next up previous contents index
Next: 8. Parallel Computing Techniques Up: csahtml Previous: 7.5 Conclusion

References

1
Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis, Second Edition, Wiley, New York.

2
Antoniadis, A. (1997). Wavelets in statistics: A Review. J. Ital. Statist. Soc., 6: 97-144.

3
Baraniuk, R.G. (1994). Wigner-Ville spectrum estimation via wavelet soft-tresholding. In Proc. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, Philadelphia.

4
Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformations, Journal of the Royal Statistical Society, 26: 211-243, discussion 244-252.

5
Brigham, E.O. (1988). The Fast Fourier Transform and Its Applications, Prentice-Hall, Englewood Cliffs, NJ.

6
Carmona, R., Hwang, W-L. and Torrésani, B. (1998). Practical Time-Frequency Analysis, volume 9 of Wavelet Analysis and its Applications, Academic Press, San Diego.

7
Cohen, A, Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal., 1(1): 54-81.

8
Daubechies, I. (1992). Ten Lectures on Wavelets, Number 61 in CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia.

9
Feuerverger, A. and Mureika, R. (1977). The empirical characteristic function and its applications, The Annals of Statistics, 5: 88-97.

10
Flandrin, P. (1992). Time-scale analyses and self-similar stochastic processes. In Byrnes et al. (eds), Wavelets and Their Applications, pp. 121-142, NATO ASI Series vol. 442.

11
Flandrin, P. (1999). Time-Frequency/Time-scale Analysis, Academic Press, 386pp.

12
Gabor, D. (1946). Theory of comunication. J. IEEE, 93: 429-457.

13
Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math., 15: 723-736.

14
Grossmann, A. and Morlet, J. (1985). Decomposition of functions into wavelets of constant shape and related transforms. In Streit, L. (ed), Mathematics and physics, lectures on recent results, World Scientific, River Edge, NJ.

15
Härdle, W., Kerkyacharian, G., Pickard, D. and Tsybakov, A. (1998). Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statistics 129. Springer-Verlag, New York.

16
Mallat, S.G. (1989a). Multiresolution approximations and wavelet orthonormal bases of $ {{{{\mathbb{L}}}}}^2({{{\mathbb{R}}}})$. Trans. Amer. Math. Soc., 315: 69-87.

17
Mallat, S.G. (1989b). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Patt. Anal. Mach. Intell., 11(7): 674-693.

18
Mallat, S.G. (1999). A Wavelet Tour of Signal Processing, Second Edition. Academic Press, San Diego.

19
Morlet, J., Arens, G., Fourgeau, E. and Giard, D. (1982). Wave propagation and sampling theory. Geophys., 47: 203-236.

20
Murata, N. (2001). Properties of the empirical characteristic function and its application to testing for independence. In Lee, Jung, Makeig, and Sejnowski (eds), Proceedings ICA2001, 3rd International Conference on Independent Component Analysis, San Diego.

21
Pensky, M. and Vidakovic, B. (2003) Bayesian decision theoretic scale-adaptive estimation of log-spectral density. Technical Report 01-2003, ISyE, Georgia Institute of Technology. http://www.isye.gatech.edu/~brani/isyestat/.

22
Tong, H. (1996). Non-Linear Time Series, Clarendon Press, Oxford.

23
Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley, NY.

24
Ville, J. (1948). Théorie et Applications de la Notion de Signal Analytique, Cables et Transmission, 2A: 61-74.

25
Walter, G.G. and Shen, X. (2000). Wavelets and Other Orthogonal Systems, Second Edition, CRC Press.

26
Wickerhauser, M. V. (1994). Adapted Wavelet Analysis from Theory to Software, A K Peters, Ltd., Wellesley, MA.



Subsections