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Abstract

| entertain a generalization of the standard Bolzmann-&®bannon measure of entropy in multi-
plier preferences of model uncertainty. Using this megdulerive a generalized exponential cer-
tainty equivalent, which nests the exponential certainyivalent of the standard Hansen-Sargent
model uncertainty formulation and the power certainty eaj@nt of the popular Epstein-Zin-Weil
recursive preferences as special cases. Besides proadmngdel uncertainty rationale to these
risk-sensitive preferences, the generalized exponegqaivalent provides additional flexibility in
modeling uncertainty through its introduction of pessimigto agents, causing them to overweight
events made more likely in the worst case model when formkpg&ations. In a standard neo-
classical growth model, | close the gap to the Hansen-Jaglaan bounds with plausible detection
error probabilities using the generalized exponentiahadent and show that Hansen-Sargent and
Epstein-Zin-Weil preferences yield comparable marketgsiof risk for given detection error prob-

abilities.
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1 Introduction

Model uncertainty in macroeconomic models (see Hansen arggst (2001, 2010) and the detailed
treatment in the monograph Hansen and Sargent (2007))spéaEnts in an decision environment
riddled with unstructured, Knightian uncertainty thatdedo agents forming their decision rules to
be robust to a worst case (i.e., welfare minimizing) modethwgents making intertemporal deci-
sions such as investment in an environment where they didtra models they use to form expec-
tations about the future, Barillas, Hansen, and Sargef@(2éhow that a modest amount of model
uncertainty can substitute for a high degree of risk avarsidallarini (2000), Barillas, Hansen,
and Sargent (2009), and Ju and Miao (2012) among others haveasized the close relationship
between model uncertainty preferences and risk-sengiteferences such as the popular Epstein
and Zin (1989) and Weil (1990) recursive, constant elagtimieferences. Yet an equivalence has
only been demonstrated for the specific case of a unit eigstitintertemporal substitution. This
limitation arises due to the differing functional forms bietcertainty equivalents in these prefer-
ences (exponential for Hansen and Sargent’'s (2007) moaelrtanty and power for Epstein and
Zin’s (1989) and Weil's (1990) risk-sensitive preferencedackus, Routledge, and Zin (2005) ob-
serve that it is an open question whether the power certaquivalent underlying Epstein and Zin’s
(1989) and Weil's (1990) risk-sensitive preferences cagiten a model uncertainty foundation that
relates the two sets of preferences beyond the known spadal

In this paper, | propose an answer to this open question bgrgkring the statistics of model
uncertainty preferences beyond the logarithmic Bolzm@rbs-Shannon measure of entropy to
the measure introduced by Tsallis (1988) for nonextensatestical mechanics in thermodynamics.
Alongside a generalized exponential certainty equivalegrive a power certainty equivalent from
model uncertainty preferences and its associated wosst-@@tribution. With this distribution in
hand, | can calibrate risk aversion in Epstein and Zin's @%hd Weil's (1990) preferences using

detection error probabilities as proposed by Anderson,seElanand Sargent (2003) and Hansen

IHansen and Marinacci (2016) summarize the connection leetwkansen and Sargent’s (2007) multiplier pref-
erence approach to model uncertainty that | adopt here drat ttariational preferences” (Maccheroni, Marinacci,
and Rustichini 2006) such as the multiple priors of Gilbod &shmeidler (1989) and smooth ambiguity of Klibanoff,
Marinacci, and Mukerji (2005). Hansen and Sargent (2016Yide a discussion of the link between their multiplier
preference and Gilboa and Schmeidler’s (1989) multiplerpri Ju and Miao’s (2012) generalized smooth ambiguity
preferences nests these variational preferences as lspesea from a risk sensitive and ambiguity (vis-a-vis ueobs
able states) perspective.



and Sargent (2007). From the lens of model uncertaintyedses in risk aversion in Epstein and
Zin’s (1989) and Weil's (1990) risk-sensitive preferencas be interpreted as a reduction in model
uncertainty tempered by an increase in pessimism in the édamn overweighting of the probability
of the worst case model. This overweighting of events waésasbjective probabilities relates to
the choice-theoretic framework of Quiggin (1982) and resshiere from the generalized alternative
entropy measure and its associated subadditivity of pibties the latter found also in Gilboa
(1987) and Schmiedler (1989). In an application of subadtitto investment, Dow and Werlang
(1992) emphasize that expectations formed under probabithat do not sum to one reflect both
agent’s uncertainty and aversion thereto.

Applying the preferences to a standard RBC médelder random walk with drift productivity
and using the perturbation-based solution and samplifgigues of Bidder and Smith (2012), |
find that both Hansen and Sargent’s (2007) original fornmuteénd the model uncertainty formu-
lation for Epstein and Zin (1989) and Weil (1990) behave caraply for a given detection error
probability with respect to both macroeconomic and asseingy variables. Examining the worst
case density associated with the different specificatibfiad that agents with Hansen and Sar-
gent’s (2007) formulation fear autocorrelated produttigrowth with a lower mean but reduced
volatility,® those with Epstein and Zin (1989) and Weil (1990) prefersraugtocorrelated produc-
tivity growth with a higher mean but increased volatilityydathose with the generalized model
uncertainty preferences | introduce here autocorrelatedyztivity growth with a lower mean and
increased volatility.

The remainder of the paper is organized as follows. In se&id formulate a general dynamic
model and derive the specific conditions under which Epstaoh Zin’s (1989) and Weil's (1990)
risk-sensitive preferences and Hansen and Sargent’s 2@@del uncertainty are equivalent. | then
turn to the measure of entropy behind model uncertainty aademt the generalized measure in

section3. In sectiond, | apply this measure to the general dynamic model, derivelitions that

2] follow Tallarini’s (2000) specification of the RBC modela@twist the continuation utility value according to the
different certainty equivalents | derive here. See Biddet 8mith (2012) for a model uncertainty RBC model with
investment adjustment costs, variable capital utilizgtistochastic volatility, and labor wealth effect sensitperiod
utility and llut and Schneider (2014) for a model uncertaiNew Keynesian model with confidence shocks. Backus,
Ferriere, and Zin (2015) provide a thorough analysis ofargs of a standard RBC model under risk and ambiguity.

3This result is broadly consistent with other studies: BasilHansen, and Sargent (2009), Bidder and Smith (2012),
Ellison and Sargent (2015), Bidder and Drew-Becker (2016)ral that the worst case is associated with lower mean
growth.



recover both Epstein and Zin’s (1989) and Weil's (1990)-8sksitive preferences as well as Hansen
and Sargent’s (2007) original model uncertainty framewadsess atemporal risk aversion in all

three frameworks, and examine the asset pricing implinatad the generalized model uncertainty

specification. | then apply the generalized model uncastaman otherwise standard RBC model

in section5 and examine the asset pricing and macroeconomic perfoeradratl three frameworks.

Section6 concludes.

2 Dynamic Modd

In this section, | will lay out a general dynamic model. | mwithe risk sensitive preferences of
Epstein and Zin (1989) and Weil (1990) and the model unaestanultiplier preferences of Hansen
and Sargent (2007), as well as the conditions under whictwbeoincide.

| will consider a recursive dynamic model where a time-iraatrtransition density

(1) p(X,xa)
gives the joint distribution of the future staté,c X, the current states € X, and anx measurable
control variablea € A. Thus, the probability distribution over the sequence afest, or model, is
determined by
(2) (X, %) = p(X,xa(x))
the control variableg, is chosen to maximize lifetime utility expressed recubivfollowing Kreps
and Porteus (1978) as
©) V() = maxT (u, R (V)) (X
where7 is a time aggregator angl a risk aggregator, or certainty equivalent.

The popular risk sensitive preference specification of &pstnd Zin (1989) and Weil (1990) is
a constant elasticity time and risk preference formulatigven by 1
1-p | I-p
#)  V(9=max| (1-B)u(xa(x) P+ ( SV YpiX x a<x>>d%) :

wherep € (0, 1) is the discount factor and, with respecu(, a(x)), p is the inverse of the intertem-

poral elasticity of substitution angthe coefficient of relative risk aversidnin this case® (V)(x)

“Both of these measures are expressed here with respect pettioe utility kernelu(x,a(x)) and are misnomers
if u(x,a(x)) # C(x), whereC(x) is the agent’s current consumption. See especially, Swa(&®l2a) and Swanson
(2012b) for measures of relative risk aversion with altéuesperiod utility kernels and under recursive preferende



1
is a power certainty equivaleBt[V (x)~Y|x] 7.

Standard expected utility can be recovered using the wamsitionV (x) =V (x)1?) and the
limiting case ofy = p
) lim V() = max(1-B)u(x.a()* P+ [ V(<)p(X.x.a0)dx
In this caseR (V)(x) is the conditional expectations operabopV (X )|x] = [V (X)p(X,x,a(x))dX.

The risk aggregatorg (V)(x), can also be given a model uncertainty interpretation utieg
tools of robust control following Hansen and Sargent (200 this approach, agents have a pref-
erence for robustness; i.e., their decisions are tempegredféar of model misspecification. This
fear is formalized by bounds, derived by a min-max utilitpegach, on value functions over a set
of models. This set is constrained by limiting or penalizaitgrnative models considered by the
agent according to their relative entropy measured vigsdhe agent’s baseline, or approximating,
model. This provides the modeler a disciplined departwmfrational expectations, as agents can
have a common approximating model shared with nature, yabdstrate an ex post divergence by
tempering their decisions on the worst-case model.

Formally, an agent has preferences in the form8pfyfven by

(6) V() = maxu(x,a(x)) +BRV)(x)
where the aggregateg (V)(x) is derived by considering an agent who entertains a distontedel
(7) (X ,x,a(x))

close to the approximating model, the probability disttiba common to other specification®)(
The likelihood ratio between the distorted and approxingathodels is
. B, x,a(x))
8 X, x) = D EH)
®) 90 %) p(X,x,a(x))
and the discrepancy between the two models will be calalilasethe expected value of this ratio,

i.e., their relative entropy or the Kullback-Leibler digence,

) /In (9(X. %)) (X, x a(x))dX

The aggregatoR results from a robustness consideration that selects thgtgdor evaluating the

maintain this misnomer here for expositional expediency.



continuation value &s

(10) R(V)(X) =  min /V(x’)g(x’,x) DX, X, a(x))d>(+6/In (9. X)) B(X, x,a(x))dX

p(x¥' ,x,a(x))>0
[ B(X xa(x))d¥=1

This is Hansen and Sargent’s (2007) multiplier preferermmmsoactf, which tempers the agent’s
decisions against models that are pernicious (i.e., redecexpected continuation value) yet plau-
sible (i.e., are close to the baseline model in the sense all sefative entropy). The worst case
model, p, that solves the minimization problem balances these tvadsgavhered controls how
much weight is assigned to the entropy goal. If this weighhimite, p is identical top and
becomes the conditional expectation operator.

For a finited, however, the minimizing modep, Will differ from the approximating modeb.

Rearranging the likelihood ratiog), the minimizing model can be expressed as

(12) B(X,x,a(x)) = g(X,x) (X, x,a(x))
where the likelihood ratiog, distorts the approximating moded, to give the minimizing modep.”
Solving the minimization problem10), gives
1 / /

exp|—gV (X)p(xX, X a(x))

(13) g(X,x) = { v |
J exp[—3V (X)p(x,x,a(x))] dx

as the minimizing distortion. Here, future staiésissociated with a lower than average (under the

approximating modelp) continuation value are assigned a higher probabify'(x) > 1) than
under the approximating model and tho$essociated with a higher than average (again, under
the approximating model) continuation value a lower pralitgl{ g(X',x) < 1) than under the ap-
proximating model. This distortion of the approximatin@lpability measure is proportional to the
expected continuation value, or an agent concerned witmabestness of her decisions operates
under the hypothesis that “events occur with probabilingaverse proportion to their desirability.”

Hansen and Sargent (2007), following Bucklew (2004), da#i & “statistical version of Murphy’s

5A Bellman-Isaacs condition enables the minimization angimeation operators to be interchanged in formulating
the zero-sum game that underlies the selection of the mamigndensity, see Hansen and Sargent (2007).
6More direct, yet, mathematically less expedient is the tairg preferences approach

(11) R(V)(X) min / V(X)g(X,X) p(X,x,a(x))dx

(g 0) X xal)dX <n.

whereby the agent makes her decision rule robust to unstedtincertainty contained inside the hyperball with auadi

n centered around her approximating modgkthus measures the amount of uncertainty facing an agentsdtamd
Sargent (2001) provide conditions under which this coirgti@proach is evuivalent to the multiplier approach | use
here.



Law.” Substituting the minimizing distortiomg, back into the minimization probleml1Q), gives

(14 V)% = -8 [ exp| V()P x ()| dx
an exponential certainty equivalent. With this certairquigalent, 6) can be written as
(15) V (x) = maxu(x,a(x)) — GBIn/exp{—}V(x’)p(x’,x, a(x))} dx

acA 0

Standard expected utility is recovered in the limiting cak@ — o

eIiLnoo—eln/exp[—%V(%) p(X, %, a(x } dX = [ V(X)p(X,xa())dX

In this caseR (V)(X) is the conditional expectations operaE)[’\/ )X] = [V (X)p(X,x a(x))dX.
The recursive preferences of Epstein and Zin (1989) and {4240) lead to a power certainty

equivalent, seed), whereas those of Hansen and Sargent (2007) lead to an exedrcertainty

equivalent, seeld). As has been demonstrated by, e.g., Tallarini (2000),lIBayiHansen, and

Sargent (2009), and Ju and Miao (2012), the two are closklteeunder special restrictions on the

parameters and the period utility function. | review thishe following proposition

Proposition 2.1. Logarithmic Equivalence of Risk Sensitive and Model Uraiety Preferences

If the elasticity of intertemporal substitution id)(is one, the period utilities are related through a

logarithmic transformation

(16) uHS(x,a(x)) = In (UF%(x,a(x)))
and
(17) - ;
- (1-B)-vy)
then
(18) VHS(x) = 1?1[3 In (VE4(x))
Proof. See the Appendix. O

Risk sensitive and uncertainty averse preferences carmidl only in the special case of an
intertemporal elasticity of substitution of one and a ldipnic relationship between the period
utility functions. Backus, Routledge, and Zin (2005) haeeped out that is an unresolved question
how these two preference relate under more general setfhaiglsessing this question means finding
a foundation that recovers both exponential and poweriogytaquivalents as special cases. | will
take the model uncertainty perspective and accomplishtigxids by generalizing the measure of

entropy used to compared alternate models.



3 Generalized Entropy

To provide a model uncertainty framework that moves beybe@kponential certainty equivalent of
Hansen and Sargent (2007) demands that we move past tharstdoglarithmic relative entropy to
measure the distance between two models. | follow the thsiphliterature on statistical mechanics
and replace the standard Boltzmann-Gibbs-Shannon meat@mropy with the generalization
introduced by Tsallis (1988). After introducing the basrogerties and intuition, | turn to the
associated measure of relative entropy and compare itegrepwith those of the standard measure
of relative entropy or Kullback-Leibler divergence.

The standard Boltzmann-Gibbs-Shannon measure of entropy
(19) Su(p0)) = — [ (¥ In p(x)dx
where the meaning of the subscript$n will become apparent shortly, is used in the context of
information theory, see, e.g., Cover and Thomas (1991),mseasure of the expected information
content of a realization from the distributiop(x)—that is, the expected surprisal or unpredictability
of a distribution.

The uniqueness theorems of Shannon and Khifgbiovide an axiomatic foundation for the
function in (19) and prove that its functional form uniquely satisfies trest of axioms. If their
axioms are modified to pseudoadditiiitgnd biased probabilitiegq; = pii, then there exists an
unique measure of entropy for all real valuegjpthe entropic index.

This measure, introduced by Tsallis (1988), is given by

. 1— p(x)4
(20) () =~ [ (725 ) e [ piofingp(x ox
where the generalizegtogarithm, Iny, is defined as
D |
(21) Ing(X) = 1 g
It is useful to define the inverse function of,Jrthe generalized-exponential function,
(22) expy (x) = [1+ (1) 7

Note that both21) and @2) can be extended over their removable singularitieg-atl to give the

standard baselogarithm and exponential function as limiting caseg ¥ = In(x) and exp (X) =

"This follows analogously, mathematically and concepyialith the origin of the term “entropy” as the transfor-
mation content in classical thermodynamics and unceptaintmixedupness” in statistical mechanics.

8See Tsallis (2009, Ch. 2).

%For two independent subsystends and B, pseudoadditivity results irS;(A+ B) = $(A) + S(B) + (1 —
0)Sy(A)S(B), where standard additivity results in the limiting caseglimS;(A+ B) = S;(A) + Si(B).

7



exp(x). Thus, Tsallis’s (1988) entropy recovertd as a limiting case, generalizing Boltzmann-

Gibbs-Shannon entropy.

Figure 1:q Entropy or Generalized Expected Surprise
magenta—g = 0.1, red—¢g = 0.5, black—g = 1, blue—g = 2, green—g = 10

Figure1 depicts the generalized entrof30} for a two state systef. The first feature to note
is that entropy is concave for all the valuesgodiepicted here; more generall2Q) is concave for
g > 0 and convex fog < 0, see Tsallis (1988) and Tsallis (2009, Ch.3). When the givihity of
either of the two states is on@ & 0 or p = 1), entropy is zero as the probability one event will
happen with certainty and there is, thus, no expected salprNote that this holds regardless of
the value of the entropic index, As can be seen in figurg the expected surprisal is decreasing
in q; that is, ifg > 1 then entropy is less than in the standard Boltzmann-G8itzsinon case and
if Q< 1 entropy is greater. The entropic index can be interpresdoiasing standard probabilities
following Tsallis, Mendes, and Plastino (1998), Tsalli®@3), and Tsallis (2009, Ch. 3) and, as
noted above, from the generalization of the Shannon-Khmnghiqueness theorems. Indeed as a
probability is positive and less than one<(p; < 1, p! > p; for g < 1 andp{ < p; for g > 1. Thus,
under biased probabilities, one expects more (less) satdrom a realization of random variable
whenqg < 1 (q > 1). The total probability under the biased probabilitieslépicted in figure2a
and clearly shows an increase (decrease) in expectedsaliwithq < 1 (q > 1) stemming from an

increase (decrease) in total probability. Following Sadutter (1989) and Dow and Werlang (1992),

10That is, the probability of state one is given pyand that of state two by-1 p. Of course, the continuous measures
above and investigated afterwards are replaced by theiredescounterparts for this example. See Tsallis (2009).



g > 1 can be interpreted as a situation of uncertainty from tegeetive of objective probabilities.
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Figure 2: Biased Probabilites
magenta—g = 0.1, red—¢g = 0.5, black—g = 1, blue—g = 2, green—g =10

To preserve the law of total probability, an escort distiidm can be defined
(23) PaX) = o §(<>)(())‘?dx
which normalizes the biased probabilities by the total ptolity from above. For the two state sys-
tem, figure2b plots the probabilities of the escort distribution as a fiorcof the initial probability
for different values of the entropic index. As can be seea gifitropic index favors—i.e., increases
the probability of—less likely events ¢ < 1 and overweights more likely eventsjf> 1, see also
Tsallis, Mendes, and Plastino (1998), Tsallis (2003), asdllis (2009, Ch. 3). In contrast to the

standard expectations operator with respect to the depisily
(24) EP[x = /xp(x)dx
the escort distribution givescpgeneralization of the expectations operator with resjoette density

p(x)

Pyl - p(x)4
(25) E§ X /Xf p(x)qudx
As shown by Abe and Bagci (2005), this definition of expeotais intricately linked to the func-

tional form of entropy, and this escort expectation leadsgayeneralization of relative entropy that
| will turn to next.

When comparing two distributions, relative entropy or thdlBack-Leibler divergence gb(X)



with respect to the reference distributip(x)

(26) 3(5(9. PX) = [ B In £ ox

provides a consistent method of discriminating betweengrmebability distributions by quantifying
distance between the two distributioHsThis can bej-generalized following Tsallis (1988), Abe
and Bagci (2005), and Tsallis (2009, Ch. 3) as

" . PO\ [ B(X)
@7) a(300.p00) = [ 909 ( B9) ing (B2 x
and is positive and convex (both jointly and individuallyfi(x) andp(x), see Abe and Bagci (2005),

forq> 0.

15
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Figure 3:g-Relative Entropy or Generalized Kullback-Leibler Diverge
magenta—g = 0.1, red—¢g = 0.5, black—g = 1, blue—g = 2, green—g =10
p(X) = 0.5—Two State Equiprobable

Figure 3a plots 27) for a two state random variable over possible valuep dbr differing
values of the entropic index with the baseline distributiiven by the equiprobable case. When
the two distributions matchp(= p = 0.5), relative entropy is zero. Elsewhere, entropy is positiv
and increasing in the entropic index. Fpr- 1 (g < 1), relative entropy is greater (less) than the
Kullback-Leibler divergence. Figurgb plots the derivative with respect o Which also varies
with g. Note that for the casg = 2, the derivative is linear ip §iven by—ﬁ) + ﬁﬁ. Thus,
the entropic index does more than just scale standarduelatitropy, but also changes the margin.

Figure4 provides the same picture, but n@a= 0.75, as can be deduced by the point of zero relative

UThough it is not a metric, as it and the generalization thikdies are not symmetric, see Tsallis (1998).

10



entropy. This change not only shifts the picture from betorthe right, but also tilts the measures

to the right, as can be confirmed using the linear relatign&ritheq = 2 case above.

25r

15r

-15

ost 1 _oob

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p p

(a) g-Relative Entropy (b) %(X) of g-Relative Entropy

Figure 4:g-Relative Entropy or Generalized Kullback-Leibler Diverge
magenta—g = 0.1, red—¢g = 0.5, black—g = 1, blue—g = 2, green—g = 10
p(x) = 0.75—Two State Nonequiprobable

Again, 27) is a generalization of the standard measure, and the 36B88)g measure general-
izes the standard measure, the relative entropy or the &xkHheibler divergence, of discriminating

between two distributions.

4 Generalized Multiplier Preferences

The decision maker’s desire for robustness is formulateatag player zero sum game, min-max
utility, with a minimizing agent, who selects a probabiliystribution to minimize the decision
maker’s payoff given her decision or policy function. Theideon maker, of course, takes this into
account when formulating her decision function. My gerieadion replaces Hansen and Sargent’s
(2005) and Hansen and Sargent’s (2007) Boltzmann-Giblasi&mn measure of entropy with the

generalized form ind7) from the previous section and allows for a state-dependerght on the

11



entropy penalty,
RV)X)=  min /V(x’)ﬁ(x’,x, a(x))dx

p(xX',x,a(x))>0
[ B(¥ xa(x))d¥=1

28) + fooo) (B2 ”)q_llnq (P B xaa

(X,x,a(x)) (X,x,a(x))
The first term evaluates continuation ut|I|ty, conditiogion the current state under the distorted

density. The second term is the generalized relative eptogmditional or, of the distorted density
to the approximating model, reweighted wéfx'). Indeed, ifo(xX') is independent of , sayf(x') =
6, this term become8lq (P(X,x,a(x)), p(X, X, a(x))|x).

In terms of the likelihood ratiag(X/, x), and the decision maker’s approximating mogéx’, x, a(x)),

the foregoing can be reformulated as

RV)= min - [V(X)gX,x)p(X,x.ak)dx
g(X',x)>0
J90¢ XP(X xa(x))dx =1
(29) +/e g(X,%)%Ing (9(X,X)) (X, % a(x))dx

The likelihood ratio can apparently be interpreted as aodisih to the probability density of the
approximating model and distortions are penalized by tnatiropy weighted by the approximating
density. This minimization problem weighs two counternvajlforces: the decision maker would
like to guard against very painful distortions (those thegult in the smallest expected value of
her continuation utility,/'V (x)g(X,x) p(X, X, a(x))dX); on the other hand, a very pernicious distor-
tion that is easy to distinguish, i.e., is far, from her apgmating model is considered less likely
and adds a large entropy contribution to her objective fonat/ p(X,x,a(x))g(X,x) Ing(X,x)dx),
whereB(x') weights her concern for closeness. Thus, the decision mskeorried that her mis-
specification is both pernicious and hard to detect.

Specifically, | will set the multiplierf(x'), equal to a constant and a term proportional to the
continuation utility.
Assumption 4.1. Entropy Multiplier
The multiplierf(X) is given by
(30) B(X) =0+ (q—1)V(X)
whereB and q are positive.

Forqg > 1, this multiplier weights future states associated witjhler continuation values more

12



strongly; thus, for two competing distorted densities tha equally far from the approximating
model, the density associated with a lower continuatione/éd penalized relatively less. Increas-
ing g increasegq — 1)V (X') which tilts the minimizing agent’s decision further towangernicious
distributions relative to thg = 1 case. Increasing, though, also has a countervailing effect: it
increases the index in relative entropy, thereby incrggfia penalty associated with distorting the
probability distribution. Hence changesgmight be interpreted as changes in the shape and not
necessarily size of the space of distorted models that agensider.

This assumption on the multiplier allows me to reformuldte tero-sum game expressed in
terms of the likelihood ratiag(X’, x), as the sum of an entropy penalty with a constant multipher a

a continuation value evaluated under a weighted worst cassity

(31)
R(V)(X) = g()zn)i)n>O /(V(x’)-l-elnq (9(X,x))) p(X,x,a(x))g(X,x)%dx
Ja(X x) p(x’:x,a(x))d)(:l
(32)
= min VOG0 x al) ) Bl (B, x.a0), PO, x.a00) )

La(¥X X)p(xX x,a(x))dx¥=1
Thusq is not only the entropic index used in selecting the meastientiopy used to penalize

worst case density functions (the second term in the sedoeyl lbut also expresses a form of
pessimism. The formulation of Hansen and Sargent (2005)#mers with standard Boltzmann-
Gibbs-Shannon entropy would set this power to 1, yieldingeektations taken with respect to the
distorted densityp(X,x,a). Forqg > 1, events made more likely under the worst case density are
overweighted and those made less likely underweighted velvatuating the expectation of the
continuation value under the worst case density (the firat ta the second line). Quiggin (1982)
deems agents pessimistic if they overweight the probagsildf the worst outcomes on average and if
g > 1 agents will overweight the events in the distorted modekein to minimize their continuation
utility. In this sense, | interpreqj as a measure of agents’ pessimism. The resulting minimizing
probability distortion is contained in the following

Proposition 4.2. Minimizing Distortion and Risk-Sensitive Operator

For the generalized entropy measure and multiplier, theimizing probability distortion is given

13



by
1

ey (—gv(x) (L-qV(X) T
(33) g<)(/’x)_equ(_%g{(v)(x))_<9—( )(V)())

and the risk aggregator, or certainty equivalent, by

(34) R (V)(x) = — 8Ing [ / expy (-%vod)) DX, a(x))d%}
0 [/ (0~ (L- V() e piX. xa)dx]
(35) = s
Proof. See the Appendix. O

Thus, the varying multiplier and generalized entropy lead generalized exponential transfor-
mation governed jointly by the entropic indgxand static multiplie® for the risk aggregator. This
contrasts with the standard exponential transformatiornrotied by the static multiplie® that re-
sults from Hansen and Sargent’s (2007) formulation and dfeep certainty equivalent from Epstein
and Zin (1989) and Weil (1990). The interpretation of thisgmlized form follows more readily

from the special cases that capture these two specific prefes.

4.1 Equivalence with Hansen-Sargent Multiplier Preferences

In the extensive limit of the multiplier, ligr,18(x') = 8, the model uncertainty specification and

Hansen and Sargent (2007) is recovered

(36) Iimlﬂi(V)(x) = —8In [/exp(—%V(x’)) p(x’,x,a(x))d%}
q—
with an exponential certainty equivalent following propims 4.2 and a minimizing distortion

HS __exp(—gV(x))
0 T e (IR V) 0)

that tilts the distorted model using the standard expoakfuiinction.

This formulation is Hansen and Sargent’s (2007) aggregator

(38) R(V)(X) = - ml(n))>O Ef’[V(x’)\x] +611 (B(X,x,a(x)), p(X, X, a(x))|x)
J BX x:a(x))dX =1
o i ] (X, x,a(x)
(39) = ﬁ(x',gl(g))zo /V(x’)p(x’,x,a(x))d%JrG/ p(X,x,a(x))In p(x,,x,a(x))dx

[ B(X x.a(x))dx¥=1
Both the expectation and the relative entropy are with retspel’, conditioning orx. In terms of the

likelihood ratio,g(X, x), and the decision maker’s approximating mogek’, x, a(x)), the foregoing
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can be reformulated as

(40)
RV)( = min o EP[V(X)+In (gX.x)]
fg(xﬂx)p(x’:x7a(x))dx’:1
(41)
= min /V(x’)g(x’,x) p(X, X, a(x))d>(+9/p(x’,x, a(x))g(x,x) Ing(x,x)dx
g(X',x)>0

J9(xX x)p(X x.a(x))dx=1
From the perspective 08(), the formulation here provides decision makers with utaiety

in the modelling sense inasmuch as they entertain devafrom their approximating model. As
they use the implied probability distribution of this wocsise model, they are not pessimistic in the

sense that they do not over- or underweight the ensuing piid@alistortions.

4.2 Equivalence with Epstein-Zin-Well Risk Sensitive Preferences

In the proportional limit of the multiplier, ligp,16(X') = 8, the risk sensitive specification of Epstein
and Zin (1989) and Weil (1990) is recovered
(42) I|m ‘J{ [/V % p(X,x,a(x))dx e
with a power certainty equwalent. Backus, Routledge, and 2005, p. 341) restricﬁ—q < 1 which
translates t@ € [—o,0] U[1,]. The coefficient of relative risk aversion from)(y, is related ta
throughy = —%] and values o] > 1 translate toy > 1. | will confirm this and provide a measure
for risk aversion in the general case in the next section.

Following propositiord.2 the minimizing distortion associated with Epstein-ZiniWegefer-

ences is
1

(V) \TE (V) MY
(43) gEZW(%,X)—<W) —<W)

a power tilting instead of the exponential tilting of Hans®argent preferences. Having this mini-

mizing distortion will enable me to parameterize their mea®f relative risk aversioty, in Epstein-

Zin-Weil preferences from a model uncertainty perspeaisiag detection error probabilities.
From the perspective oB8(), note that theéd = 0 specification of Epstein and Zin (1989) and

Weil (1990) gives

(44) RV)(X) = min /V(x’) (X, )5 L5(X, x, a(x))dX

g(X',x)>0
[ 9(¥ X)p(X x.a(x))d¥=1

To interpret this, note that iff = 1, the minimizing agent would choose an infinitely pernisiou
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distortion p(X, x,a(x)) to minimize R (V)(x). Forq > 1, this tendency is counterbalanced by the

overweighting througty, as making pernicious events more likely increases theevahder the

(X x.a(x))
p(X',x.a(x))

increases i lead agents to attribute a higher probability to a given jpeyas distortion and to

integral by increasing(X,x) =

. Recall thatg can be interpreted as agents’ pessimism:

more strongly robustify their actions against this distort thereby reducing its impact on their

continuation value.

4.3 Atemporal Risk Aversion

To link the generalized model uncertainty to concepts d&, fisvill examine the risk-related prop-
erties of the generalized preferences in a static settingusiig notation to minimize clutter by
suppressing the dependencexpithe current state, and recycling notation by relabelirgftiiure

state X/, with x, the risk aggregator from propositidn2is

(45) R(V) = —8Ing ( / exp, (-%vm) p(x)dx)
and its minimizing density distortion is

ey (—5vV(0)
(46) g“”‘wm«%ﬂw»

Backus, Routledge, and Zin (2005) calculate the risk asansith a Taylor expansion of several

preferences in a two state equiprobable setup. Accordifeglyhere be two states, with outcomes

x1 = 1+ 0 andx; = 1— o for positiveo. The certainty equivalent is

(47) R (V) = —6Ingq (O.Sequ <—1L90) +0.5exp, (—%))

which | will evaluate locally around = 0 out to second ord&t

N OR (V) 102K (V)
RV~ RWV)| _ +—=2| #5557
_, g9 ¢
(48) =1 8rq-12

As there is no term linear ig, risk aversion is second order here. This is not surprisgthe
generalized exponential risk sensitive preferences asmgmlacking the kinks responsible for first

order risk aversion, see, e.g., Epstein and Zin (1990). &ime t

q
(49) 0+q—-1

provides a measure of risk aversion.

In the special case of a power certainty equivalent follgpstein and Zin's (1989) and Weil's

12Details of the calculations can be found in the Appendix.
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(1990) risk-sensitive preferencdsis set to zero and the foregoing measure of risk aversion is

9 N
(50) 0+q—1lle=o 1-—q

Which, through comparison witl) is equal toy, the coefficient of relative risk aversion.

For the exponential certainty equivalent of Hansen ande3disy(2007) robust control approach,

the entropic indexj is set to one, which delivers the following measure of risgraion

q _ 1
1) 8+q—1lg=1 0

See also Hansen and Sargent (2007) and Tallarini (2000).

Returning to the general case #8, the measure of risk aversion is increasin@ifor g > 0

(52) 09+gfl _ q

0  (8+q—1)°
and decreasing iq for 0 less than one, but increasing fogreater than one
Ogrg1 1-0

o  (8+q-1)°

(53)

4.4 Asset Pricing

Consider a household seeking to maximize the followinggyesfces Following

1
(54) Wt = u(G,e) —BBIng (Et [equ ( VtH)D
whereV; is the households lifetime discounted utilityC:, @) its period utility function that depends
at least on consumptidty, andp € (0, 1) the household’s subjective discount factor.

The likelihood ratio between the distorted and approxingathodels is given by
exp, (—iV
Ry (—gMea)

T Ecfexmy (V)]
The household’s stochastic discount factor or pricing &eisigiven by
M M
(56) Misp = OM/0C11 _ V.1 0Cs
Vi
oVt /0C ﬁ
with
oM 0Vit1
57 3~ — U ) ) =u s
( ) aC[ C(Q .) aCt+1 C(C:H_]_ .)
and .
M expy { Vi1 q o1
58 — _ _
9 0Vit1 (Et [expy {—§Vis1}] BY1 = BGt+19: 1
combining yields the final form of the pricing kernel
c(Cii1,0)
(59) Mt+1 = B UC(C;: ) g‘t+ gt+l /\t+l/\t+1/\t+l
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whereAR | = ”Cué%a};)’) is the stochastic discount factor under expected utility: o), Af, ; = Gr+1
is the change of measure under the distorted model \&nd= gtq;f captures the direct effé'étof
the entropic index.

Note that ifg =1, /\IF’Jrl is equal to unity and the model uncertainty concerns colapsiansen
and Sargent’s (2007) original formulation (see secdohabove). Forg > 1, agents overweight
(underweight) states that have become more (less) likefieiuthe distorted model when pricing
assets, embedding a form of pessimism into a non-t/kﬁ];)i. Thus, along with Hansen and Sar-
gent's (2007), Bidder and Smith's (2012), and others’ iptetation ofstd (AR ;) /E: [AR ;] and
std (Af,,) as the market prices of risk and model uncertainty, respslgtil interpretstd (A, ;) /E; [AD 4]
as the market price of pessimism.

For Epstein and Zin's (1989) and Weil’s (1990) power cetiagguivalent® — O (see section
4.2 above), and all three components of the stochastic disdaatdr remain. As the measure of
risk aversion is related inversely tpin this case, see secti@gh3, an increase in risk aversion is

associated with a decrease in pessimismxf% approaches unity,

5 Business Cycles, Asset Prices, and M odel Uncertainty

In this section, | apply the generalized entropy constrairat stochastic neoclassical growth model
with a preference for robustness. | will parameterize theeholosely to the production model de-
scribed in Tallarini (2000). The economy is populated byrdimitely lived household that optimizes

over consumptio; and labor supply; with the period utility function

(60) Up =InG +Win(1 - Ny)
subject to
(61) Ci + K =WIN; + RR K1+ (1 - 8)K; 1

whereK; is capital stock accumulated today for productive purposeotrow,W real wage RR¢
the capital rental rate andle [0, 1] the depreciation rate. Investment is the difference betwiee
current capital stock and the capital stock in the previarsop after depreciation

(62) I = Ky — (1—8)Ke_1

| will assume a perfectly competitive production side of de®@nomy, where output is produced

13The entropic index, as was shown above, enters into the ehafgeasure.
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using the labor augmented Cobb-Douglas technodgy K& ; (eZtNt)lfa. Z; is a stochastic pro-
ductivity process and < [0, 1 the capital share. Productivity is assumed to be a randowith
drift
(63) a =22 1=a+&y, &t ~N(0,02)
with g,¢ the innovation t.

The model is detrended witlyy kit & w] =e%[% K¢ It G W], where detrended
variables are written in lowercase.

The household’s lifetime utility function is expresseduesively using the generalized risk ag-
gregator® (V)(x) as
(64) Vi =Inc +Yin(1—N) +BR (Vt+1+1iBat+l)

(65) =Ince+Win(1-N;) - pBIng {Et {equ {_% (V‘” i rlBaHl) H }

with € (0, 1) the discount factor ang the value function at the optimum. The first of household’s

two optimality conditions is the intratemporal labor sugproductivity condition equalizing the

utility cost of marginally increasing labor supply to thdity value of the additional consumption

Y 1
66 _r -
(66) N oM
and the second is the intertemporal Euler equation, regechas the fundamental asset pricing
equation,
(67) 1=E[m 1R 1]

whereR; = RF«}K +1— 90 is the return on capital andh, 1, the stochastic discount factor of the

household or pricing kernel (see sectid), is given by

ov; 0V
(68) m i(3Vt/(9c;t+1:avtvilﬁiezwl
17 Tov /aC, o o7
1
with
Ovt 1 th+]_ 1
69 M_ 2 _ L
(69) 0cc G O0Ci1 Gy
and

(70) A B ( Xy {_% (Vt+1+ rlgatﬂ)} ) |
) j

M1 lexmy {8 (woa+ thpaca)
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combining yields the final form of the pricing kernel

1 1 d
e A B (wat pra) )
(71) M1 =B e - -
+1 Et |:equ {—Q (Vt+1 + rBatJrl) H
The stationarized resource constraint is
(72) G +k =Y+ (1-0)exp(—a) k-1
wherey; = _O‘ath‘{thl’“ follows from profit maximization, with the stationarized geaw =

(1—a)e %&k® N, and rental ratiRR = ae~ (1~ 92k NI~ and the household’s budget con-

straint

(73) 6+ ke =weNe + (1- 3+ RR) exp(—a) k-1
closes the model.

| append the model with the following additional asset mgcvariables: the real risk-free rate
Rf = E¢(m 1)~ ! and the (ex post) risk premiunp; = R, — Rtf_1 as the difference between the risky

and risk-free rate.

5.1 Dataand Model Calibration

The calibration of the model will focus on matching the filgbtmoments of key macroeconomic
indicators and the Sharpe ratio (see the upper and loweesalvtablel respectively) for the U.S.
post war period.

The Sharpe ratio and the market price of m‘j) that measures the excess return the house-
hold demands for bearing an additional unit of risk can bateel through a Cauchy-Schwarz
inequality and the fundamental asset pricing equatione(hér= E; [m;1R+1] for the risky and
1=E[m1] Rtf the risk free return) as
E[Re R stam)

with the Sharpe ratio on the left hand side being empiricaltigervable and given in the lower half

of tablel.

(74)

Table 2 contains the calibration of the model common to all spedificas, where | follow Tal-
larini (2000) to maintain comparability (see the discusdivere). The standard deviation of pro-
ductivity growthao, is set to match the post-war U.S. consumption growth vahatit table1. The

remaining parameter8,andq, will be set using detection error probabilities, follogiklansen and
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Table 1: Data Moments, 1948:2-2012:4

Business Cycle Data

. Relative Autocorrelations Cross Cotr.
Variable Mean Std. Dev. % Std. Dev. 1 2 3 WBinY;
AlnY; 0.004 0.991 1.000 0.380 0.266 0.045 1.000
AInG 0.005 0.566 0.571 0.255 0.201 0.069 0.531
Alnly 0.004 2.536 2.558 0.336 0.248 0.043 0.662
Aln N 0.328 1.192 1.203 -0.020 -0.010 -0.008 0.388
InN; — 2.778 2.802 0.999 0.998 0.997 -0.139
InG —InY; -0.611 5.887 5.938 0.990 0.978 0.964 -0.172
Inli—InY; -1.382 7.302 7.365 0.962 0.910 0.841 0.128

Asset Return Data

Return Mean Std. Dev.

R 2.13 8.26

Rf 0.26 0.63

rp 1.87 8.27 Sharpe Ratio 0.2261

All business cycle data was retrieved from the Federal Reséconomic Data (FRED)
database of the Federal Reserve Bank of St. Louis.

All returns are measured as net real quarterly percentagense

Ris the return on the NYSE value weighted portfolio from theSERJataset anfd’ is the
secondary market rate on the three month Treasury bill. Bettirns have been deflated
by the implicit deflator of the PCE Nondurables and Serviegges.

Table 2: Parameter Values

Parameter 3 U] a o) a Oa
Value 0.9926 N=0.2305 0.339 0.021 0.004 Std. D&Mnc =0.566%

See Tallarini (2000) and the main text.

Sargent (2007). Specifically, | will use a perturbation #ioluof the model following Bidder and
Smith (2012), but will use the nonlinear moving averagegyolunction of Lan and Meyer-Gohde
(2013c) to maintain the stability of the model under nordirity.1* As proposed by Bidder and
Smith (2012), I will first generate simulations (the lengtiwhich will match the length of the post
war U.S. data series used) using the perturbation solufittreanodel and then perform a likelihood
ratio test over the agents’ approximating mogaind the distorted mod@l Second, | will generate
simulations from the distorted model using a sampling irntgrare resampling algorithm and then

perform a symmetrical likelihood te&t.

l4gee Lan and Meyer-Gohde (2013b) for a comparison of altersatcalled pruning, algorithms to deliver this sta-
bility. An additional advantage to using a nonlinear movawgrage or pruning algorithm is that closed-form theoaétic
moments are available, see Lan and Meyer-Gohde (2013a) adickAsen, Fernandez-Villaverde, and Rubio-Ramirez
(2017), which can be used to initialize the particle filters.

15The likelihood calculations are performed by sequentiglontance sampling-resampling, or particle filtering, with
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A value of Q5 for the detection error probability indicates that the twodels (approximating
and worst-case) are indistinguishable, as the agents Hete fifty chance of correctly identifying
the model used to generate the simulations. Barillas, Harsa Sargent (2009) argue for a detec-
tion error probability of between.05 and 02 as lower bound. | will take a conservative perspective

and target a detection error probability o2B.

5.2 Macroeconomic I mplications

| begin by comparing the business cycle properties of modeknainty following Hansen and
Sargent (2007) witly = 1 and the risk sensitive recursive utility specification gEein and Zin's
(1989) and Weil’'s (1990) parameterized via model uncetyaivith 8 = 0, before turning to the
case of the generalized model uncertainty. The calibratioliow the discussion above, where the
parameterg] and B are set according to the specification chosen and to achieleteation error
probability of 025 between the approximating and worst case models of eacifisption. For the
generalized model uncertainty cagqés set to 2 (the reason for which will be clear in the next setcti
that addresses asset pricing implications) @mslthen set to match the detection error probability.
The volatility of productivity growth is adjusted under éagreference specification such that the
volatility of consumption growth matches its empiricalger in tablel. The approximating models
for all three specifications do a comparably good job in matghhe data, despite their different
uncertainty specifications, consistent with what Backesti€re, and Zin (2015) deem the “Tallarini
property”.

In the upper half of tabl@, the business cycle moments for the approximating modepiare
sented for the Hansen and Sargent (2007) specificagienq) with a detection error probability of
0.25 (which require® = 15). The approximating model does a reasonable job in nragdhie post
war U.S. macroeconomic experience, as can be seen by compath tablel.

The statistics of the worst case model that agents appgriatt can be found in lower half
of table3. Compared to the approximating model, it can be seen thattageorry about an en-
vironment with lower average growth and positive autodatien in technology growth. This is a
familiar result of the model uncertainty framework, seeg, eBarillas, Hansen, and Sargent (2009)
with the long run risk result echoed by Bidder and Drew-BedR916). The detectability of the

a bootstrap proposal except where noted.
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Table 3: Business Cycle Moments, Hansen and Sargent (208f&rénces

Approximating Model

. Relative Autocorrelations Cross Corr.  Cross Caorr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 BNy, WAIna
AlnY; 0.004 1.029 1.000 0.009 0.008 0.008 1.000 1.000
AInG 0.004 0.566 0.550 0.085 0.080 0.076 0.988 0.984
Alnly 0.004 2.351 2.285 -0.019 -0.018 -0.017 0.994 0.996
AlnN 0.000 0.367 0.357 -0.025 -0.024 -0.023 0.983 0.988
InN; -1.463 1.176 1.143 0.951 0.904 0.859 0.332 0.308
InG —InY; -0.308 1.530 1.487 0.951 0.904 0.859 -0.332 -0.308
Inli—InY; -1.330 4,271 4,152 0.951 0.904 0.859 0.331 0.307
Alna 0.000 1.194 1.160 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

. Relative Autocorrelations Cross Corr.  Cross Corr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 winy; WAINa
AlnY; 0.003 1.031 1.000 0.078 0.077 0.077 1.000 1.000
AInG 0.003 0.564 0.547 0.269 0.265 0.263 0.988 0.984
Alnlg 0.003 2.413 2.341 -0.004 -0.004 -0.003 0.994 0.996
AINN; 0.000 0.370 0.359 -0.024 -0.024 -0.022 0.984 0.988
In N -1.471 1.195 1.160 1.000 1.000 1.000 0.328 0.305
INnCG —InY; -0.298 1.552 1.506 1.000 1.000 1.000 -0.329 -0.305
Inli—InY; -1.357 4,497 4.363 1.000 1.000 1.000 0.328 0.304
Alna -0.001 1.193 1.157 0.009 0.008 0.009 0.934 1.000

0 was set to 15 to deliver a detection error probability of 25%

worst case model with negative mean, positively autocateel technology growth is balanced with
a reduction in the volatility of technology shocks.

In the upper half of tabld, the business cycle moments for the approximating modepiae
sented for the Epstein and Zin (1989) and Weil (1990) spatifin @ = 0) with a detection error
probability of 025 (which requireg) = 1.15). The results here are essentially identical to those
obtained under the approximating model under Hansen ang&iés (2007) standard model uncer-
tainty framework.

The lower half of tablel contains the business cycle statistics of the worst caserdhd model
uncertainty foundation for the Epstein and Zin (1989) andl {#990) specification. In contrast to
the worst case under Hansen and Sargent’s (2007) standalel onacertainty framework, agents
here fear a technology process with increasing autoctimekand a more volatile shock. This
leads to substantial increases in the autocorrelationsacf@economic variables and an increase
in the volatility of consumption growth. The detectabildfthe worst case model is now balanced

with an increase in the average growth rate of the economy.
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Table 4: Business Cycle Moments, Epstein and Zin (1989¢Reates

Approximating Model

. Relative Autocorrelations Cross Corr.  Cross Caorr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 BNy, WAIna
AlnY; 0.004 1.026 1.000 0.009 0.008 0.008 1.000 1.000
AInG 0.004 0.566 0.552 0.085 0.080 0.076 0.988 0.984
Alnly 0.004 2.360 2.301 -0.019 -0.018 -0.017 0.994 0.996
AlnN 0.000 0.365 0.356 -0.025 -0.024 -0.022 0.983 0.988
InN; -1.467 1.166 1.137 0.951 0.904 0.859 0.333 0.309
InG —InY; -0.304 1.516 1.478 0.951 0.904 0.859 -0.333 -0.309
Inli—InY;  -1.341 4,298 4.190 0.951 0.904 0.859 0.333 0.308
Alna 0.000 1.191 1.161 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

. Relative Autocorrelations Cross Corr.  Cross Corr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 winy; WAINa
AlnY; 0.005 1.025 1.000 0.207 0.206 0.208 1.000 1.000
AInG 0.005 0.568 0.554 0.496 0.493 0.492 0.988 0.984
Alnlg 0.005 2.307 2.250 0.029 0.029 0.033 0.994 0.996
AINN; 0.000 0.362 0.353 -0.026 -0.025 -0.021 0.983 0.987
In N -1.460 1.145 1.117 1.000 1.000 1.000 0.337 0.312
INnCG —InY; -0.313 1.492 1.455 1.000 1.000 1.000 -0.337 -0.312
Inli—InY;, -1.316 4.090 3.989 1.000 1.000 1.000 0.336 0.311
Alna 0.001 1.193 1.164 0.008 0.007 0.010 0.932 1.000

g was set to 115 to deliver a detection error probability of 25%

The business cycle moments for the approximating model srgepted in the upper half of
table5 for the generalized model uncertainty specification vgts 2 and with a detection error
probability of Q25 (this require® = 13215). The results here are roughly comparable to those
obtained under the approximating model under Hansen argetés (2007) standard model un-
certainty framework and the Epstein and Zin (1989) and WEIBQ) specification. With agents
pessimisticq > 1, their precautionary behavior is heightened, requirimgharease in the volatility
of technology growth (and with it output and the two marginsgstment and labor, to smooth the
effects of output on consumption) to match the empiricahtibly of consumption growth.

The lower half of tablé contains the business cycle statistics of the worst caseruhd gen-
eralized model uncertainty specification wigh= 2. Relative to the approximating model, both
mechanisms from above are operational, with technologytrbaving a lowered mean, increased
volatility, and heightened autocorrelation compared whthapproximating model. The moments of
consumption growth, aside from the decrease in the mean &ier@early identical to those under

Hansen and Sargent’s (2007) standard model uncertaimyefrark. Relative to the approximating
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Table 5: Business Cycle Moments, Generalized UncertairgfeRencesg = 2

Approximating Model

. Relative Autocorrelations Cross Corr.  Cross Caorr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 BNy, WAIna
AlnY; 0.004 1.233 1.000 0.008 0.008 0.007 1.000 1.000
AInG 0.004 0.566 0.459 0.101 0.096 0.091 0.977 0.974
Alnly 0.004 2.810 2.279 -0.018 -0.017 -0.016 0.994 0.995
AlnN 0.000 0.526 0.426 -0.024 -0.023 -0.022 0.985 0.987
InN; -1.418 1.644 1.333 0.950 0.903 0.858 0.330 0.315
InG —InY; -0.367 2.162 1.753 0.950 0.903 0.858 -0.330 -0.315
Inli—InY; -1.162 4,955 4.017 0.951 0.903 0.859 0.330 0.316
Alna 0.000 1.347 1.092 0.000 0.000 0.000 1.000 1.000

Worst-Case Model

. Relative Autocorrelations Cross Corr.  Cross Corr.
Variable Mean Std. Dev. % Std. Dev. 1 5 3 winy; WAINa
AlnY; 0.003 1.240 1.000 0.047 0.045 0.046 1.000 1.000
AInG 0.003 0.565 0.456 0.270 0.264 0.260 0.977 0.974
Alnlg 0.003 2.908 2.346 -0.011 -0.011 -0.009 0.994 0.995
AINN; 0.000 0.532 0.429 -0.024 -0.024 -0.022 0.985 0.987
In N -1.429 1.673 1.350 1.000 1.000 1.000 0.326 0.312
INnCG —InY; -0.353 2.195 1.771 1.000 1.000 0.999 -0.326 -0.312
Inli—InY, -1.195 5.281 4.260 1.000 1.000 1.000 0.325 0.312
Alna -0.001 1.350 1.089 0.012 0.010 0.011 0.952 1.000

0 was set to 1325 to deliver a detection error probability of 25%

model, consumption growth volatility goes down in the warxate model despite the increase in the
volatility of productivity growth and production, as thegsamistic agents here overweiglat$ 1)
the probability of the worst case and robustify their dexisiules more strongly.

Figure5 plots the joint distributions of the two statégsandAa, for the specifications of Epstein
and Zin (1989) and Weil (1990), Hansen and Sargent (200d)trengeneralized model uncertainty
introduced here. As can be seen in the figure, the mean sk idistribution of technology growth
to the right (indicating higher average growth) is ameliedaby a downward shift in detrended
capital for the specification of Epstein and Zin (1989) andI\(i©90) relative to that of Hansen
and Sargent (2007). This downward shift along with the iaseel variability of technology growth
highlights that the agents are not necessarily “better ioffthe Epstein and Zin (1989) and Weil
(1990) specification. The generalized model uncertainggi$igation withq = 2 is associated with
a large upward shift in detrended capital. This reflects theraccumulation of capital (and with
it, drop in price through the decreased marginal produgt&nd increase in return) driven by the

agent’s overweighting the worst case scenario.
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Figure 5:

Red: Hansen and Sargent (2005); Blue: Epstein and Zin (1@88gn: Generalized Uncertainty
Joint unconditional distributions of statesandk.

5.3 Asset Pricing Implications

| will first compare the specifications ability to match ags@ting facts, here using the market price
of risk, for varying detection error probabilities. Thislhhighlight the close relationship between
Epstein and Zin’s (1989) and Weil’'s (1990) risk-sensitipedfication and model uncertainty fol-
lowing Hansen and Sargent (2007) when examining empiyigadlusible market prices of risk for
this model. Then | will turn to the generalized model undettaintroduced here and show that
increasing the entropic indexcan put the model’s asset pricing predictions inside thesdarand
Jagannathan (1997) bounds while maintaining a conseevaétection error probability of. B5.
Under the calibration in the previous section (specificéblly detection error probabilities of
25%), both Hansen and Sargent’s (2007) and Epstein and @i889) and Weil's (1990) specifi-
cations yield market prices of risk of D This relation holds more generally, as can be seen in
figure 6, which plots the market price of risk of the approximatingdals against the detection er-
ror probabilitied® for the Hansen and Sargent (2007) and Epstein and Zin (198BY\eil (1990)

18As the particle filter with a reasonable number of particle®@0,000) still suffers from sampling variation when
calculating the likelihood tests for high and low detect@ror probabilities, | follow Bidder and Drew-Becker (2016
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Figure 6: Red: Hansen and Sargent (2005); Blue: Epstein anlL289)
Market Price of Risk and Detection Error Probabilities

specifications. For a detection error probability d2%), both specifications yield roughly the same
market price of risk of around.0. For very low detection error probabilities the specifmabf Ep-
stein and Zin (1989) and Weil (1990) and for very high detecérror probabilities the specification
of Hansen and Sargent (2007) produces higher market priceskoThat these two different speci-
fications yield very similar results when controlling foetbetection error probabilities confirms the

close relation between these two different preferenceifspescons for the model here.

Table 6: Entropic Index and the Market Price of Risk

qg= 1 11 12 13 14 15 175 2 225 25
MPR 0.10 0.11 0.12 0.13 0.14 0.15 0.19 0.21 0.24 0.27

0 is adjusted to keep the detection error probability.260

Holding the detection error probability constant at 25%¢ tieneralized model uncertainty
present in this paper moves directly towards the bounds atetethem with aj = 2.25, as can
be seen in tablé. For theq = 2 specification of the previous section, the market pricasif is
0.21, just shy of the empirical Sharpe ratio 02R61, see the lower half of table and more than

twice the value obtained under both Hansen and Sargent¥j20hd Epstein and Zin’s (1989) and

and calculate the log-likelihood ratios directly from thextorbation approximated changes of meaguikhis eliminates
the sampling variation and computational burden assatiaith the particle filter, but assumes that the entire state
vector is observable when comparing models. | found thatdhly slightly reduced the detection error probabilities
compared with calculations conditional on a subset of thdetsd variables (i.e., consumption).

27



Weil's (1990) specifications. That agents overweight tladpbility of the worst case under the gen-
eralized model uncertainty formulation drives up the nesuwn risky capital relative to the risk free
bond. One could object to the fact the econometrician useadtual likelihood ratig when cal-
culating the detection error probabilities while the agentthe model overweighy the worst case
when forming expectations, as perhaps overstating thétsdeuthe generalized model uncertainty
case. But note that this objection would then also apply éoEpstein and Zin (1989) and Well
(1990) specification that operates solely throgghhe approximate equivalence with Hansen and
Sargent’s (2007) specification in regards to the markeeprug risk and detection error probabilities

in figure6 rests likewise on this discord between the measures of gr@signd the econometrician.

0.35
0.35
E 03 g s
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T o2k E
5 X + 5 02 5¢ _8
= 015 X A
_.§ X :t o 015 X
g o1 X + %ﬁ X g
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E[m] *os 0.85 0.9 0.95 1
Elm]
(a) x: Expected Utility;+: Tallarini (2000) and (b) O: Generalized Entropy,
Hansen and Sargent (2005) q=1,11,12,13,1.4,15,1.752,2.2525

Figure 7: The Hansen-Jagannathan Bounds

Hansen and Jagannathan (1997) extend the maximal Shaip@aoait restriction on pricing
kernels to a parabola inside which pairssodi(m1) andE [m1] must reside to be consistent with
(a vector) of risky assets and the riskless bond. Figaontains this bound for the assets in table
and both expected utilityd(= c0 andq = 1) and for recursive utility using the exponential certgint
equivalent ¢ = 1 and varyingd). For the expected utility case, the risk-free rate puzalelme seen
through the decrease ihjm 1| with risk aversion is increased from 5, 10, 20, 30, 40, 50,favadly
to 100. By holding the elasticity of intertemporal subgtdn constant at one, Tallarini (2000) is able
to march up to the bounds, but only for a degree of risk aversgual to 100. Under the Hansen

and Sargent (2005) interpretation, this degree of risksaweris associated with a detection error
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probability of 5%, arguably past the limit of credulity.

From an asset pricing perspective, the approach of gepedathodel uncertainty is of interest
beyond its ability to provide a model uncertainty foundatior the Epstein and Zin (1989) and Well
(1990) specification with arbitrary felicity functions. @&ktombination of model uncertainty and
pessimism in the formulation of expectations by overwerghthe probability of events made more
likely under the worse case brings the macroeconomic meg@e#dictions of the market price of

risk in line with empirical post war U.S. observations foasenable detection error probabilities.

6 Conclusion

| have derived a generalization of the model uncertainthéaork of Hansen and Sargent (2007),
using Tsallis’s (1988) generalized entropy. The resultirgferences recover Hansen and Sargent’s
(2007) original formulation with an exponential certaietyuivalent as one special case and recover
the constant elasticity of substitution risk specificatafrEpstein and Zin (1989) and Weil (1990)
with a power certainty equivalent as another. This latteultes particularly important, as it pro-
vides a model uncertainty foundation for Epstein and ZirsB@)%nd Weil (1990) preferences with
arbitrary period utility functions (allowing, e.g., artaty intertemporal elasticities of substitution).
This is desirable as a small amount of model uncertainty oastgute for a high risk aversion, as
demonstrated by Barillas, Hansen, and Sargent (2009).

In an application to a standard RBC model, | find that both ldarend Sargent’s (2007) original
formulation and the model uncertainty formulation for Egastand Zin (1989) and Weil (1990) pro-
vide roughly the same predictions for the market price &f fos plausible detection error probabil-
ities. Aside from these limiting cases, the generalizagiovides a two parameter model approach
to model uncertainty, with the new parameter induced byliB&a(1988) generalized entropy, the
entropic indexq, determining a form of pessimism that induces agents tonsight the worst case
model when forming expectations. As a result, increasimgethtropic index (or increasing pes-
simism) leads to an increase in the market price of risk fowargdetection error probability. The
empirical value of the market price of risk can be achievetthwiodest detection error probabilities
(25%) and a slightly elevated entropic indep 2). Future research will seek to discipline this new

parameter empirically.
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A Appendix

A.1 Proof of Proposition 2.1

Set the intertemporal elasticity of substitution #) {o one p = 1) and taking logs yields
In((VE4(x)) = (1—B) In(uF?4(x,a(x))) + 1—Eyln (/VEZ(X’)lyp(x’,x, a(x))d%)

DefiningVEZ(x) = '”((\l/fé(x)) and dividing the foregoing byl — B) gives

~ B ~
VEA ) = In(uE*(xa0) + gy gy 0 ( / expVEZ(x)(1—B) (1—y)p(X, a(x))d%)

comparison with15) completes the proof.

A.2 Proof of Proposition 4.2

Abusing notation to minimize clutter by suppressing thees®jence orx, the current state, and
recycling notation by relabeling the future state with x, the aggregator ir2@) can be written as
(A-1) V= min /V(x) dx—l-/e X)9Ing (9(x)) p(x)dx+ A (/g X)dx— 1)
g(x)>0
whereA is the multiplier on the constraint that the distorted dlsttion be a distribution.
The first order condition is
(A-2)  0=V(X)p(x)+6(x)agx) *Ing(g(x)) p(x) +8(x)g(x)g(x)~p(X) +Ap(X)

which can be rearranged as

(A-3) 0=V (x)p(x) +8(x)g(x) %" Ing (g(X)) P(x) +B8(X)p(X) +Ap(x)
Substituting the form of the entropy multiplier from assumop4.1

(A-4) 8(x) =0+ (q—1)V(x)

gives

(A-5) 0=q[V(x)p(x) +8(x)g(x)¥Ing (g(x)) P(X)] +Bp(x) +Ap(X)

multiplying the foregoing withg(x)
(A-6) 0=q[V(X)p(X)g(x) +6(x)g(x)TIng (g(x)) P(x)] +69(x) p(X) +Ag(x) p(x)

rearranging
(A-7)
0=q[V(x)p(x)g(x) +6(x)g(x)4Ing (g(x)) p(x) + A (g(x) p(x) — 1)] +6g(x) p(X) +Ag(X) pP(X) (1 —q) + GA

and integrating ovex yields

(A-8) 0=qV+6+A
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Combining the foregoing A-8) with the first order condition A-5)
(A-9) 0=q[V(x)—V +8(x)g(x)%*Ing(g(x))] P(x)

noting thatp(x) andq are assumed nonzero gives

(A-10) 0=V + 001" f(_X;ql)

which can be rearranged as

(A-11) 0=V(x)-V+ e% ~V(x) (1—g(x)% 1)
and

(A-12) 0=g(})"V(x) - V+liq (1-9(7)
multiplying the foregoing with’ 25%g(x)' -9 delivers

(~13) 0=(1-a)gV(¥ ~ (1-0) 5009 + g 9~ 1
or

(-14) 1-(1-/gv(% - g0 9 (1- (1-agY

from which the minimizing likelihood ratiag(x), foIIows as

1 1 g 1
(A-15) R Gl Gl 1) K expy (—3V(%)
(1—(1—0|)%V)1*q eth(—— )
and the minimizing, or worst-case, probability distriloutis then

expy (—3V (%))
expy (—3V)

(A-16) p(x) = p(x)

as was claimed in propositiagh2

Integrating both sides of the previous equation with resfmexgives

ex -1
(A-17) _ / Ry ( ) 4y
expy(—p 1\7)
which, asV is independent af, can be written as

(A-18) expy(— 5V / p(x)exp, (—— ( ))

yielding the risk aggregator or certalnty equivalent

(A-19) V = —8lng { / exp, <—%V(x)) p(x)dx}

as was claimed in propositicgh2

"Note that ifd = 0, the foregoing reduces to-0g(x)%~ 1V (x) —V, which can be solved for the minimizing likelihood
1
ratiog(x) asg(x) = (X\Q/X—)) ﬁ, which is the same a#\¢15) with 6 set to zero.
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A.3 Risk Aversion

R(V) = —6Inq (0.5expl (J%’) +05exp, (_1;60))
[

(o.5[1+(1_q) (~Lo)| T
S

(A-20)

agc%é\/) = (0-5 [1+ (1-q) (—E

(A-21)  x <0.5 [1+ (1-q) <_T)

(A22)  x <0.5 [1+(1—q) (_1%)
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