12.1 Moving Average Processes

The moving average process of order $ q$, MA($ q$), is defined as

$\displaystyle X_t = \beta_1 \varepsilon_{t-1} + \ldots + \beta_q \varepsilon_{t-q} + \varepsilon_t$ (12.1)

with white noise $ \varepsilon_t$. With the Lag-Operator $ L$ (see Definition 10.13) instead of (11.1) we can write

$\displaystyle X_t = \beta(L) \varepsilon_t$ (12.2)

with $ \beta(L) = 1+ \beta_1 L + \ldots + \beta_q L^q.$ The MA($ q$) process is stationary, since it is formed as the linear combination of a stationary process. The mean function is simply $ \mathop{\text{\rm\sf E}}(X_t)=0$. Let $ \beta_0=1$, then the covariance structure is
$\displaystyle \gamma_\tau$ $\displaystyle =$ $\displaystyle \mathop{\text{\rm Cov}}(X_t,X_{t+\tau})$  
  $\displaystyle =$ $\displaystyle \mathop{\text{\rm Cov}}(\sum_{i=0}^q \beta_i \varepsilon_{t-i}, \sum_{j=0}^q \beta_i \varepsilon_{t+\tau-j})$  
  $\displaystyle =$ $\displaystyle \sum_{i=0}^q \sum_{j=0}^q \beta_i \beta_j \mathop{\text{\rm Cov}}(\varepsilon_{t-i},\varepsilon_{t+\tau-j})$  
  $\displaystyle =$ $\displaystyle \sum_{i=0}^{q-\vert\tau\vert}\beta_i \beta_{i+\vert\tau\vert} \sigma^2, \:\: \vert\tau\vert \le q.$  

For the ACF we have for $ \vert\tau\vert \le q$

$\displaystyle \rho_\tau = \frac{\sum_{i=0}^{q-\vert\tau\vert} \beta_i \beta_{i+\vert\tau\vert}} {\sum_{i=0}^q \beta_i^2},$ (12.3)

and $ \rho_\tau=0$ for $ \vert\tau\vert > q$, i.e., the ACF breaks off after $ q$ lags.

As an example consider the MA(1) process

$\displaystyle X_t = \beta \varepsilon_{t-1} + \varepsilon_t,
$

which according to (11.3) holds that $ \rho_1 =
\beta/(1+\beta^2)$ and $ \rho_\tau=0$ for $ \tau>1$. Figure 11.1 shows the correleogram of a MA(1) process.

Fig.: ACF of a MA(1) process with $ \beta=0.5$ (left) and $ \beta=-0.5$ (right). 16914 SFEacfma1.xpl
\includegraphics[width=0.6\defpicwidth]{acfma11.ps} \includegraphics[width=0.6\defpicwidth]{acfma12.ps}

Obviously the process

$\displaystyle X_t = 1/\beta \varepsilon_{t-1} + \varepsilon_t
$

has the same ACF, and it holds that

$\displaystyle \rho_1 = \frac{1/\beta}{1+(1/\beta)^2} = \frac{\beta}{1+\beta^2}.
$

In other words the process with the parameter $ \beta$ has the same stochastic properties as the process with the parameter $ 1/\beta$. This identification problem can be countered by requiring that the solutions of the characteristic equation

$\displaystyle 1+\beta_1 z + \ldots + \beta_q z^q = 0$ (12.4)

lie outside of the complex unit circle. In this case the linear filter $ \beta(L)$ is invertible, i.e., there exists a polynomial $ \beta^{-1}(L)$ so that $ \beta(L)\beta^{-1}(L) = 1$ and

$ \beta^{-1}(L) = b_0 + b_1 L + b_2 L^2 + \ldots.$ Figure 11.2 displays the correlogram of a MA(2) process $ X_t
= \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} +
\varepsilon_t$ for some collections of parameters.

Fig.: ACF of a MA(2) process with $ (\beta_1=0.5,\beta_2=0.4)$ (top left), $ (\beta_1=0.5,\beta_2=-0.4)$ (top right), $ (\beta_1=-0.5,\beta_2=0.4)$ (bottom left) and $ (\beta_1=-0.5,\beta_2=-0.4)$ (bottom right). 16921 SFEacfma2.xpl
\includegraphics[width=0.5\defpicwidth]{acfma21.ps} \includegraphics[width=0.5\defpicwidth]{acfma22.ps}
\includegraphics[width=0.5\defpicwidth]{acfma23.ps} \includegraphics[width=0.5\defpicwidth]{acfma24.ps}