probability of—less likely events ifq< 1 and overweights more likely events ifq> 1, see also

Tsallis, Mendes, and Plastino (1998), Tsallis (2003), and Tsallis (2009, Ch. 3). In contrast to the

standard expectations operator with respect to the densityp(x)

Ep [x]
.
=

∫
xp(x)dx(24)

the escort distribution gives aq-generalization of the expectations operator with respectto the density

p(x)

Ep
q [x]

.
=

∫
x

p(x)q∫
p(x)qdx

dx(25)

As shown by Abe and Bagci (2005), this definition of expectation is intricately linked to the func-

tional form of entropy, and this escort expectation leads toaq-generalization of relative entropy that

I will turn to next.

When comparing two distributions, relative entropy or the Kullback-Leibler divergence of ˜p(x)
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with respect to the reference distributionp(x)

I1(p̃(x), p(x))
.
=

∫
p̃(x) ln

p̃(x)
p(x)

dx(26)

provides a consistent method of discriminating between twoprobability distributions by quantifying

distance between the two distributions.11 This can beq-generalized following Tsallis (1988), Abe

and Bagci (2005), and Tsallis (2009, Ch. 3) as

Iq(p̃(x), p(x))
.
=

∫
p(x)

(

p̃(x)
p(x)

)q

lnq

(

p̃(x)
p(x)

)

dx(27)

and is positive and convex (both jointly and individually inp̃(x) andp(x), see Abe and Bagci (2005),

for q> 0.
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(a)q-Relative Entropy
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Figure 3:q-Relative Entropy or Generalized Kullback-Leibler Divergence
magenta—q= 0.1, red—q= 0.5, black—q= 1, blue—q= 2, green—q= 10

p(x) = 0.5—Two State Equiprobable

Figure 3a plots (27) for a two state random variable over possible values of ˜p for differing

values of the entropic index with the baseline distributiongiven by the equiprobable case. When

the two distributions match ( ˜p = p = 0.5), relative entropy is zero. Elsewhere, entropy is positive

and increasing in the entropic index. Forq > 1 (q < 1), relative entropy is greater (less) than the

Kullback-Leibler divergence. Figure3b plots the derivative with respect to ˜p, which also varies

with q. Note that for the caseq = 2, the derivative is linear in ˜p given by− 2
1−p +

2
p(1−p) p̃. Thus,

the entropic index does more than just scale standard relative entropy, but also changes the margin.

Figure4 provides the same picture, but nowp= 0.75, as can be deduced by the point of zero relative

11Though it is not a metric, as it and the generalization that follows are not symmetric, see Tsallis (1998).
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entropy. This change not only shifts the picture from beforeto the right, but also tilts the measures

to the right, as can be confirmed using the linear relationship for theq= 2 case above.
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0 0.2 0.4 0.6 0.8 1
−25

−20

−15

−10

−5

0

5

10

p

(b) ∂
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Figure 4:q-Relative Entropy or Generalized Kullback-Leibler Divergence
magenta—q= 0.1, red—q= 0.5, black—q= 1, blue—q= 2, green—q= 10

p(x) = 0.75—Two State Nonequiprobable

Again, (27) is a generalization of the standard measure, and the Tsallis (1988)q measure general-

izes the standard measure, the relative entropy or the Kullback-Leibler divergence, of discriminating

between two distributions.

4 Generalized Multiplier Preferences

The decision maker’s desire for robustness is formulated asa two player zero sum game, min-max

utility, with a minimizing agent, who selects a probabilitydistribution to minimize the decision

maker’s payoff given her decision or policy function. The decision maker, of course, takes this into

account when formulating her decision function. My generalization replaces Hansen and Sargent’s

(2005) and Hansen and Sargent’s (2007) Boltzmann-Gibbs-Shannon measure of entropy with the

generalized form in (27) from the previous section and allows for a state-dependentweight on the
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entropy penalty,

R (V)(x)
.
= min

p̃(x′,x,a(x))≥0∫
p̃(x′,x,a(x))dx′=1

∫
V(x′)p̃(x′,x,a(x))dx′

+
∫

θ(x′)
(

p̃(x′,x,a(x))
p(x′,x,a(x))

)q−1

lnq

(

p̃(x′,x,a(x))
p(x′,x,a(x))

)

p̃(x′,x,a(x))dx′(28)

The first term evaluates continuation utility, conditioning on the current statex, under the distorted

density. The second term is the generalized relative entropy, conditional onx, of the distorted density

to the approximating model, reweighted withθ(x′). Indeed, ifθ(x′) is independent ofx′, sayθ(x′) =

θ, this term becomesθIq(p̃(x′,x,a(x)), p(x′,x,a(x))|x).

In terms of the likelihood ratio,g(x′,x), and the decision maker’s approximating model,p(x′,x,a(x)),

the foregoing can be reformulated as

R (V)(x)
.
= min

g(x′,x)>0∫
g(x′,x)p(x′,x,a(x))dx′=1

∫
V(x′)g(x′,x)p(x′,x,a(x))dx′

+

∫
θ(x′)g(x′,x)q lnq

(

g(x′,x)
)

p(x′,x,a(x))dx′(29)

The likelihood ratio can apparently be interpreted as a distortion to the probability density of the

approximating model and distortions are penalized by theirentropy weighted by the approximating

density. This minimization problem weighs two countervailing forces: the decision maker would

like to guard against very painful distortions (those that result in the smallest expected value of

her continuation utility,
∫

V(x)g(x′,x)p(x′,x,a(x))dx); on the other hand, a very pernicious distor-

tion that is easy to distinguish, i.e., is far, from her approximating model is considered less likely

and adds a large entropy contribution to her objective function (
∫

p(x′,x,a(x))g(x′,x) lng(x′,x)dx),

whereθ(x′) weights her concern for closeness. Thus, the decision makeris worried that her mis-

specification is both pernicious and hard to detect.

Specifically, I will set the multiplier,θ(x′), equal to a constant and a term proportional to the

continuation utility.

Assumption 4.1. Entropy Multiplier

The multiplierθ(x′) is given by

θ(x′) .
= θ+(q−1)V(x′)(30)

whereθ and q are positive.

For q> 1, this multiplier weights future states associated with higher continuation values more
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strongly; thus, for two competing distorted densities thatare equally far from the approximating

model, the density associated with a lower continuation value is penalized relatively less. Increas-

ing q increases(q−1)V(x′) which tilts the minimizing agent’s decision further towards pernicious

distributions relative to theq = 1 case. Increasingq, though, also has a countervailing effect: it

increases the index in relative entropy, thereby increasing the penalty associated with distorting the

probability distribution. Hence changes inq might be interpreted as changes in the shape and not

necessarily size of the space of distorted models that agents consider.

This assumption on the multiplier allows me to reformulate the zero-sum game expressed in

terms of the likelihood ratio,g(x′,x), as the sum of an entropy penalty with a constant multiplier and

a continuation value evaluated under a weighted worst case density

R (V)(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
(

V(x′)+θ lnq
(

g(x′,x)
))

p(x′,x,a(x))g(x′,x)qdx

(31)

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V(x′)g(x′,x)q−1p̃(x′,x,a(x))dx+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(32)

Thus q is not only the entropic index used in selecting the measure of entropy used to penalize

worst case density functions (the second term in the second line), but also expresses a form of

pessimism. The formulation of Hansen and Sargent (2005) andothers with standard Boltzmann-

Gibbs-Shannon entropy would set this power to 1, yielding expectations taken with respect to the

distorted density ˜p(x′,x,a). For q > 1, events made more likely under the worst case density are

overweighted and those made less likely underweighted whenevaluating the expectation of the

continuation value under the worst case density (the first term in the second line). Quiggin (1982)

deems agents pessimistic if they overweight the probabilities of the worst outcomes on average and if

q> 1 agents will overweight the events in the distorted model chosen to minimize their continuation

utility. In this sense, I interpretq as a measure of agents’ pessimism. The resulting minimizing

probability distortion is contained in the following

Proposition 4.2. Minimizing Distortion and Risk-Sensitive Operator

For the generalized entropy measure and multiplier, the minimizing probability distortion is given

13



by

g(x′,x) =
expq

(

−1
θV(x′)

)

expq

(

−1
θ R (V)(x)

) =

(

θ− (1−q)V(x′)
θ− (1−q)R (V)(x)

)
1

1−q

(33)

and the risk aggregator, or certainty equivalent, by

R (V)(x) =−θ lnq

[∫
expq

(

−
1
θ

V(x′)

)

p(x′,x,a(x))dx′
]

(34)

=
θ−
[∫

(θ− (1−q)V(x′))
1

1−q p(x′,x,a(x))dx′
]1−q

1−q
(35)

Proof. See the Appendix.

Thus, the varying multiplier and generalized entropy lead to a generalized exponential transfor-

mation governed jointly by the entropic indexq and static multiplierθ for the risk aggregator. This

contrasts with the standard exponential transformation controlled by the static multiplierθ that re-

sults from Hansen and Sargent’s (2007) formulation and the power certainty equivalent from Epstein

and Zin (1989) and Weil (1990). The interpretation of this generalized form follows more readily

from the special cases that capture these two specific preferences.

4.1 Equivalence with Hansen-Sargent Multiplier Preferences

In the extensive limit of the multiplier, limq→1 θ(x′) = θ, the model uncertainty specification and

Hansen and Sargent (2007) is recovered

lim
q→1

R (V)(x) =−θ ln

[∫
exp

(

−
1
θ

V(x′)

)

p(x′,x,a(x))dx′
]

(36)

with an exponential certainty equivalent following proposition 4.2and a minimizing distortion

gHS(x′,x) =
exp
(

−1
θV(x′)

)

exp
(

−1
θR (V)(x)

)(37)

that tilts the distorted model using the standard exponential function.

This formulation is Hansen and Sargent’s (2007) aggregator,

R (V)(x)
.
= min

p̃(x′,x,a(x))≥0∫
p̃(x′,x,a(x))dx′=1

E p̃[V(x′)|x
]

+θI1
(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(38)

= min
p̃(x′,x,a(x))≥0∫
p̃(x′,x,a(x))dx′=1

∫
V(x′)p̃(x′,x,a(x))dx′+θ

∫
p̃(x′,x,a(x)) ln

p̃(x′,x,a(x))
p(x′,x,a(x))

dx′(39)

Both the expectation and the relative entropy are with respect tox′, conditioning onx. In terms of the

likelihood ratio,g(x′,x), and the decision maker’s approximating model,p(x′,x,a(x)), the foregoing
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can be reformulated as

R (V)(x)
.
= min

g(x′,x)>0∫
g(x′,x)p(x′,x,a(x))dx′=1

Eg·p[V(x′)+θ ln
(

g(x′,x)
)]

(40)

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V(x′)g(x′,x)p(x′,x,a(x))dx′+θ

∫
p(x′,x,a(x))g(x′,x) lng(x′,x)dx′

(41)

From the perspective of (31), the formulation here provides decision makers with uncertainty

in the modelling sense inasmuch as they entertain deviations from their approximating model. As

they use the implied probability distribution of this worstcase model, they are not pessimistic in the

sense that they do not over- or underweight the ensuing probability distortions.

4.2 Equivalence with Epstein-Zin-Weil Risk Sensitive Preferences

In the proportional limit of the multiplier, limq→1 θ(x′) = θ, the risk sensitive specification of Epstein

and Zin (1989) and Weil (1990) is recovered

lim
θ→0

R (V)(x) =

[∫
V(x′)

1
1−q p(x′,x,a(x))dx′

]1−q

(42)

with a power certainty equivalent. Backus, Routledge, and Zin (2005, p. 341) restrict1
1−q < 1 which

translates toq∈ [−∞,0]∪ [1,∞]. The coefficient of relative risk aversion from (4), γ, is related toq

throughγ = − q
1−q and values ofq≥ 1 translate toγ ≥ 1. I will confirm this and provide a measure

for risk aversion in the general case in the next section.

Following proposition4.2 the minimizing distortion associated with Epstein-Zin-Weil prefer-

ences is

gEZW(x′,x) =

(

V(x′)
R (V)(x)

)
1

1−q

=

(

V(x′)
R (V)(x)

)1−γ
(43)

a power tilting instead of the exponential tilting of Hansen-Sargent preferences. Having this mini-

mizing distortion will enable me to parameterize their measure of relative risk aversion,γ, in Epstein-

Zin-Weil preferences from a model uncertainty perspectiveusing detection error probabilities.

From the perspective of (31), note that theθ = 0 specification of Epstein and Zin (1989) and

Weil (1990) gives

R (V)(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V(x′)g(x′,x)q−1p̃(x′,x,a(x))dx′(44)

To interpret this, note that ifq = 1, the minimizing agent would choose an infinitely pernicious
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distortion p̃(x′,x,a(x)) to minimizeR (V)(x). For q > 1, this tendency is counterbalanced by the

overweighting throughq, as making pernicious events more likely increases the value under the

integral by increasingg(x′,x)
.
=

p̃(x′,x,a(x))
p(x′,x,a(x)) . Recall thatq can be interpreted as agents’ pessimism:

increases inq lead agents to attribute a higher probability to a given pernicious distortion and to

more strongly robustify their actions against this distortion, thereby reducing its impact on their

continuation value.

4.3 Atemporal Risk Aversion

To link the generalized model uncertainty to concepts of risk, I will examine the risk-related prop-

erties of the generalized preferences in a static setting. Abusing notation to minimize clutter by

suppressing the dependence onx, the current state, and recycling notation by relabeling the future

state,x′, with x, the risk aggregator from proposition4.2 is

R (V) =−θ lnq

(∫
expq

(

−
1
θ

V(x)

)

p(x)dx

)

(45)

and its minimizing density distortion is

g(x) =
expq

(

−1
θV(x)

)

expq

(

−1
θR (V)

)(46)

Backus, Routledge, and Zin (2005) calculate the risk aversion with a Taylor expansion of several

preferences in a two state equiprobable setup. Accordingly, let there be two states, with outcomes

x1 = 1+σ andx1 = 1−σ for positiveσ. The certainty equivalent is

R (V) =−θ lnq

(

0.5expq

(

−
1+σ

θ

)

+0.5expq

(

−
1−σ

θ

))

(47)

which I will evaluate locally aroundσ = 0 out to second order12

R (V)≈ R (V)
∣

∣

∣

σ=0
+

∂R (V)

∂σ

∣

∣

∣

σ=0
+

1
2

∂2R (V)

∂σ2

∣

∣

∣

σ=0

= 1−
q

θ+q−1
σ2

2
(48)

As there is no term linear inσ, risk aversion is second order here. This is not surprising as the

generalized exponential risk sensitive preferences are smooth, lacking the kinks responsible for first

order risk aversion, see, e.g., Epstein and Zin (1990). The term
q

θ+q−1
(49)

provides a measure of risk aversion.

In the special case of a power certainty equivalent following Epstein and Zin’s (1989) and Weil’s

12Details of the calculations can be found in the Appendix.
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(1990) risk-sensitive preferences,θ is set to zero and the foregoing measure of risk aversion is
q

θ+q−1

∣

∣

∣

θ=0
=−

q
1−q

(50)

Which, through comparison with (4) is equal toγ, the coefficient of relative risk aversion.

For the exponential certainty equivalent of Hansen and Sargent’s (2007) robust control approach,

the entropic indexq is set to one, which delivers the following measure of risk aversion
q

θ+q−1

∣

∣

∣

q=1
=

1
θ

(51)

See also Hansen and Sargent (2007) and Tallarini (2000).

Returning to the general case in (49), the measure of risk aversion is increasing inθ for q> 0
∂ q

θ+q−1

∂θ
=

q

(θ+q−1)2
(52)

and decreasing inq for θ less than one, but increasing forθ greater than one
∂ q

θ+q−1

∂q
=−

1−θ
(θ+q−1)2(53)

4.4 Asset Pricing

Consider a household seeking to maximize the following preferences Following

Vt = u(Ct ,•)−βθ lnq

(

Et

[

expq

(

−
1
θ

Vt+1

)])

(54)

whereVt is the households lifetime discounted utility,u(Ct,•) its period utility function that depends

at least on consumptionCt , andβ ∈ (0,1) the household’s subjective discount factor.

The likelihood ratio between the distorted and approximating models is given by

gt+1 =
expq

(

−1
θVt+1

)

Et
[

expq

(

−1
θVt+1

)](55)

The household’s stochastic discount factor or pricing kernel is given by

Mt+1
.
=

∂Vt/∂Ct+1

∂Vt/∂Ct
=

∂Vt
∂Vt+1

∂Vt+1
∂Ct+1

∂Vt
∂Ct

(56)

with
∂Vt

∂Ct
= uC(Ct ,•),

∂Vt+1

∂Ct+1
= uC(Ct+1,•)(57)

and
∂Vt

∂Vt+1
= β

(

expq

{

−1
θVt+1

}

Et
[

expq

{

−1
θVt+1

}]

)q

= βgq
t+1 = βgt+1gq−1

t+1(58)

combining yields the final form of the pricing kernel

Mt+1 = β
uC(Ct+1,•)

uC(Ct ,•)
gt+1gq−1

t+1 = ΛR
t+1ΛU

t+1ΛP
t+1(59)
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whereΛR
t+1

.
= βuC(Ct+1,•)

uC(Ct ,•)
is the stochastic discount factor under expected utility (θ=∞), ΛU

t+1
.
= gt+1

is the change of measure under the distorted model, andΛP
t+1

.
= gq−1

t+1 captures the direct effect13 of

the entropic index.

Note that ifq= 1, ΛP
t+1 is equal to unity and the model uncertainty concerns collapse to Hansen

and Sargent’s (2007) original formulation (see section4.1 above). Forq > 1, agents overweight

(underweight) states that have become more (less) likely under the distorted model when pricing

assets, embedding a form of pessimism into a non-unityΛP
t+1. Thus, along with Hansen and Sar-

gent’s (2007), Bidder and Smith’s (2012), and others’ interpretation ofstdt
(

ΛR
t+1

)

/Et
[

ΛR
t+1

]

and

stdt
(

ΛU
t+1

)

as the market prices of risk and model uncertainty, respectively, I interpretstdt
(

ΛP
t+1

)

/Et
[

ΛP
t+1

]

as the market price of pessimism.

For Epstein and Zin’s (1989) and Weil’s (1990) power certainty equivalent,θ → 0 (see section

4.2 above), and all three components of the stochastic discountfactor remain. As the measure of

risk aversion is related inversely toq in this case, see section4.3, an increase in risk aversion is

associated with a decrease in pessimism, asΛP
t+1 approaches unity,

5 Business Cycles, Asset Prices, and Model Uncertainty

In this section, I apply the generalized entropy constraintto a stochastic neoclassical growth model

with a preference for robustness. I will parameterize the model closely to the production model de-

scribed in Tallarini (2000). The economy is populated by an infinitely lived household that optimizes

over consumptionCt and labor supplyNt with the period utility function

Ut = lnCt +ψ ln(1−Nt)(60)

subject to

Ct +Kt =WtNt +RRK
t Kt−1+(1−δ)Kt−1(61)

whereKt is capital stock accumulated today for productive purpose tomorrow,Wt real wage,RRK
t

the capital rental rate andδ ∈ [0,1] the depreciation rate. Investment is the difference between the

current capital stock and the capital stock in the previous period after depreciation

It = Kt − (1−δ)Kt−1(62)

I will assume a perfectly competitive production side of theeconomy, where output is produced

13The entropic index, as was shown above, enters into the change of measureg.
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using the labor augmented Cobb-Douglas technologyYt = Kα
t−1

(

eZtNt
)1−α

. Zt is a stochastic pro-

ductivity process andα ∈ [0,1] the capital share. Productivity is assumed to be a random walk with

drift

at ≡ Zt −Zt−1 = a+ εz,t , εz,t ∼ N (0,σ2
z)(63)

with εz,t the innovation toZt .

The model is detrended with
[

yt kt it ct wt
] .
= e−Zt

[

Yt Kt It Ct Wt
]

, where detrended

variables are written in lowercase.

The household’s lifetime utility function is expressed recursively using the generalized risk ag-

gregatorR (V)(x) as

vt = lnct +ψ ln(1−Nt)+βR

(

vt+1+
1

1−β
at+1

)

(64)

= lnct +ψ ln(1−Nt)−βθ lnq

{

Et

[

expq

{

−
1
θ

(

vt+1+
1

1−β
at+1

)}]}

(65)

with β ∈ (0,1) the discount factor andvt the value function at the optimum. The first of household’s

two optimality conditions is the intratemporal labor supply/productivity condition equalizing the

utility cost of marginally increasing labor supply to the utility value of the additional consumption
ψ

1−Nt
=

1
ct

wt(66)

and the second is the intertemporal Euler equation, rearranged as the fundamental asset pricing

equation,

1= Et [mt+1Rt+1](67)

whereRt
.
= RRK

t + 1− δ is the return on capital andmt+1, the stochastic discount factor of the

household or pricing kernel (see section4.4), is given by

mt+1
.
=

∂vt/∂Ct+1

∂vt/∂Ct
=

∂vt
∂vt+1

∂vt+1
∂ct+1

eZt+1

∂vt
∂ct

eZt
(68)

with
∂vt

∂ct
=

1
ct
,

∂vt+1

∂ct+1
=

1
ct+1

(69)

and

∂vt

∂vt+1
= β





expq

{

−1
θ

(

vt+1+
1

1−βat+1

)}

Et

[

expq

{

−1
θ

(

vt+1+
1

1−βat+1

)}]





q

(70)
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combining yields the final form of the pricing kernel

mt+1 = β
ct

ct+1
eat+1





expq

{

−1
θ

(

vt+1+
1

1−βat+1

)}

Et

[

expq

{

−1
θ

(

vt+1+
1

1−βat+1

)}]





q

(71)

The stationarized resource constraint is

ct +kt = yt +(1−δ)exp(−at)kt−1(72)

whereyt = e−αat kα
t−1N1−α

t follows from profit maximization, with the stationarized wage wt =

(1−α)e−αat kα
t−1N−α

t and rental rateRRt = αe−(1−α)at kα−1
t−1 N1−α

t and the household’s budget con-

straint

ct +kt = wtNt +
(

1−δ+RRK
t

)

exp(−at)kt−1(73)

closes the model.

I append the model with the following additional asset pricing variables: the real risk-free rate

Rf
t ≡ Et(mt+1)

−1 and the (ex post) risk premiumrpt = Rt −Rf
t−1 as the difference between the risky

and risk-free rate.

5.1 Data and Model Calibration

The calibration of the model will focus on matching the first two moments of key macroeconomic

indicators and the Sharpe ratio (see the upper and lower halves of table1 respectively) for the U.S.

post war period.

The Sharpe ratio and the market price of riskstd(mt+1)
E[mt+1]

that measures the excess return the house-

hold demands for bearing an additional unit of risk can be related through a Cauchy-Schwarz

inequality and the fundamental asset pricing equation (here: 1= Et [mt+1Rt+1] for the risky and

1= Et [mt+1]R
f
t the risk free return) as

∣

∣

∣
E
[

Rt+1−Rf
t

]∣

∣

∣

std
(

Rt+1−Rf
t

) ≤
std(mt+1)

E [mt+1]
(74)

with the Sharpe ratio on the left hand side being empiricallyobservable and given in the lower half

of table1.

Table2 contains the calibration of the model common to all specifications, where I follow Tal-

larini (2000) to maintain comparability (see the discussion there). The standard deviation of pro-

ductivity growthσa is set to match the post-war U.S. consumption growth volatility in table1. The

remaining parameters,θ andq, will be set using detection error probabilities, following Hansen and
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Table 1: Data Moments, 1948:2-2012:4

Business Cycle Data

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt

∆ lnYt 0.004 0.991 1.000 0.380 0.266 0.045 1.000
∆ lnCt 0.005 0.566 0.571 0.255 0.201 0.069 0.531
∆ ln It 0.004 2.536 2.558 0.336 0.248 0.043 0.662
∆ lnNt 0.328 1.192 1.203 -0.020 -0.010 -0.008 0.388
lnNt — 2.778 2.802 0.999 0.998 0.997 -0.139
lnCt − lnYt -0.611 5.887 5.938 0.990 0.978 0.964 -0.172
ln It − lnYt -1.382 7.302 7.365 0.962 0.910 0.841 0.128

Asset Return Data

Return Mean Std. Dev.
R 2.13 8.26
Rf 0.26 0.63
rp 1.87 8.27 Sharpe Ratio 0.2261

All business cycle data was retrieved from the Federal Reserve Economic Data (FRED)
database of the Federal Reserve Bank of St. Louis.
All returns are measured as net real quarterly percentage returns.
R is the return on the NYSE value weighted portfolio from the CRSP dataset andRf is the
secondary market rate on the three month Treasury bill. Bothreturns have been deflated
by the implicit deflator of the PCE Nondurables and Services series.

Table 2: Parameter Values

Parameter β ψ α δ a σa

Value 0.9926 N̄ = 0.2305 0.339 0.021 0.004 Std. Dev.∆ lnct = 0.566%

See Tallarini (2000) and the main text.

Sargent (2007). Specifically, I will use a perturbation solution of the model following Bidder and

Smith (2012), but will use the nonlinear moving average policy function of Lan and Meyer-Gohde

(2013c) to maintain the stability of the model under nonlinearity.14 As proposed by Bidder and

Smith (2012), I will first generate simulations (the length of which will match the length of the post

war U.S. data series used) using the perturbation solution of the model and then perform a likelihood

ratio test over the agents’ approximating modelp and the distorted model ˜p. Second, I will generate

simulations from the distorted model using a sampling importance resampling algorithm and then

perform a symmetrical likelihood test.15

14See Lan and Meyer-Gohde (2013b) for a comparison of alternate, so-called pruning, algorithms to deliver this sta-
bility. An additional advantage to using a nonlinear movingaverage or pruning algorithm is that closed-form theoretical
moments are available, see Lan and Meyer-Gohde (2013a) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez
(2017), which can be used to initialize the particle filters.

15The likelihood calculations are performed by sequential importance sampling-resampling, or particle filtering, with
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A value of 0.5 for the detection error probability indicates that the twomodels (approximating

and worst-case) are indistinguishable, as the agents have afifty-fifty chance of correctly identifying

the model used to generate the simulations. Barillas, Hansen, and Sargent (2009) argue for a detec-

tion error probability of between 0.15 and 0.2 as lower bound. I will take a conservative perspective

and target a detection error probability of 0.25.

5.2 Macroeconomic Implications

I begin by comparing the business cycle properties of model uncertainty following Hansen and

Sargent (2007) withq= 1 and the risk sensitive recursive utility specification of Epstein and Zin’s

(1989) and Weil’s (1990) parameterized via model uncertainty with θ = 0, before turning to the

case of the generalized model uncertainty. The calibrations follow the discussion above, where the

parametersq andθ are set according to the specification chosen and to achieve adetection error

probability of 0.25 between the approximating and worst case models of each specification. For the

generalized model uncertainty case,q is set to 2 (the reason for which will be clear in the next section

that addresses asset pricing implications) andθ is then set to match the detection error probability.

The volatility of productivity growth is adjusted under each preference specification such that the

volatility of consumption growth matches its empirical target in table1. The approximating models

for all three specifications do a comparably good job in matching the data, despite their different

uncertainty specifications, consistent with what Backus, Ferriere, and Zin (2015) deem the “Tallarini

property”.

In the upper half of table3, the business cycle moments for the approximating model arepre-

sented for the Hansen and Sargent (2007) specification (q= 0) with a detection error probability of

0.25 (which requiresθ = 15). The approximating model does a reasonable job in matching the post

war U.S. macroeconomic experience, as can be seen by comparing with table1.

The statistics of the worst case model that agents apparently fear can be found in lower half

of table3. Compared to the approximating model, it can be seen that agents worry about an en-

vironment with lower average growth and positive autocorrelation in technology growth. This is a

familiar result of the model uncertainty framework, see, e.g., Barillas, Hansen, and Sargent (2009)

with the long run risk result echoed by Bidder and Drew-Becker (2016). The detectability of the

a bootstrap proposal except where noted.
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Table 3: Business Cycle Moments, Hansen and Sargent (2007) Preferences

Approximating Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.004 1.029 1.000 0.009 0.008 0.008 1.000 1.000
∆ lnCt 0.004 0.566 0.550 0.085 0.080 0.076 0.988 0.984
∆ ln It 0.004 2.351 2.285 -0.019 -0.018 -0.017 0.994 0.996
∆ lnNt 0.000 0.367 0.357 -0.025 -0.024 -0.023 0.983 0.988
lnNt -1.463 1.176 1.143 0.951 0.904 0.859 0.332 0.308
lnCt − lnYt -0.308 1.530 1.487 0.951 0.904 0.859 -0.332 -0.308
ln It − lnYt -1.330 4.271 4.152 0.951 0.904 0.859 0.331 0.307
∆ lnat 0.000 1.194 1.160 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.003 1.031 1.000 0.078 0.077 0.077 1.000 1.000
∆ lnCt 0.003 0.564 0.547 0.269 0.265 0.263 0.988 0.984
∆ ln It 0.003 2.413 2.341 -0.004 -0.004 -0.003 0.994 0.996
∆ lnNt 0.000 0.370 0.359 -0.024 -0.024 -0.022 0.984 0.988
lnNt -1.471 1.195 1.160 1.000 1.000 1.000 0.328 0.305
lnCt − lnYt -0.298 1.552 1.506 1.000 1.000 1.000 -0.329 -0.305
ln It − lnYt -1.357 4.497 4.363 1.000 1.000 1.000 0.328 0.304
∆ lnat -0.001 1.193 1.157 0.009 0.008 0.009 0.934 1.000

θ was set to 15 to deliver a detection error probability of 25%

worst case model with negative mean, positively autocorrelated technology growth is balanced with

a reduction in the volatility of technology shocks.

In the upper half of table4, the business cycle moments for the approximating model arepre-

sented for the Epstein and Zin (1989) and Weil (1990) specification (θ = 0) with a detection error

probability of 0.25 (which requiresq = 1.15). The results here are essentially identical to those

obtained under the approximating model under Hansen and Sargent’s (2007) standard model uncer-

tainty framework.

The lower half of table4 contains the business cycle statistics of the worst case under the model

uncertainty foundation for the Epstein and Zin (1989) and Weil (1990) specification. In contrast to

the worst case under Hansen and Sargent’s (2007) standard model uncertainty framework, agents

here fear a technology process with increasing autocorrelations and a more volatile shock. This

leads to substantial increases in the autocorrelations of macroeconomic variables and an increase

in the volatility of consumption growth. The detectabilityof the worst case model is now balanced

with an increase in the average growth rate of the economy.
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Table 4: Business Cycle Moments, Epstein and Zin (1989) Preferences

Approximating Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.004 1.026 1.000 0.009 0.008 0.008 1.000 1.000
∆ lnCt 0.004 0.566 0.552 0.085 0.080 0.076 0.988 0.984
∆ ln It 0.004 2.360 2.301 -0.019 -0.018 -0.017 0.994 0.996
∆ lnNt 0.000 0.365 0.356 -0.025 -0.024 -0.022 0.983 0.988
lnNt -1.467 1.166 1.137 0.951 0.904 0.859 0.333 0.309
lnCt − lnYt -0.304 1.516 1.478 0.951 0.904 0.859 -0.333 -0.309
ln It − lnYt -1.341 4.298 4.190 0.951 0.904 0.859 0.333 0.308
∆ lnat 0.000 1.191 1.161 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.005 1.025 1.000 0.207 0.206 0.208 1.000 1.000
∆ lnCt 0.005 0.568 0.554 0.496 0.493 0.492 0.988 0.984
∆ ln It 0.005 2.307 2.250 0.029 0.029 0.033 0.994 0.996
∆ lnNt 0.000 0.362 0.353 -0.026 -0.025 -0.021 0.983 0.987
lnNt -1.460 1.145 1.117 1.000 1.000 1.000 0.337 0.312
lnCt − lnYt -0.313 1.492 1.455 1.000 1.000 1.000 -0.337 -0.312
ln It − lnYt -1.316 4.090 3.989 1.000 1.000 1.000 0.336 0.311
∆ lnat 0.001 1.193 1.164 0.008 0.007 0.010 0.932 1.000

q was set to 1.15 to deliver a detection error probability of 25%

The business cycle moments for the approximating model are presented in the upper half of

table5 for the generalized model uncertainty specification withq = 2 and with a detection error

probability of 0.25 (this requiresθ = 132.15). The results here are roughly comparable to those

obtained under the approximating model under Hansen and Sargent’s (2007) standard model un-

certainty framework and the Epstein and Zin (1989) and Weil (1990) specification. With agents

pessimistic,q> 1, their precautionary behavior is heightened, requiring an increase in the volatility

of technology growth (and with it output and the two margins,investment and labor, to smooth the

effects of output on consumption) to match the empirical volatility of consumption growth.

The lower half of table5 contains the business cycle statistics of the worst case under the gen-

eralized model uncertainty specification withq = 2. Relative to the approximating model, both

mechanisms from above are operational, with technology growth having a lowered mean, increased

volatility, and heightened autocorrelation compared withthe approximating model. The moments of

consumption growth, aside from the decrease in the mean here, are nearly identical to those under

Hansen and Sargent’s (2007) standard model uncertainty framework. Relative to the approximating
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Table 5: Business Cycle Moments, Generalized Uncertainty Preferences,q= 2

Approximating Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.004 1.233 1.000 0.008 0.008 0.007 1.000 1.000
∆ lnCt 0.004 0.566 0.459 0.101 0.096 0.091 0.977 0.974
∆ ln It 0.004 2.810 2.279 -0.018 -0.017 -0.016 0.994 0.995
∆ lnNt 0.000 0.526 0.426 -0.024 -0.023 -0.022 0.985 0.987
lnNt -1.418 1.644 1.333 0.950 0.903 0.858 0.330 0.315
lnCt − lnYt -0.367 2.162 1.753 0.950 0.903 0.858 -0.330 -0.315
ln It − lnYt -1.162 4.955 4.017 0.951 0.903 0.859 0.330 0.316
∆ lnat 0.000 1.347 1.092 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr. Cross Corr.
Std. Dev. 1 2 3 w∆ lnYt w∆ lnat

∆ lnYt 0.003 1.240 1.000 0.047 0.045 0.046 1.000 1.000
∆ lnCt 0.003 0.565 0.456 0.270 0.264 0.260 0.977 0.974
∆ ln It 0.003 2.908 2.346 -0.011 -0.011 -0.009 0.994 0.995
∆ lnNt 0.000 0.532 0.429 -0.024 -0.024 -0.022 0.985 0.987
lnNt -1.429 1.673 1.350 1.000 1.000 1.000 0.326 0.312
lnCt − lnYt -0.353 2.195 1.771 1.000 1.000 0.999 -0.326 -0.312
ln It − lnYt -1.195 5.281 4.260 1.000 1.000 1.000 0.325 0.312
∆ lnat -0.001 1.350 1.089 0.012 0.010 0.011 0.952 1.000

θ was set to 132.15 to deliver a detection error probability of 25%

model, consumption growth volatility goes down in the worstcase model despite the increase in the

volatility of productivity growth and production, as the pessimistic agents here overweight (q> 1)

the probability of the worst case and robustify their decision rules more strongly.

Figure5 plots the joint distributions of the two states,kt and∆at , for the specifications of Epstein

and Zin (1989) and Weil (1990), Hansen and Sargent (2007), and the generalized model uncertainty

introduced here. As can be seen in the figure, the mean shift inthe distribution of technology growth

to the right (indicating higher average growth) is ameliorated by a downward shift in detrended

capital for the specification of Epstein and Zin (1989) and Weil (1990) relative to that of Hansen

and Sargent (2007). This downward shift along with the increased variability of technology growth

highlights that the agents are not necessarily “better off”in the Epstein and Zin (1989) and Weil

(1990) specification. The generalized model uncertainty specification withq= 2 is associated with

a large upward shift in detrended capital. This reflects the overaccumulation of capital (and with

it, drop in price through the decreased marginal productivity and increase in return) driven by the

agent’s overweighting the worst case scenario.
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Figure 5:
Red: Hansen and Sargent (2005); Blue: Epstein and Zin (1989); Green: Generalized Uncertainty

Joint unconditional distributions of states,a andk.

5.3 Asset Pricing Implications

I will first compare the specifications ability to match assetpricing facts, here using the market price

of risk, for varying detection error probabilities. This will highlight the close relationship between

Epstein and Zin’s (1989) and Weil’s (1990) risk-sensitive specification and model uncertainty fol-

lowing Hansen and Sargent (2007) when examining empirically plausible market prices of risk for

this model. Then I will turn to the generalized model uncertainty introduced here and show that

increasing the entropic indexq can put the model’s asset pricing predictions inside the Hansen and

Jagannathan (1997) bounds while maintaining a conservative detection error probability of 0.25.

Under the calibration in the previous section (specificallyfor detection error probabilities of

25%), both Hansen and Sargent’s (2007) and Epstein and Zin’s(1989) and Weil’s (1990) specifi-

cations yield market prices of risk of 0.1. This relation holds more generally, as can be seen in

figure6, which plots the market price of risk of the approximating models against the detection er-

ror probabilities16 for the Hansen and Sargent (2007) and Epstein and Zin (1989) and Weil (1990)

16As the particle filter with a reasonable number of particles (1,000,000) still suffers from sampling variation when
calculating the likelihood tests for high and low detectionerror probabilities, I follow Bidder and Drew-Becker (2016)
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Figure 6: Red: Hansen and Sargent (2005); Blue: Epstein and Zin (1989)
Market Price of Risk and Detection Error Probabilities

specifications. For a detection error probability of 0.25, both specifications yield roughly the same

market price of risk of around 0.1. For very low detection error probabilities the specification of Ep-

stein and Zin (1989) and Weil (1990) and for very high detection error probabilities the specification

of Hansen and Sargent (2007) produces higher market prices of risk. That these two different speci-

fications yield very similar results when controlling for the detection error probabilities confirms the

close relation between these two different preference specifications for the model here.

Table 6: Entropic Index and the Market Price of Risk

q= 1 1.1 1.2 1.3 1.4 1.5 1.75 2 2.25 2.5
MPR 0.10 0.11 0.12 0.13 0.14 0.15 0.19 0.21 0.24 0.27

θ is adjusted to keep the detection error probability at 0.25.

Holding the detection error probability constant at 25%, the generalized model uncertainty

present in this paper moves directly towards the bounds and enters them with aq = 2.25, as can

be seen in table6. For theq = 2 specification of the previous section, the market price of risk is

0.21, just shy of the empirical Sharpe ratio of 0.2261, see the lower half of table1, and more than

twice the value obtained under both Hansen and Sargent’s (2007) and Epstein and Zin’s (1989) and

and calculate the log-likelihood ratios directly from the perturbation approximated changes of measureg. This eliminates
the sampling variation and computational burden associated with the particle filter, but assumes that the entire state
vector is observable when comparing models. I found that this only slightly reduced the detection error probabilities
compared with calculations conditional on a subset of the models’ variables (i.e., consumption).
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Weil’s (1990) specifications. That agents overweight the probability of the worst case under the gen-

eralized model uncertainty formulation drives up the returns on risky capital relative to the risk free

bond. One could object to the fact the econometrician uses the actual likelihood ratiog when cal-

culating the detection error probabilities while the agents in the model overweightgq the worst case

when forming expectations, as perhaps overstating the results for the generalized model uncertainty

case. But note that this objection would then also apply to the Epstein and Zin (1989) and Weil

(1990) specification that operates solely throughq: the approximate equivalence with Hansen and

Sargent’s (2007) specification in regards to the market prices of risk and detection error probabilities

in figure6 rests likewise on this discord between the measures of the agents and the econometrician.
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Figure 7: The Hansen-Jagannathan Bounds

Hansen and Jagannathan (1997) extend the maximal Sharpe ratio point restriction on pricing

kernels to a parabola inside which pairs ofstd(mt+1) andE [mt+1] must reside to be consistent with

(a vector) of risky assets and the riskless bond. Figure7acontains this bound for the assets in table1

and both expected utility (θ = ∞ andq= 1) and for recursive utility using the exponential certainty

equivalent (q= 1 and varyingθ). For the expected utility case, the risk-free rate puzzle can be seen

through the decrease inE [mt+1] with risk aversion is increased from 5, 10, 20, 30, 40, 50, andfinally

to 100. By holding the elasticity of intertemporal substitution constant at one, Tallarini (2000) is able

to march up to the bounds, but only for a degree of risk aversion equal to 100. Under the Hansen

and Sargent (2005) interpretation, this degree of risk aversion is associated with a detection error
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probability of 5%, arguably past the limit of credulity.

From an asset pricing perspective, the approach of generalized model uncertainty is of interest

beyond its ability to provide a model uncertainty foundation for the Epstein and Zin (1989) and Weil

(1990) specification with arbitrary felicity functions. The combination of model uncertainty and

pessimism in the formulation of expectations by overweighting the probability of events made more

likely under the worse case brings the macroeconomic model’s predictions of the market price of

risk in line with empirical post war U.S. observations for reasonable detection error probabilities.

6 Conclusion

I have derived a generalization of the model uncertainty framework of Hansen and Sargent (2007),

using Tsallis’s (1988) generalized entropy. The resultingpreferences recover Hansen and Sargent’s

(2007) original formulation with an exponential certaintyequivalent as one special case and recover

the constant elasticity of substitution risk specificationof Epstein and Zin (1989) and Weil (1990)

with a power certainty equivalent as another. This latter result is particularly important, as it pro-

vides a model uncertainty foundation for Epstein and Zin (1989) and Weil (1990) preferences with

arbitrary period utility functions (allowing, e.g., arbitrary intertemporal elasticities of substitution).

This is desirable as a small amount of model uncertainty can substitute for a high risk aversion, as

demonstrated by Barillas, Hansen, and Sargent (2009).

In an application to a standard RBC model, I find that both Hansen and Sargent’s (2007) original

formulation and the model uncertainty formulation for Epstein and Zin (1989) and Weil (1990) pro-

vide roughly the same predictions for the market price of risk for plausible detection error probabil-

ities. Aside from these limiting cases, the generalizationprovides a two parameter model approach

to model uncertainty, with the new parameter induced by Tsallis’s (1988) generalized entropy, the

entropic indexq, determining a form of pessimism that induces agents to overweight the worst case

model when forming expectations. As a result, increasing the entropic index (or increasing pes-

simism) leads to an increase in the market price of risk for a given detection error probability. The

empirical value of the market price of risk can be achieved with modest detection error probabilities

(25%) and a slightly elevated entropic index (q= 2). Future research will seek to discipline this new

parameter empirically.
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A Appendix

A.1 Proof of Proposition 2.1

Set the intertemporal elasticity of substitution in (4) to one (ρ = 1) and taking logs yields

ln((VEZ(x)) = (1−β) ln(uEZ(x,a(x)))+
β

1− γ
ln

(∫
VEZ(x′)

1−γ
p(x′,x,a(x))dx′

)

DefiningṼEZ(x) = ln((VEZ(x))
1−β and dividing the foregoing by(1−β) gives

ṼEZ(x) = ln(uEZ(x,a(x)))+
β

(1−β)(1− γ)
ln

(∫
expṼEZ(x)(1−β)(1− γ)p(x′,x,a(x))dx′

)

comparison with (15) completes the proof.

A.2 Proof of Proposition 4.2

Abusing notation to minimize clutter by suppressing the dependence onx, the current state, and

recycling notation by relabeling the future state,x′, with x, the aggregator in (29) can be written as

Ṽ
.
= min

g(x)>0

∫
V(x)g(x)p(x)dx+

∫
θ(x)g(x)q lnq(g(x)) p(x)dx+λ

(∫
g(x)p(x)dx−1

)

(A-1)

whereλ is the multiplier on the constraint that the distorted distribution be a distribution.

The first order condition is

0=V(x)p(x)+θ(x)qg(x)q−1 lnq(g(x)) p(x)+θ(x)g(x)qg(x)−qp(x)+λp(x)(A-2)

which can be rearranged as

0=V(x)p(x)+qθ(x)g(x)q−1 lnq(g(x)) p(x)+θ(x)p(x)+λp(x)(A-3)

Substituting the form of the entropy multiplier from assumption 4.1

θ(x) .
= θ+(q−1)V(x)(A-4)

gives

0= q
[

V(x)p(x)+θ(x)g(x)q−1 lnq(g(x)) p(x)
]

+θp(x)+λp(x)(A-5)

multiplying the foregoing withg(x)

0= q
[

V(x)p(x)g(x)+θ(x)g(x)q lnq(g(x)) p(x)
]

+θg(x)p(x)+λg(x)p(x)(A-6)

rearranging

0= q
[

V(x)p(x)g(x)+θ(x)g(x)q lnq(g(x)) p(x)+λ(g(x)p(x)−1)
]

+θg(x)p(x)+λg(x)p(x)(1−q)+qλ
(A-7)

and integrating overx yields

0= qṼ +θ+λ(A-8)
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Combining the foregoing, (A-8) with the first order condition, (A-5)

0= q
[

V(x)−Ṽ +θ(x)g(x)q−1lnq(g(x))
]

p(x)(A-9)

noting thatp(x) andq are assumed nonzero gives

0=V(x)−Ṽ +θ(x)
(

1−g(x)q−1
)

1−q
(A-10)

which can be rearranged as

0=V(x)−Ṽ +θ
(

1−g(x)q−1
)

(1−q)
−V(x)

(

1−g(x)q−1)(A-11)

and

0= g(x)q−1V(x)−Ṽ +
θ

1−q

(

1−g(x)q−1)(A-12)

multiplying the foregoing with17 1−q
θ g(x)1−q delivers

0= (1−q)
1
θ

V(x)− (1−q)
1
θ

g(x)1−qṼ +g(x)1−q−1(A-13)

or

1− (1−q)
1
θ

V(x) = g(x)1−q
(

1− (1−q)
1
θ
Ṽ

)

(A-14)

from which the minimizing likelihood ratio,g(x), follows as

g(x) =

(

1− (1−q)1
θV(x)

)
1

1−q

(

1− (1−q)1
θṼ
)

1
1−q

=
expq

(

−1
θV(x)

)

expq

(

−1
θṼ
)(A-15)

and the minimizing, or worst-case, probability distribution is then

p̃(x) = p(x)
expq

(

−1
θV(x)

)

expq

(

−1
θṼ
)(A-16)

as was claimed in proposition4.2.

Integrating both sides of the previous equation with respect to x gives

1=

∫
p(x)

expq

(

−1
θV(x)

)

expq(−
1
θṼ)

dx(A-17)

which, asṼ is independent ofx, can be written as

expq(−
1
θ

Ṽ) =
∫

p(x)expq

(

−
1
θ

V(x)

)

dx(A-18)

yielding the risk aggregator or certainty equivalent

Ṽ =−θ lnq

[∫
expq

(

−
1
θ

V(x)

)

p(x)dx

]

(A-19)

as was claimed in proposition4.2.

17Note that ifθ = 0, the foregoing reduces to 0= g(x)q−1V(x)−Ṽ, which can be solved for the minimizing likelihood

ratiog(x) asg(x) =
(

V(x)
Ṽ

) 1
1−q

, which is the same as (A-15) with θ set to zero.
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A.3 Risk Aversion

R (V) =−θ lnq

(

0.5expq

(

−
1+σ

θ

)

+0.5expq

(

−
1−σ

θ

))

=−θ

(

0.5
[

1+(1−q)
(

−1+σ
θ
)]

1
1−q +0.5

[

1+(1−q)
(

−1−σ
θ
)]

1
1−q

)1−q

−1

1−q
(A-20)

∂R (V)

∂σ
=−

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
1

1−q

+0.5

[

1+(1−q)

(

−
1−σ

θ

)]
1

1−q

)−q

×

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
q

1−q

−0.5

[

1+(1−q)

(

−
1−σ

θ

)]
q

1−q

)

(A-21)

∂2R (V)

∂σ2 = q

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
1

1−q

+0.5

[

1+(1−q)

(

−
1−σ

θ

)]
1

1−q

)−q−1

×

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
q

1−q

−0.5

[

1+(1−q)

(

−
1−σ

θ

)]
q

1−q

)2

−
q
θ

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
1

1−q

+0.5

[

1+(1−q)

(

−
1−σ

θ

)]
1

1−q

)−q

×

(

0.5

[

1+(1−q)

(

−
1+σ

θ

)]
2q−1
1−q

+0.5

[

1+(1−q)

(

−
1−σ

θ

)]
2q−1
1−q

)

(A-22)
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