4.4 The Multinormal Distribution

The multinormal distribution with mean $\mu$ and covariance $ \Sigma > 0 $ has the density

\begin{displaymath}f(x) = \vert 2 \pi \Sigma \vert^{-1/2} \exp \left \{ -\frac{1}{2}
(x- \mu)^{\top} \Sigma^{-1}(x- \mu) \right \}.
\end{displaymath} (4.47)

We write $ X \sim N_p (\mu, \Sigma) $.

How is this multinormal distribution with mean $\mu$ and covariance $\Sigma$ related to the multivariate standard normal $N_p(0,{\data{I}}_p) $? Through a linear transformation using the results of Section 4.3, as shown in the next theorem.

THEOREM 4.5   Let $ X \sim N_p (\mu, \Sigma) $ and $Y = \Sigma ^{-1/2}(X-\mu )$ (Mahalanobis transformation). Then

\begin{displaymath}Y\sim N_p(0,\data{I}_p),\end{displaymath}

i.e., the elements $Y_j\in \mathbb{R}$ are independent, one-dimensional $N(0,1)$ variables.

PROOF:
Note that $(X-\mu)^{\top} \Sigma^{-1}(X-\mu) = Y^{\top}Y $. Application of (4.45) gives ${\cal J} = \Sigma^{1/2}$, hence

\begin{displaymath}f_Y(y) = (2 \pi)^{-p/2} \exp \left(-\frac{1}{2}y^{\top}y \right)
\end{displaymath} (4.48)

which is by (4.47) the pdf of a $N_p(0,\data{I}_p)$. ${\Box}$

Note that the above Mahalanobis transformation yields in fact a random variable $Y=(Y_1,\ldots ,Y_p)^{\top}$ composed of independent one-dimensional $Y_j\sim N_1(0,1)$ since

\begin{eqnarray*}
f_Y(y) & = & \frac{1 }{(2\pi )^{p/2} }\exp\left (-\frac{1 }{2 ...
...frac{1 }{2}y^2_j\right )\\
& = & \prod ^p_{j=1}f_{Y_{j}}(y_j).
\end{eqnarray*}



Here each $f_{Y_{j}}(y)$ is a standard normal density $\frac{1}{\sqrt{2\pi}}
\exp \left(-\frac{y^2}{2} \right) $. From this it is clear that $E(Y)=0$ and $\Var(Y)= \data{I}_p$.

How can we create $N_p(\mu,\Sigma)$ variables on the basis of $N_p(0,\data{I}_p)$ variables? We use the inverse linear transformation

\begin{displaymath}X = \Sigma^{1/2}Y + \mu.
\end{displaymath} (4.49)

Using (4.11) and (4.23) we can also check that $E(X)= \mu$ and $\Var(X) = \Sigma$. The following theorem is useful because it presents the distribution of a variable after it has been linearly transformed. The proof is left as an exercise.

THEOREM 4.6   Let $ X \sim N_p (\mu, \Sigma) $ and $\data{A}(p\times p),\; c \in \mathbb{R}^p$, where $\data{A}$ is nonsingular.

Then $Y = \data{A} X +c$ is again a $p$-variate Normal, i.e.,

\begin{displaymath}
Y \sim N_p ( \data{A} \mu +c, \data{A} \Sigma \data{A}^{\top}).
\end{displaymath} (4.50)

Geometry of the $N_p(\mu,\Sigma)$ Distribution

From (4.47) we see that the density of the $N_p(\mu,\Sigma)$ distribution is constant on ellipsoids of the form

\begin{displaymath}
(x-\mu )^{\top} \Sigma^{-1}(x-\mu) = d^2.
\end{displaymath} (4.51)

EXAMPLE 4.14   Figure 4.3 shows the contour ellipses of a two-dimensional normal distribution. Note that these contour ellipses are the iso-distance curves (2.34) from the mean of this normal distribution corresponding to the metric $\Sigma^{-1}$.

Figure 4.3: Scatterplot of a normal sample and contour ellipses for $\mu=\left(3\atop 2\right)$ and $\Sigma=\left({1\atop -1.5}{-1.5\atop 4}\right)$. 16055 MVAcontnorm.xpl
\includegraphics[width=1\defpicwidth]{contnorm.ps}

According to Theorem 2.7 in Section 2.6 the half-lengths of the axes in the contour ellipsoid are $\sqrt{\frac{d^2}{\nu_{i}}}$ where $\nu_{i} = \frac{1}{\lambda_{i}}$ are the eigenvalues of $\Sigma^{-1}$ and $\lambda_{i}$ are the eigenvalues of $\Sigma$. The rectangle inscribing an ellipse has sides with length $2d\sigma_i$ and is thus naturally proportional to the standard deviations of $X_i\ (i=1,2)$.

The distribution of the quadratic form in (4.51) is given in the next theorem.

THEOREM 4.7   If $ X \sim N_p (\mu, \Sigma) $, then the variable $ U = (X-\mu)^{\top}
\Sigma^{-1}(X-\mu) $ has a $\chi^2_p$ distribution.

THEOREM 4.8   The characteristic function (cf) of a multinormal $N_p(\mu,\Sigma)$ is given by
\begin{displaymath}\varphi_X(t) = \exp(\textrm{\bf i}\ t^{\top} \mu -\frac{1}{2}t^{\top}
\Sigma t). \end{displaymath} (4.52)

We can check Theorem 4.8 by transforming the cf back:

\begin{eqnarray*}
f(x) & = & \frac{1}{(2\pi)^p} \int \exp\left(-{\bf i}t^{\top}x...
...} \exp\left[-\frac{1}{2}\{(x-\mu)^{\top}\Sigma
(x-\mu)\}\right]
\end{eqnarray*}



since

\begin{eqnarray*}
&&\int \frac{1}{\vert 2\pi\Sigma^{-1}\vert^{1/2}} \exp \left[-...
...top}\Sigma(t+{\bf i}\Sigma^{-1}(x-\mu))\}\right]\,dt \\
&&= 1.
\end{eqnarray*}



Note that if $Y\sim N_p(0,\data{I}_p)$ (e.g., the Mahalanobis-transform), then

\begin{eqnarray*}
\varphi_Y(t) & = & \exp\left(-\frac{1}{2}t^{\top} \data{I}_p t...
...\
& = & \varphi_{Y_1}(t_1)\cdot \ldots \cdot \varphi_{Y_p}(t_p)
\end{eqnarray*}



which is consistent with (4.33).


Singular Normal Distribution

Suppose that we have $ \mathop{\rm {rank}}(\Sigma ) = k < p $, where $p$ is the dimension of $X$. We define the (singular) density of $X$ with the aid of the $G$-Inverse $ \Sigma^{-} $ of $\Sigma$,

\begin{displaymath}
f(x) = \frac{(2\pi)^{-k/2}} {(\lambda_1 \cdots \lambda_k)^{1...
...ft \{ -\frac{1}{2} (x-\mu)^{\top} \Sigma^{-} (x-\mu) \right \}
\end{displaymath} (4.53)

where
(1)
$x$ lies on the hyperplane $ \data{N}^{\top} (x-\mu) = 0 $ with $ \data{N} (p \times (p-k)) : \data{N}^{\top} \Sigma = 0 $ and $ \data{N}^{\top}\data{N} = \data{I}_k $.

(2)
$ \Sigma^{-} $ is the $G$-Inverse of $\Sigma$, and $\lambda_1, \ldots,
\lambda_k $ are the nonzero eigenvalues of $\Sigma$.
What is the connection to a multinormal with $k$-dimensions? If
\begin{displaymath}
Y \sim N_k (0, \Lambda_1)\ \textrm{ and }\ \Lambda_1 = \mathop{\hbox{diag}}(\lambda_1,
\ldots, \lambda_k),
\end{displaymath} (4.54)

then there exists an orthogonal matrix $\data{B} (p \times k) $ with $ \data{B} ^{\top}\data{B}
= \data{I}_k$ so that $ X = \data{B} Y + \mu $ where $X$ has a singular pdf of the form (4.53).

Gaussian Copula

The second important copula that we want to present is the Gaussian or normal copula,
\begin{displaymath}
C_{\rho}(u, v) =
\int_{- \infty}^{\Phi_1^{-1}(u)}
\int_{- \infty}^{\Phi_2^{-1}(v)} f_\rho(x_1,x_2) d x_2 d x_1\; ,
\end{displaymath} (4.55)

see Embrechts et al. (1999). In (4.55), $f_\rho$ denotes the bivariate normal density function with correlation $\rho$ for $n=2$. The functions $\Phi_1$ and $\Phi_2$ in (4.55) refer to the corresponding one-dimensional standard normal cdfs of the margins.

In the case of vanishing correlation, $\rho = 0$, the Gaussian copula becomes

$\displaystyle C_0(u, v)$ $\textstyle =$ $\displaystyle \int_{- \infty}^{\Phi_1^{-1}(u)} f_{X_1}(x_1) d x_1 \;
\int_{- \infty}^{\Phi_2^{-1}(v)} f_{X_2}(x_2) d x_2 \;$  
  $\textstyle =$ $\displaystyle u \, v$  
  $\textstyle =$ $\displaystyle \Pi (u,v)\; .$  

Summary
$\ast$
The pdf of a $p$-dimensional multinormal $X\sim N_{p}(\mu,\Sigma)$ is

\begin{displaymath}f(x) = \vert 2 \pi \Sigma \vert^{-1/2} \exp \left \{ -\frac{1}{2}
(x- \mu)^{\top} \Sigma^{-1}(x- \mu) \right \}.
\end{displaymath}

The contour curves of a multinormal are ellipsoids with half-lengths proportional to $\sqrt{\lambda_{i}}$, where $\lambda_{i}$ denotes the eigenvalues of $\Sigma$ ($i=1,\dots,p$).
$\ast$
The Mahalanobis transformation transforms $X\sim N_{p}(\mu,\Sigma)$ to $Y=\Sigma^{-1/2}(X-\mu) \sim N_{p}(0,\data{I}_{p})$. Going the other direction, one can create a $X\sim N_{p}(\mu,\Sigma)$ from $Y \sim N_{p}(0,\data{I}_{p})$ via $X=\Sigma^{1/2}Y+\mu$.
$\ast$
If the covariance matrix $\Sigma$ is singular (i.e., $\mathop{\rm {rank}}(\Sigma) < p$), then it defines a singular normal distribution.
$\ast$
The density of a singular normal distribution is given by

\begin{eqnarray*}\frac{(2\pi)^{-k/2}} {(\lambda_1 \cdots \lambda_k)^{1/2}}
\exp \left\{ -\frac{1}{2} (x-\mu)^{\top} \Sigma^{-} (x-\mu) \right\} .
\end{eqnarray*}