next up previous contents index
Next: 5. The EM Algorithm Up: csahtml Previous: 4.5 Sparse Matrices

References

1
Alanelli, M. and Hadjidimos, A. (2004). Block Gauss elimination followed by a classical iterative method for the solution of linear systems. Journal of Computational and Applied Mathematics, 163(2): 381-400

2
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D. (1999). LAPACK Users' Guide, Third Edition. SIAM Press, Philadelphia, USA.

3
Axelsson, O. (1994). Iterative Solution Methods. Cambridge University Press, Cambridge, UK.

4
Bergamaschi, L. and Putti, M. (2002). Numerical comparison of iterative eigensolvers for large sparse symmetric positive definite matrices. Computer Methods in Applied Mechanics and Engineering, 191: 5233-5247.

5
Benoit, C. (1924). Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues. Application de la méthode à la résolution d'un système défini d'équations linéaires (Procédé du Commandant Cholesky). Bulletin géodésique, 2: 5-77.

6
Björck, A. (1994). Numerics of Gram-Schmidt Orthogonalization. Linear Algebra and its Applications, 198: 297-316.

7
Björck, A. (1996). Numerical Methods for Least Squares Problems. SIAM Press, Philadelphia, USA.

8
Croz, J.D. and Higham, N.J. (1992). Stability of methods for matrix inversion. IMA Journal of Numerical Analysis, 12: 1-19.

9
Dax, A. (2000). A modified Gram-Schmidt algorithm with iterative orthogonalization and column pivoting. Linear Algebra and Its Applications, 310: 25-42.

10
Demmel, J.W., Gu, M., Eisenstat, S., Slapnicar, I., Veselic, K. and Drmac, Z. (1999). Computing the singular value decomposition with high relative accuracy. Linear Algebra and its Applications, 299: 21-80.

11
Dongarra, J.J. and Eijkhout, V. (2000). Numerical linear algebra algorithms and software. Journal of Computational and Applied Mathematics, 123: 489-514.

12
Duff, I.S., Erisman, A.M. and Reid, J.K. (1989). Direct Methods for Sparse Matrices. Oxford University Press, USA.

13
Freund, R. and Nachtigal, N. (1991). QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numerical Mathematics, 60: 315-339.

14
Gallivan, K.A., Plemmons, R.J. and Sameh, A.H. (1990). Parallel algorithms for dense linear algebra computations. SIAM Review, 32: 54-135.

15
Gentle, J.E. (1998). Numerical Linear Algebra for Applications in Statistics. Springer, New York, USA.

16
Gentleman, W.M. (1973). Least squares computations by Givens transformations without square roots. Journal of Institute of Mathematics and its Applications, 12: 329-336.

17
Gentleman, W.M. (1975). Error analysis of QR decomposition by Givens transformations. Linear Algebra and its Applications, 10: 189-197.

18
George, A. and Liu, J.W.H. (1987). Householder reflections versus givens rotations in sparse orthogonal decomposition. Linear Algebra and its Applications, 88: 223-238.

19
George, J.A. and Ng, E.G. (1983). On row and column orderings for sparse least squares problems. SIAM Journal of Numerical Analysis, 20: 326-344.

20
Givens, W. (1958). Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular Form. Journal of SIAM, 6(1): 26-50.

21
Golub, G.H. (1965). Numerical methods for solving least squares problems. Numerical Mathematics, 7: 206-216.

22
Golub, G.H. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a matrix. SIAM Journal on Numerical Analysis B, 2: 205-224.

23
Golub, G.H. and Reinsch, C. (1970). Singular value decomposition and least squares solution. Numerical Mathematics, 14: 403-420.

24
Golub, G.H. and van Loan, C.F. (1996). Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland.

25
Golub, G.H., Zhang, Z. and Zha, H. (2000). Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner-outer iterations. Linear Algebra and its Applications, 309: 289-306.

26
Gupta, A. (2002). Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear Equations. ACM Transactions on Mathematical Software, 28: 301-324.

27
Hackbusch, W. (1994). Iterative Solution of Large Sparse Systems of Equations. Springer, New York, USA.

28
Hadjidimos, A. (2000). Successive Overrelaxation (SOR) and related methods. Journal of Computational and Applied Mathematics, 123: 177-199.

29
Hammarling, S. (1974). A note on modifications to the Givens plane rotation. Journal of Institute of Mathematics and its Applications, 13: 215-218.

30
Hari, V. and Veselic, K. (1987). On Jacobi methods for singular value decompositions. SIAM Journal of Scientific and Statistical Computing, 8: 741-754.

31
Harville, D.A. (1997). Matrix Algebra from a Statistician's Perspective. Springer, New York, USA.

32
Heath, M.T. (1984). Numerical methods for large sparse linear least squares problems. SIAM Journal of Scientific and Statistical Computing, 26: 497-513.

33
Hestenes, M.R. and Stiefel, E. (1952). Method of conjugate gradients for solving linear systems. J. Res. Nat Bur. Standards B, 49: 409-436.

34
Higham, N.J. (1989). The accuracy of solutions to triangular systems. SIAM Journal on Numerical Analysis, 26: 1252-1265.

35
Higham, N.J. (1997). Recent Developments in Dense Numerical Linear Algebra. In Duff, I.S. and Watson, G.A. (eds), State of the Art in Numerical Analysis, Oxford University Press, Oxford.

36
Higham, N.J. (2000). QR factorization with complete pivoting and accurate computation of the SVD. Linear Algebra and its Applications, 309: 153-174.

37
Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms, Second edition. SIAM Press, Philadelphia, USA.

38
Hong, Y.P. and Tan, C.T. (1992). Rank-revealing QR fatorizations and the singular value decomposition. Mathematics of Computation, 58: 213-232.

39
Householder, A.S. (1958). Unitary triangularization of a nonsymmetric matrix. Journal of the Association of Computing Machinery, 5: 339-342.

40
Ipsen, I.C.F. (1997). Computing an Eigenvector with Inverse Iteration. SIAM Review, 39: 254-291.

41
Kahan, W. (1958). Gauss-Seidel methods of solving large systems of linear equations. Doctoral thesis, University of Toronto, Toronto, Canada.

42
Kammerer, W.J. and Nashed, M.Z. (1972). On the convergence of the conjugate gradient method for singular linear operator equations. SIAM Journal on Numerical Analysis, 9: 165-181.

43
Makinson, G.J. and Shah, A.A. (1986). An iterative solution method for solving sparse nonsymmetric linear systems. Journal of Computational and Applied Mathematics, 15: 339-352.

44
Martin, R.S., Peters, G. and Wilkinson, J.H. (1965). Symmetric decomposition of a positive definite matrix. In Wilkinson, J.H. and Reinsch, C. (eds), Linear Algebra (Handbook for Automation Computation, Vol. II). Springer, Heidelberg, Germany.

45
Meinguet, J. (1983). Refined error analysis of cholesky factorization. SIAM Journal on Numerical Analysis, 20: 1243-1250.

46
Milaszewicz, J.P. (1987). Improving Jacobi and Gauss-Seidel Iterations. Linear Algebra and Its Applications, 93: 161-170.

47
Miranian, L. and Gu, M. (2003). Strong rank revealing LU factorizations. Linear Algebra and its Applications, 367: 1-16.

48
Mittal, R.C. and Al-Kurdi, A. (2002). LU-decomposition and numerical structure for solving large sparse nonsymmetric linear systems. Computers & Mathematics with Applications, 43: 131-155.

49
Ng, E.G. and Peyton, B.W. (1993). Block Sparse Cholesky Algorithm on Advanced Uniprocessor Computers. SIAM Journal of Scientific Computing, 14: 1034-1056.

50
Nool, M. (1995). Explicit parallel block Cholesky algorithms on the CRAY APP. Applied Numerical Mathematics, 19: 91-114.

51
Pan, C.T. (2000). On the existence and computation of rank revealing LU factorizations. Linear Algebra and its Applications, 316: 199-222.

52
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical Recipes in C: the Art of Scientific Computing, Second Edition. Cambridge University Press, Cambridge, UK.

53
Rice, J.R. (1966). Experiments on Gram-Schmidt orthogonalization. Mathematics of Computation, 20: 325-328.

54
Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Second Edition. SIAM Press, USA.

55
Saad, Y. and Schultz, M.H. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7: 856-869.

56
Sidi, A. (1989). On extensions of the power method for normal operators. Linear Algebra and Its Applications, 120: 207-224.

57
Skeel, R.D. (1980). Iterative refinement implies numerical stability for Gaussian elimination. Mathematics of Computation, 35: 817-832.

58
Stewart, G.W. (1976). The economical storage of plane rotations. Numerical Mathematics, 25: 137-138.

59
Stewart, G.W. (1998). Matrix Algorithms, Volume I: Basic Decompositions. SIAM Press, Philadelphia, USA.

60
Stoer, J. and Bulirsch, R. (2002). Introduction to Numerical Analysis, Third Edition. Springer, New York, USA.

61
Tran, T.M., Gruber, R., Appert, K. and Wuthrich, S. (1996). A direct parallel sparse matrix solver. Computer Physics Communications, 96: 118-128.

62
Trefethen, L.N. and Bau, D. (1997). Numerical Linear Algebra. SIAM Press, Philadelphia, USA.

63
von Matt, U. (1995). The Orthogonal QD-Algorithm. In Moonen, M. and De Moor, B. (eds), SVD and Signal Processing, III: Algorithms, Architectures and Applications, Elsevier, Amsterdam.

64
Vorst, V.D. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 13: 631-644.

65
Wampler, R.H. (1970). A report on the accuracy of some widely used least squares computer programs. Journal of American Statistical Association, 65: 549-565.

66
Young, D.M. (1954). Iterative methods for solving partial differential equations of elliptic type. Transactions of the American Mathematical Society, 76: 92-111.

67
Zhou, B.B. and Brent, R.P. (2003). An efficient method for computing eigenvalues of a real normal matrix. Journal of Parallel and Distributed Computing, 63:638-648.

68
Zlatev, Z. and Nielsen, H.B. (1988). Solving large and sparse linear least-squares problems by conjugate gradient algorithms. Computers & Mathematics with Applications, 15: 185-202.

69
Zou, Q. (1991). An observation on Gauss elimination. Computers and Mathematical Applications, 22: 69-70.



Subsections