next up previous contents index
Next: 4. Functional Magnetic Resonance Up: csahtml Previous: 3.6 Conclusions

References

1
Angelov, B., Sadoc, J.F., Jullien, R., Soyer, A., Mornon, J.P. and Chomilier, J. (2002). Nonatomic solvent-driven Voronoi tessellation of proteins: an open tool to analyze protein folds. Proteins, 49(4) 446-456.

2
Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing Surveys, 23: 345-405.

3
Bakowies, D. and van Gunsteren, W.F. (2002). Water in protein cavities: A procedure to identify internal water and exchange pathways and application to fatty acid-binding protein. Proteins, 47(4) 534-545.

4
Barber, C.B., Dobkin, D.P. and Huhdanpaa, H.T. (1996). The Quickhull algorithm for convex hulls. ACM Trans on Mathematical Software, 22(4) 469-483.

5
Bernal, J.D. (1959). A geometrical approach to the structure of liquids. Nature, 183(4655) 141-147.

6
Bostick D. and Vaisman, I.I. (2003). A new topological method to measure protein structure similarity. Biochem Biophys Res Commun, 304(2) 320-325.

7
Bostick, D., Shen, M. and Vaisman, I.I. (2004). A simple topological representation of protein structure: Implications for new, fast, and robust structural classification. Proteins, 55.

8
Carter, C.W. Jr, LeFebvre, B.C., Cammer, S.A., Tropsha, A. and Edgell, M.H. (2001). Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. J Mol Biol, 311(4)625-638.

9
Carugo, O. and Pongor, S. (2001). A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci, 10(7) 1470-1473.

10
Chakravarty, S., Bhinge, A. and Varadarajan, R. (2002). A procedure for detection and quantitation of cavity volumes proteins. Application to measure the strength of the hydrophobic driving force in protein folding. J Biol Chem, 277(35) 31345-31353.

11
Chothia, C. (1975). Structural invariants in protein folding. Nature 1975, 254(5498) 304-308.

12
Delaunay, B. N. (1934). Sur la sphere vide, Izv Akad Nauk SSSR, Otd Mat Est Nauk, 7:793-800.

13
Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory, IT-29(4)551-559.

14
Finney, J.L. (1970). Random packing and the structure of simple liquids. I. The geometry of random close packing. Proc Roy Soc Lond, A319479-493 and 495-507.

15
Finney, J.L. (1975). Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J Mol Biol, 96(4)721-732.

16
Gan, H.H., Tropsha, A and Schlick, T. (2001) Lattice protein folding with two and four-body statistical potentials. Proteins, 43(2) 161-174.

17
Gellatly, B.J. and Finney, J.L. (1982). Calculation of protein volumes: an alternative to the Voronoi procedure. J Mol Biol, 161(2) 305-322.

18
Gerstein, M., Tsai, J. and Levitt, M. (1995). The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol, 249(5) 955-966.

19
Goede, A., Preissner, R. and Frömmel, C. (1997). Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume and density. J Comput Chem, 18(9) 1113-1123.

20
Harpaz, Y., Gerstein, M. and Chothia, C. (1994). Volume changes on protein folding. Structure, 2(7) 641-649.

21
Karlin, S., Bucher, P. and Brendel, V. (1991). Altschul S.F., Statistical methods and insights for protein and DNA sequences. Annu Rev Biophys Biophys Chem, 20:175-203.

22
Kobayashi, N. and Go N. (1997). A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition. Eur Biophys J, 26(2) 135-144.

23
Kobayashi, N., Yamato, T. and Go N. (1997). Mechanical property of a TIM-barrel protein. Proteins, 28(1) 109-116.

24
Krishnamoorthy, B. and Tropsha, A. (2003). Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations. Bioinformatics, 19(12) 1540-1548.

25
Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V. and Subramaniam, S. (1998a). Analytical shape computation of macromolecules: I. Molecular area and volume through alpha shape. Proteins, 33(1) 1-17.

26
Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V. and Subramaniam, S. (1998b). Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins, 33(1) 18-29.

27
Liang, J., Edelsbrunner, H., Woodward, C. (1998c). Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci, 7(9) 1884-1897.

28
Lo Conte, L., Chothia, C. and Janin, J. (1999). The atomic structure of protein-protein recognition sites. J Mol Biol, 285(5) 2177-2198.

29
Masso, M. and Vaisman, I.I. (2003). Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach. Biochem Biophys Res Commun, 305(2) 322-326.

30
Medvedev, N.N. and Naberukhin, Yu.I. (1987). Analysis of structure of simple liquids and amophous solids by statistical geometry method. Zh Strukt Khimii, 28(3) 117-132.

31
Miyazawa, S. and Jernigan, R.L. (2000). Identifying sequence-structure pairs undetected by sequence alignments. Protein Eng,13(7) 459-475.

32
McConkey, B.J., Sobolev, V. and Edelman, M. (2002). Quantification of protein surfaces, volumes and atom-atom contacts using a constrained Voronoi procedure. Bioinformatics, 18(10) 1365-1373.

33
Munson, P.J. and Singh, R.K. (1997). Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci, 6(7) 1467-1481.

34
Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B. and Thornton, J.M. (1997). CATH - a hierarchic classification of protein domain structures. Structure, 5(8) 1093-1108.

35
Pandit, S. A. and Amritkar, R. E. (1999). Characterization and control of small-world networks. Phys Rev E, 60:1119-1122.

36
Pontius, J., Richelle, J. and Wodak, S.J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol., 264(1) 121-136.

37
Quillin, M.L. and Matthews, B.W. (2000). Accurate calculation of the density of proteins. Acta Crystallogr D Biol Crystallogr, 56(Pt 7) 791-794.

38
Richards, F.M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol, 82(1) 1-14.

39
Richards, F.M. (1985). Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol, 115:440-464.

40
Rother, K, Preissner, R, Goede, A and Frömmel, C. (2003). Inhomogeneous molecular density: reference packing densities and distribution of cavities within proteins. Bioinformatics, 19(16) 2112-2121.

41
Sadoc, J.F., Jullien, R. and Rivier, N. (2003). The Laguerre polyhedral decomposition: application to protein folds. Eur Phys J B, 33(3) 355-363.

42
Schaefer, M., Bartels, C., Leclerc, F. and Karplus M. (2001). Effective atom volumes for implicit solvent models: comparison between Voronoi volumes and minimum fluctuation volumes. J Comput Chem, 22(15) 1857-1879.

43
Singh, R.K., Tropsha, A. and Vaisman, I.I. (1996). Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J Comput Biol, 3(2) 213-222.

44
Soyer, A., Chomilier, J., Mornon, J.P., Jullien, R. and Sadoc, J.F. (2000). Voronoi tessellation reveals the condensed matter character of folded proteins. Phys Rev Lett, 85(16) 3532-3535.

45
Sugihara, K. and Inagaki, H. (1995). Why is the 3D Delaunay triangulation difficult to construct? Information Processing Letters, 54:275-280.

46
Tropsha, A., Singh, R.K., Vaisman, I.I. and Zheng, W. (1996). Statistical geometry analysis of proteins: implications for inverted structure prediction. Pac Symp Biocomput, 614-623.

47
Tropsha, A., Carter, C.W. Jr, Cammer, S. and Vaisman, I.I. (2003). Simplicial neighborhood analysis of protein packing (SNAPP): a computational geometry approach to studying proteins. Methods Enzymol, 374:509-544.

48
Tsai, J., Taylor, R., Chothia, C. and Gerstein, M. (1999). The packing density in proteins: standard radii and volumes. J Mol Biol, 290(1) 253-266.

49
Tsai, J. and Gerstein, M. (2002). Calculations of protein volumes: sensitivity analysis and parameter database. Bioinformatics, 18(7) 985-995.

50
Naberukhin, Y.I., Voloshin, V.P. and Medvedev, N.N. (1991). Geometrical analysis of the structure of simple liquids: percolation approach. Mol Physics, 73:917-936.

51
Vaisman, I.I., Perera, L. and Berkowitz, M.L. (1993). Mobility of stretched water. J Chem Phys, 98(12) 9859-9862.

52
Vaisman, I.I. and Berkowitz, M.L. (1992). Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study. J Am Chem Soc, 114(20) 7889-7896.

53
Vaisman, I.I., Brown, F.K. and Tropsha, A. (1994). Distance Dependence of Water Structure Around Model Solutes. J Phys Chem, 98(21) 5559-5564.

54
Vaisman, I.I., Tropsha, A. and Zheng W. (1998). Compositional preferences in quadruplets of nearest neighbor residues in protein structures: Statistical geometry analysis. Proc. of the IEEE Symposia on Intelligence and Systems, 163-168.

55
Voloshin, V.P., Naberukhin, Y.I. and Medvedev, N.N. (1989). Can various classes of atomic configurations (Delaunay simplices) be distinguished in random close packing of spherical particles?, Molec Simulation, 4:209-227.

56
Voronoi, G.F. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémorie: Recherches sur les paralléloèdres primitifs. J Reine Angew Math, 134:198-287.

57
Wang, G. and Dunbrack, R.L. Jr. (2003). PISCES: a protein sequence culling server. Bioinformatics, 19(12) 1589-1591.

58
Weberndorfer, G., Hofacker, I.L. and Stadler, P.F. (1999). An efficient potential for protein sequence design. Proc German Conf Bioinformatics, 107-112.

59
Wernisch, L., Hunting, M. and Wodak, S.J. (1999). Identification of structural domains in proteins by a graph heuristic. Proteins, 35(3) 338-352.

60
Zheng, W., Cho, S.J., Vaisman, I.I. and Tropsha, A. (1997). A new approach to protein fold recognition based on Delaunay tessellation of protein structure. Pac Symp Biocomput, 486-497.



Subsections